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Geophysical flows are often approximated as being two-dimensional on large scales due to their
high aspect ratios. Two-dimensional flows in turn are well-known to be prone to producing coherent
structures that impact their mixing and transport. However, real geophysical flows are not exactly
two-dimensional, in that they typically have nonuniform bathymetry that may also affect mixing.
We study the interplay of quasi-two-dimensionality, nonuniform bathymetry, and lateral transport
via laboratory experiments in an electromagnetically stirred thin-layer flow that is weakly turbulent.
We find that spatial variations in bathymetry lead to laterally coexistent zones with different levels of
turbulence, and investigate the transport across the interface dividing these zones using an approach
based on transfer operators. We find that this transport is asymmetric, and that fluid elements cross
from low turbulence to high turbulence via directed advection but from high to low turbulence via
random eddying motion. Our results may have implications for understanding geophysical flows
where lateral transport is suppressed such as ocean dead zones.

I. INTRODUCTION

Geophysical flows such as those in the ocean and atmosphere can often be well approximated as two-dimensional
(2D) on large scales. This reduced dimensionality has significant dynamical consequences, such as an inverse turbulent
energy cascade [1–3], the introduction of an infinite number of new (inviscidly) conserved quantities [4], and a strong
tendency to generate coherent structures [5] that can be linked to mixing and transport [6, 7]. There has thus been
a significant amount of research done on two-dimensional flows over the past few decades [4], with the connection to
geophysical flow often cited as motivation.

There are key features in real geophysical flows, however, that are not captured by a purely two-dimensional
approximation. In particular, flows in nature are always bounded from below, and the shape and structure of this
bottom boundary can impact the lateral dynamics of the flow when it is shallow enough. Such bathymetric control
can be particularly relevant in the coastal ocean, given the rapid horizontal variation of depth at, e.g., continental
shelf breaks [8]. This dependence on the shape of the bottom can lead to lateral variations of the effective forcing
of the surface layer of the ocean, since shallower sections may be more damped by interactions with the bottom,
which in turn can cause variations in turbulence intensity and mixing. Such lateral variations have been implicated
in the formation and dynamics of ocean dead zones [9–11], as transport may be suppressed asymmetrically across the
interface separating two turbulent flows of differing strengths.

Here we make progress toward understanding the transport between flows with different degrees of turbulence
using controlled laboratory experiments in a quasi-two-dimensional, weakly turbulent flow. By spatially varying
the flow depth, we create two contiguous regions with different Reynolds numbers. We show that even though
fluid can mix across these two regions, transport between the two is suppressed relative to what it would be in a
homogeneously forced system. Using a transfer-operator framework, we describe this reduced transport in terms of
a “porous” transport barrier separating the two regions. Additionally, we show that the suppression of transport is
not symmetric; rather, fluid elements preferentially cross from the more turbulent side to the less turbulent side. The
nature of the crossing is also different for those fluid elements that cross from less to more turbulent and more to less
turbulent. In the former case, the process is one of direct advection; but in the latter, the process is more diffusive.
Our results have implications for further understanding the processes by which energy, mass, and momentum are
mixed in situations where flows of different turbulence levels are coexistent.

We begin below by presenting a description of our experimental setup in Section IIA and the transfer-operator
framework in Section II B. In Section III, we discuss our results, including the presence of a porous transport barrier
and the asymmetric transport through this barrier. Finally, we summarize our results and discuss their implications
in Section IV.
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II. METHODOLOGY

A. Experimental details

To create a quasi-two-dimensional flow in the laboratory, we use an electromagnetically driven thin-layer experi-
mental setup. As we have presented elsewhere in detail [12–15], our apparatus consists of a thin layer of an electrolytic
fluid with lateral dimensions of 86 × 86 cm2 driven by electromagnetic forces. Experiments were conducted with a
10-mm-deep layer of a solution of 14% by weight NaCl in deionized water, with a density of ρ = 1101 kg/m3 and a
kinematic viscosity of ν = 1.25× 10−6 m2/s. A smooth flat glass floor coated with a hydrophobic wax supports the
electrolyte, and the glass floor is painted black on the underside to improve imaging quality. An additional 5 mm of
fresh water is floated above the electrolyte to create a miscible density interface that defines the horizontal plane of
the flow we study.

Under the glass floor, an array of 34 × 34 permanent magnets with diameters of 12.7 mm, thicknesses of 3.2 mm,
and center-to-center spacings of 25.4 mm is placed to generate a vertical magnetic field in the apparatus. The strength
of each magnet is roughly 600 gauss on its surface, and the magnets are arranged in stripes of alternating polarity.
A DC electric current of up to 3.30 A is passed laterally through the electrolyte via a pair of copper electrodes. The
orthogonal current density and magnetic field produce a Lorentz body force on the fluid. This force is large enough to
produce complex spatiotemporal dynamics and weak turbulence, but not so large as to drive significant out-of-plane
motions [14]. We define an in-plane Reynolds number Re = u′Lm/ν, where u′ is the in-plane root-mean-square
velocity and Lm is the magnet spacing, as a nondimensionalization of the strength of the forcing. In addition to the
turbulent fluctuations, the periodic layout of the magnitudes generates a weak mean flow consisting of shear bands
of alternating sign.

The flow is measured using particle-tracking velocimetry (PTV) [14, 16]. We seed the electrolyte with fluorescent
polystyrene tracer particles with diameters of 50 µm (and thus a Stokes number of O(10−4)) that are small enough
to follow the flow accurately [17]. The mass density of the tracer particles lies between that of fresh water and the
electrolyte, so the tracer particles stay at the interface between the two. We illuminate the tracer particles with LED
lamps and image their motion at a rate of 60 frames per second with a 4 megapixel camera. We record roughly 25,000
particles per frame in a subregion measuring 21 × 21 cm2 (roughly 8Lm × 8Lm) in the center of the apparatus, so
that we densely sample the velocity field. Although this subregion is not precisely aligned with an integer number of
magnet stripes, any asymmetric effects on transport from the small residual mean flow due to the magnets only appear
on very long time scales at our flow conditions [18]. We finally combine these discrete samples into a two-dimensional
velocity field by projecting them onto a basis of streamfunction eigenmodes [14].

To generate regions of the flow with different turbulence intensities, we place black polyvinyl chloride (PVC) plates
with thicknesses ranging from 3 to 5 mm and lateral dimensions of 30× 30 cm2 on the glass floor in part of the flow
domain. The PVC plates are fully submerged in the electrolyte, so that the flow above the plates is still driven, and
they are placed such that half of the camera field of view is filled with fluid that lies over the plate and half with
fluid that lies over the glass floor. For the data shown here, the plate was placed parallel to the magnet stripes (and
therefore parallel to the mean-flow shear bands); however, we also tested other orientations, including perpendicular
to the stripe direction and at 45◦, with no significant changes to our results. Given the no-slip condition on the
bottom boundary, there is a vertical velocity gradient in the flow; and since the velocity must go to zero over a shorter
distance above the PVC plate, the resulting bottom drag on the fluid is larger there. In addition, the volume of driven
fluid is smaller over the plate, since the interface between the salt water and fresh water does not change. Thus, the
in-plane Reynolds number over the plate is smaller than that over the glass floor even for the same electric currents.
Nevertheless, the flow remains quasi-two-dimensional in both cases, given that nearly all of the kinetic energy is
associated with the in-plane motion [14]. In the experiments we describe here, the Reynolds number over the glass
floor is maintained at roughly 200, while over the plates it drops as low as 36.

B. Transfer-operator based partitioning

Our goal in this work is to assess the mixing and transport between two regions of the flow with distinct forcing.
There are, of course, many ways to quantify mixing. Here, we will primarily use an approach based on transfer
operators, as it allows us to make a relatively simple characterization of the mixing properties and can reveal permeable
but not unimportant impediments to mixing. We have previously described the specifics of our implementation of
transfer operators [15]; here, therefore, we only briefly review the key ideas.

A transfer operator maps a density initially located in some region of the flow domain X to a (possibly) different
region Y . To estimate the transfer operator, we follow Froyland et al. [19] and first break up the initial domain X
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into subsets Bi and the final domain Y into subsets Cj . The transfer operator can then be approximated as

P
(τ)(t)i,j =

l(Bi ∩ Φ(Cj , t+ τ,−τ))

l(Bi)
, (1)

where Φ(z, t, τ)) is the flow map that gives the location of a fluid element that was at position z at time t at a time

t+ τ , and l is a normalized volume measure. Hence, P (τ)(t)i,j is a row-stochastic matrix that encodes the probability
that a fluid element initially in Bi at time t will be found in Cj at time t+ τ .
Here, we estimate the transfer operator by breaking our domain into 25 × 25 boxes, corresponding to the Bi in

eq. 1. Since we are interested in coherent transport within the domain, the set Cj is taken to be the same as the
set Bi. Both the domain and the boxes have unit aspect ratio to avoid possible biases. In each box, Np=225 virtual
Lagrangian points are seeded uniformly. The Lagrangian points are integrated forward in time using a second-order
Runge-Kutta scheme, with the advecting velocity taken from the measured flow fields [17]. We varied the number
of boxes and number of particles in each box over a reasonable range, with no significant changes; for example, we
tested box layouts ranging from 16× 16 to 50× 50. We find that 25 × 25 boxes with each box containing 225 virtual
Lagrangian points is a good compromise between accuracy and resolution [15].
After estimating the transfer operator, we apply the flow partition algorithm of Froyland et al. [19] to split the flow

domain into sets using the singular vector corresponding to the second-largest singular value of the transfer operator
σ2, as it is guaranteed by the Perron–Frobenius and Courant–Fischer theorems to produce the maximally coherent sets
[19, 20]. Note that we modify the algorithm detailed in Froyland et al. [19] somewhat to handle the open boundaries
of our flow domain (as is typical for experimental or observational data), as we have described previously [15].
The level of coherence of the two sets is indicated by σ2, since the largest singular value σ1 is always unity and

simply represents conservation of mass; thus, we require σ2 to be larger than a threshold (0.8, here) to ensure that the
flow domain can be reasonably partitioned. Varying this threshold over a reasonable range does not change our results
[15], and the typical magnitudes of σ2 can be seen in fig. 2 below. But the value of σ2 alone does not directly tell us how
confident we are that the partition returned by the algorithm is the best one as opposed to some other partition, such
as that based on the third singular value σ3. If σ2 is significantly larger than σ3, we can assert that a partition based
on the third singular vector will be significantly inferior. On the other hand, if σ2 and σ3 are close in magnitude, the
confidence in the partition is much lower, because noise or uncertainty could potentially have changed the ordering of
the singular values. To ensure that the partitioning is meaningful, we therefore also require the spectral gap between
σ2 and σ3 to be significant. Hence, we enforce two criteria in reporting transfer-operator-based flow partitions: that
(1) the second singular value σ2 must be larger than a threshold so that the partition is sufficiently coherent and
therefore meaningful, and that (2) the spectral gap σ2/σ3 between the second and third singular values should also
be large so that we have confidence in the partition as opposed to a different partition.
The transfer operator, and therefore the corresponding flow partition, is also dependent on the time scale τ over

which we allow the flow to evolve. This time scale is a free parameter, and encodes the time span over which we will
look for coherent transport. In principle, it ought to be determined by the flow physics itself; however, the relevant
time scales of the flow are not always known a priori. Thus, we previously suggested that it is useful to track the
evolution of the singular values of the transfer operator as τ is increased [15]; and, typically, one observes that the
singular value ratio σ2/σ3 displays rapid jumps at some values of τ . These values indicate important dynamical time
scales of the flow, since on these time scales the confidence in the flow partition dramatically increases and it becomes
more meaningful.
Finally, we note that the raw singular vectors of the transfer operator produce spatial values that are continuously

distributed. We will refer to such a spatial map (such as the one shown in the top panels in fig. 3 below) as a “fuzzy”
partition. These values give an estimate of the likelihood that a particular spatial location belongs to one set or the
other; values close to 1 and -1 are quite likely to belong to one set, while those closer to 0 are less certain [15, 19]. It
is often useful, however, to binarize the partition, which we do here simply by choosing a binarization threshold so
that each of the coherent sets contains about half of the domain; here, we simply choose a threshold of 0.

III. RESULTS

As discussed above, our goal is to study the mixing and transport between different regions in the flow with
different depths, as the in-plane flows in these regions have different levels of turbulence, as reflected in distinct
in-plane Reynolds numbers. We studied regions with Reynolds number ratios ranging from 1.26 to 5, with similar
results; below, we show specific results for the case of a Reynolds number ratio of 1.26 (with individual Reynolds
numbers of 237 and 188). We begin by confirming the suppressed mixing across the interface between the two regions,
which we describe as a “porous” transport barrier. We then describe asymmetries in the transport, since moving from
high to low Reynolds number is not the same as moving from low to high.
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FIG. 1. (a) Instantaneous forward finite-time Lyapunov exponent (FTLE) field computed for an integration time of 2.5TL,
where TL = Lm/u′ is the eddy turnover time associated with the forcing. The dashed line shows the location of the bathymetric
step; the low Reynolds number side is on the left of the figure, and the high Reynolds number side is on the right. (b) Backward
FTLE field, computed for the same integration time. (c) Temporally averaged forward FTLE field. (d) Temporally averaged
backward FTLE field. All FTLE values have been nondimensionalized by TL, and the size of the domain shown in all cases is
8Lm × 8Lm (or 21× 21 cm2).

A. Detecting Porous Transport Barriers

Since their introduction as tools for locating so-called Lagrangian Coherent Structures [6], finite-time Lyapunov
exponents (FTLEs) have become standard tools for studying transport in complex flows. FTLEs are typically obtained
by measuring the eigenvalues of the right Cauchy–Green strain tensor, which can be computed by taking the inner
product of the gradient of the flow map with itself [6]. For an in-depth discussion of FTLEs and associated Lagrangian
Coherent Structures, we direct the reader to recent review articles in refs. [6] and [7]. For our purposes here, it is
sufficient to recall that sharp (co-dimension-one) ridges of the FTLE field are expected to indicate the presence of
dynamical barriers to transport [21]. As we wish to characterize a potential suppression of transport between two
regions of the flow, it stands to reason that we might expect to see a strong ridge of the FTLE field, corresponding to
such a transport barrier, pinned at the interface between the high and low Reynolds number regions. Such behavior
has indeed been seen previously in the oceanic context separating dead zones from the rest of the ocean, such as on
the West Florida shelf [9, 11].
When we measure FTLE fields such as those shown in fig. 1, however, we see no hint of a barrier between the

two regions. This is true whether we look at either the forward- or backward-time FTLEs, whether we average these
fields over time [18], or the Reynolds number ratio between the two regions. The patterns seen in the averaged FTLE
fields are due to the arrangement of the magnets, as we have previously shown [18]; when averaged over long times,
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FIG. 2. Evolution of the transfer operator singular values as a function of the integration time τ over which the transfer
operator is computed, in units of TL = Lm/u′, for (a) experiments with a bathymetric step and (b) the control case of
featureless bathymetry. The largest singular value is fixed at 1 by construction, but the other singular values decay with
increasing τ , indicating loss of coherence. The second and third singular values σ2 and σ2 are plotted with thicker lines. As
discussed in the text, the value of σ2 indicates the degree of coherence of our partition, and the gap between σ2 and σ3 indicates
our confidence in this partition. The vertical dashed lines in (a) show the values of τ for which partitions are shown in fig. 3.
In the control case, σ2 decays very quickly as τ increases, indicating a rapid drop in coherence. Additionally, the spectral gap
between σ2 and σ3 remains small for all τ , indicating low confidence.

the FTLEs are sensitive to the (weak) mean flow. These results tell us that even though the mixing between the two
regions may be suppressed, there is no true barrier between them: fluid elements may still cross from one region to
the other.
The existence of an impermeable barrier to mixing, however, would be a very strong result, and one that perhaps

should not be expected here. Instead, it is more reasonable to posit that there is instead simply a reduced tendency
to mix across the interface between the two regions. To check that hypothesis, we turn to the transfer operator
described above: since transfer-operator partitioning looks only for maximally coherent sets rather than impermeable
boundaries, it may reveal the transport modulation we seek even though the FTLEs do not.
In fig. 2(a), we plot the singular values of the transfer operator for different mapping times τ , ensemble-averaged

over thirty different realizations of the flow separated by at least one correlation time of the flow field, ensuring their
statistical independence. We note that all of our transfer-operator results are similarly ensemble-averaged. We find,
similarly to our previous work on the effects of lateral boundaries (e.g., coastlines) on mixing [15], that each of the
singular values decays with τ , but at different rates. In particular, the larger singular values decay more slowly,
indicating that the singular vectors associated with them correspond to fairly coherent sets. As τ increases, the
spectral gap between the second and third singular values, which indicates the confidence with which we can assert
that the second singular vector identifies the most coherent partition of the flow, also increases, while the second
singular value remains high. These results indicate that there is indeed a meaningful binary partitioning of the flow
that can be determined, even though the FTLE fields did not indicate the presence of an impermeable transport
barrier.
To ensure that this result is not an artifact of the partitioning algorithm, we also tested a control case where we

applied the algorithm to a flow with a uniform bottom boundary (and thus no distinct regions). The transfer-operator
singular values for this control case are shown in fig. 2(b). Unlike the situation shown in fig. 2(a), the second singular
value decreases rapidly, indicating that the best binary partition of the flow is not very coherent, and the spectral
gap between the second and third singular values is small, indicating that there is little confidence in this best binary
partition compared to other possible partitions. These results are borne out by looking at the coherent sets themselves
for the control case, which are spatially unstructured. Thus, the case of interest with variable bathymetry is both
qualitatively and quantitatively distinct from the homogeneous control case. Thus, we conclude that the partition
picked out by the transfer operator is not simply due to noise or the geometry of the domain.
Having established that the partition is likely to be meaningful, we visualize it by plotting the identified coherent

sets in fig. 3. We show results for three values of τ : 8TL, 10TL, and 12TL, where TL = Lm/u′ is the eddy turnover time
scale associated with the flow forcing. These values were chosen by examining the evolution of the spectral gap σ2/σ3
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FIG. 3. Flow partitions for (a) τ = 8TL, (b) 10TL, and (c) 12TL for the case with variable bathymetry. For each value of τ , the
top two panels show the singular vectors X (at the initial time) and Y (at the final time), while the bottom two panels show
the same data but binarized following the work of Froyland et al. [19]. The dashed lines show the location of the bathymetric
step; the low Reynolds number side is on the left, and the high Reynolds number side is on the right. The size of the domain
shown in all cases is 8Lm × 8Lm (or 21× 21 cm2). The values of the second singular value σ2 and the ratio σ2/σ3 are (a) 0.94
and 1.119, (b) 0.90 and 1.198, and (c) 0.84 and 1.304.

with τ ; at each of these times, a rapid increase in the spectral gap was seen, indicating an increase in the confidence
of partitioning [15]. For each of these cases, we show both the fuzzy and binary partitions at both the initial and
final times (that is, the initial shapes of the coherent sets and their final shapes a time τ later). We also indicate the
position of the bathymetric step. The interface between the two coherent sets clearly lies on this step. For the control
case with no bathymetry, the partitioning algorithm simply splits the domain in half along the longest axis of the
measurement domain (that is, along the diagonal), with fuzzy partition values near 0 indicating low confidence. Thus,
we conclude that transport is indeed meaningfully reduced between the two regions with different bathymetries: more
than 90% of fluid elements initially on one side of the barrier do not cross it. However, transport is not completely
suppressed, as the interface is not apparent from FTLE fields and some fluid elements do cross. For that reason, we
refer to the interface between these two turbulent regions as a “porous” transport barrier.

B. Asymmetric Transport

Now that we have demonstrated the existence of a porous transport barrier between the two regions of the flow with
different bathymetries and therefore different Reynolds numbers, we investigate the properties of those fluid elements
that are able to cross the barrier as compared to those that do not. Additionally, we separate those fluid elements
that cross from the low Reynolds number side to the high Reynolds number side from those that cross from high to
low, since the transport need not be symmetric given that there is a substantial amount of the full apparatus that we
do not measure and thus that our measurement domain is effectively an open flow.
More specifically, we seeded 256,640 virtual fluid elements at specified initial locations on both sides of the porous

transport barrier and integrate their positions forward in time using the measured velocity fields, just as we did to
compute the transfer operator and the FTLE fields. From this ensemble, we pick out four classes of trajectories:
those that remain in the low Reynolds number region, those that remain in the high Reynolds number region, those
that cross from the low to the high Reynolds number side, and those that cross from the high to the low Reynolds
number side. Using these data, we first verify that the transport we observed across the barrier is indeed asymmetric:
the ratio of the mass flux from high to low Reynolds number to low to high Reynolds number is about 1.6. To gain
more insight, we then consider the statistics of the kinetic energy and vorticity for these classes of fluid elements
conditioned on their initial distance from the barrier. Finally, we also consider the initial direction of motion of the
fluid elements, expressed as the angle of their velocity vector with respect to the direction normal to the barrier.
We first consider the kinetic energy statistics. In fig. 4, we show the probability density functions (PDFs) of kinetic

energy for fluid elements in the four classes described above for different initial distances to the barrier. From these
data, one can observe that fluid elements that move from the low Reynolds number side of the barrier to the high
Reynolds number side tend to have larger kinetic energy, particularly when they are initially further from the barrier.
This result is compatible with a simple explanation in terms of smoothness of the velocity field. Once a fluid element
is on the high Reynolds number side, its kinetic energy must be (on average) larger, since the typical length scales
and viscosities are fixed on each side of the barrier; thus, those fluid elements on the low side that already have
higher than average kinetic energy need to accelerate less to cross the barrier. What is perhaps less obvious is that
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FIG. 4. Probability density functions (PDFs) of the kinetic energy k of fluid elements located at fixed distances (ranging from
0.2Lm to 1.8Lm) to the bathymetric step on (a) the low Reynolds number side and (b) the high Reynolds number side. Solid
lines show the statistics of fluid elements that eventually crossed the porous transport barrier, while dashed lines show the
statistics of fluid elements that did not.
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the same trend, albeit more weakly, is also observed for fluid elements that cross from high to low Reynolds number
as compared with those that remain on the high side. Such fluid elements must then decelerate rapidly once they
cross the barrier to preserve the stationarity of the flow. Thus, studying the kinetic energy alone is not sufficient to
understand the asymmetric transport we see.

Because in 2D flows the enstrophy, like the kinetic energy, is an inviscid invariant along fluid-element trajectories
and therefore contains significant dynamical information, we also measured the statistics of the magnitude of the
vorticity for our four classes of fluid elements, as shown in fig. 5. Here as well, there are noticeable differences between
those fluid elements that cross the barrier and those that do not. Fluid elements that cross from low to high Reynolds
number tend to have somewhat lower vorticity than those that do not cross, while those that cross from high to low
Reynolds number tend to have somewhat higher vorticity. To summarize, in terms of their kinematics, we find that
fluid elements that cross the barrier from low to high Reynolds number tend on average to have high kinetic energy
but low vorticity, while those that cross from high to low Reynolds number tend to have high kinetic energy and high
vorticity. Thus, we conclude that the transport across the barrier is not necessarily symmetric.

To gain more insight into the mechanics of the barrier crossing, we also measured a simple quantity: the angle
between the velocity vector of a fluid element and the direction normal to the barrier at various distances from the
barrier. We define the barrier normal vector to point from the high Reynolds number side to the low Reynolds number
side; thus, angles ranging from 0◦ to 90◦ indicate a velocity vector with a component pointed toward the low Reynolds
number side, and angles ranging from 90◦ to 180◦ indicate a velocity vector with a component pointed toward the
high Reynolds number side. Because of the symmetry of the problem in the direction parallel to the boundary, we do
not distinguish between clockwise and counterclockwise angles.

We show the statistics of these angles for fluid elements that cross the barrier in fig. 6. For fluid elements that cross
from low to high Reynolds number, there is a definite bias in the PDFs for velocities pointed toward the barrier, as
one would expect, particularly for fluid elements fairly far from the barrier. Surprisingly, however, fluid elements that
cross from high to low Reynolds number are nearly as likely to be moving away from the barrier as they are to be
moving toward the barrier, though the mean direction is still (weakly) toward the barrier. This asymmetry combined
with the results for kinetic energy and vorticity above suggests that fluid elements move from the low to high Reynolds
number side by directed advection, while they move from the high to the low side via more random eddying motions.
This result also gives a rationalization for why it is the higher-energy fluid elements on the high Reynolds number
side that cross the barrier: those fluid elements on the high Reynolds number side with higher kinetic energies will
move farther in the same amount of time via their random motions than those with lower kinetic energy, and will
therefore be more likely to encounter the barrier.

We can solidify this picture by considering the likelihood of a fluid element that started some distance away from
the barrier to cross it. To do so, we measured the PDFs of the initial distance from the barrier for those fluid
elements that cross it from high to low Reynolds number and from low to high Reynolds number, as shown in fig. 7
for fluid elements integrated for a time of 2TL. If the crossing were random, one would expect a PDF that falls off
exponentially; and indeed, this is roughly what we find for the high to low Reynolds number case. In contrast, the
PDF for the low to high Reynolds crossing is not exponential except for very close to the interface. We note that
there is some dependence on the integration time for these PDFs; as the integration time becomes very short, the
PDFs become very similar, since not many fluid elements cross the barrier. The deviation between the PDFs grows
as the integration time increases, for reasonable integration times.

IV. SUMMARY AND CONCLUSIONS

We have used a modified transfer-operator-based approach to study the coherent transport across a bathymetric
interface separating two quasi-two-dimensional turbulent flows of different strength. We find evidence for a porous
transport barrier at this interface, which is not apparent using an FTLE-based approach. The transport across this
barrier is highly anisotropic, with preferential transport from the high Reynolds number side to the lower Reynolds
number side. However, this process is roughly diffusive, while transport from the low Reynolds number side to the
high Reynolds number side is more advective. We suggest that these ideas may be useful for further understanding
of the origin and dynamics of ocean dead zones, as well as for the siting of coastal facilities that discharge material
into the ocean and assume that it will mix [22].

Finally, although we have here focused on the effects of variable bathymetry in driving differential transport, it
is likely that our qualitative results will hold for any system similar to ours with a laterally varying local Reynolds
number. Future work could test this hypothesis by changing the Reynolds number spatially in different ways and
studying the more general transport across such a turbulent/turbulent interface.
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FIG. 5. PDFs of the magnitude of the vorticity |ω| of fluid elements located at fixed distances (ranging from 0.2Lm to 1.8Lm)
to the bathymetric step on (a) the low Reynolds number side and (b) the high Reynolds number side. Solid lines show the
statistics of fluid elements that eventually crossed the porous transport barrier, while dashed lines show the statistics of fluid
elements that did not.
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FIG. 6. PDFs of the angle between the velocity vector of fluid elements located at fixed distances to the bathymetric step and
the direction normal to the step for (a) fluid elements initially on the low Reynolds number side and (b) fluid elements initially
on the high Reynolds number side.
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