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Abstract

The paper presents results for the resolved numerical simulation of a turbulent flow past a

homogeneous sphere and a spherical shell of equal mass and radius (and, therefore, with a larger

moment of inertia) free to rotate around a fixed center. This situation approximates the behavior

of a particle whose relative motion with respect to the fluid is driven by external forces, such as a

density difference in a gravitational field. Holding the center fixed makes it possible to have precise

information on the turbulent flow incident on the particle by repeating the same simulations without

the particle. Two particle Reynolds numbers based on the mean velocity, Rep = 80 and 150, are

investigated; the incident turbulence has Reλ = 36 and 31, respectively. The particle diameter is

an order of magnitude larger than the Kolmogorov length scale and close to the integral length

scale.

The turbulent eddies that interact most strongly with the particle are characterized. Their size

is found to increase with Rep due to the interplay of the convection time scale, the particle time

scale and the eddy time scale, but remains of the order of the particle diameter. The sign of

the hydrodynamic torque is likely to persist much less than the convection time, although longer

durations are also found, revealing the effect of occasional interactions with larger eddies. The

autocorrelation of the torque changes sign at shorter and shorter fractions of the convection time

as the Reynolds number increases. Significant cross-stream forces are found. An analysis of their

magnitude shows that they are mostly due to induced vortex shedding combined with a weaker

Magnus-like mechanism.
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I. INTRODUCTION

The development of new experimental techniques [see e.g. 1–9] and numerical meth-

ods [see e.g. 10–15] is making possible the study of the interaction of turbulence with parti-

cles significantly larger than the Kolmogorov scale for which rotation cannot be disregarded

and the earlier point-particle models [see e.g. 16, 17] are inappropriate. Much of this work

has dealt with aspects of the translational motion of particles, such as the statistics of par-

ticle velocity and acceleration [2]. Less attention has been paid to particle rotation. The

rotational intermittency and lift experienced by a spherical, neutrally buoyant particle in

homogeneous turbulence were studied in Refs. [1, 2]. The particle size was comparable to

the integral scale and the particle Reynolds numbers were of the order of 1000. The results

showed a strong intermittency of the angular dynamics, with the Probability Density Func-

tion (PDF) of the angular acceleration having a flatness of about 7, considerably larger than

that of the angular velocity, which was close to 4. The root-mean-square (RMS) angular

acceleration was found to be of the order of (u′/2a)2, with u′ the RMS of the turbulent

velocity fluctuations and a the particle radius. The authors write “Which properties of the

turbulent flow control the rate of rotation of the particle also remains to be elucidated ...

Small eddies acting on the particle in a spatially incoherent manner would result in a sig-

nificantly reduced torque acting on the particle. This suggests a much more coherent flow

pattern, in fact consistent with the recent numerical results of” Ref. [18].

The extent of the fluid region most influencing the motion of neutrally buoyant spheres

in homogeneous turbulence was studied in Ref. [3]. The conclusion was that flow structures

somewhat larger than the particle diameter interact most strongly with it. A similar result

has been found in studies directed primarily to the investigation of the effects of particle

shape, including ellipsoids, disks and rods [4, 5]. While spherical particles were found to

have a larger effect on the fluid turbulence than prolate ellipsoids, the auto-covariances

of ellipsoids and spheres were statistically identical. From this observation the authors

conclude that rotation is controlled by turbulent scales larger than the particle size. The

results of Ref. [8] and [9] show that the rotation statistics of particles of various shapes

is most sensitive to the volume-equivalent spherical diameter, which again leads to similar

conclusions. A qualitatively similar result is reported in [19] for the rotational dynamics

of neutrally buoyant rods. For all rod lengths, the correlation time of the Lagrangian

3



autocorrelation of the rotation rate scales as the turn-over time of eddies of the size of the

rod.

In the studies mentioned so far neutrally or nearly-neutrally buoyant particles were used.

More recently, particles with a density significantly smaller than the surrounding liquid were

used in Refs. [6, 7]. This difference caused a larger particle-liquid relative velocity with a

Galilei number in the range 30 – 3000 and the development of a wake and vortex shedding.

As a consequence, unlike the equal-density case, both velocity and acceleration de-correlate

at the same rate, which is explained by the determining influence of vortices shed in the

wake.

In this paper, as a step toward a better understanding of the “properties of the turbulent

flow [which] control the rate of rotation of the particle” (Ref. [2]), we use fully resolved

numerical simulations to study the rotational dynamics of a single spherical particle free to

rotate around its center held fixed in an decaying incident turbulent stream at two Reynolds

numbers, Rep = 80 and 150. By keeping the particle center fixed, and comparing with the

identical incident flow in the absence of the particle, we can relate the particle rotational

motion to features of the incident turbulence.

Our interest lies in particles with a size close to the integral scale, two or three times larger

than the Taylor microscale and over a factor of 20 larger han the Kolmogorov scale. For

such particles, which have a size comparable to that of the objects used in the experiments

mentioned before, rotational inertia is important. The consideration of moments of inertia

in the ratio 1:5/3 provides further insight into the role of inertia. The fact that the fluid

flow has a non-zero mean velocity and that the particle is allowed to rotate are the main

differences between the present work and our earlier study [18] in which the particle was

held fixed in a homogeneous isotropic turbulent field.

A point to stress is that the numerical method used in this work is singularly appropriate

for this problem as it leads to a very accurate evaluation of the hydrodynamic torque on the

particle, as documented in [20].

The forced stationarity of the particle center approximates the buoyant relative motion

studied in [6, 7]. As in that paper, we find significant effects of vortex shedding induced

by the turbulence transported by the mean flow. We present some evidence suggesting the

presence of Magnus-like forces which, however, are found to play a lesser role compared with

those due to vortex shedding.
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II. NUMERICAL METHOD

The simulations are performed with the Physalis method, a complete description of which

is available in several papers including, most recently, [21]; implementation details are de-

scribed in [22]. The Navier-Stokes equations are solved on a fixed Cartesian grid by a

projection method. A characteristic feature of the method is the way in which the fluid is

coupled to the particle, assumed to have a no-slip spherical surface. The coupling is based

on the recognition that, in the vicinity of the particle surfaces, the fluid motion differs little

from a rigid-body motion. This circumstance permits the Navier-Stokes equations to be lin-

earized to the Stokes form, for which the general exact solution, obtained by Lamb [23, 24], is

available. This analytical solution is used as a “bridge” between the particle surface and the

closest nodes of the Cartesian grid thus bypassing the difficulties deriving from the complex

geometrical relationship between the spherical particles and the underlying Cartesian grid.

The particle orientation is updated on the basis of the calculated hydrodynamic torque L:

I
dΩΩΩ

dt
= L , (1)

in which I is the particle moment of inertia and ΩΩΩ is the particle angular velocity.

The method, which has been extensively validated in earlier papers [see e.g. 20, 21], is

accurate and efficient. Since the Lamb solution is expressed as a series of spherical harmonics,

the error decreases exponentially, rather than algebraically, as the number of degrees of

freedom used to describe each particle is increased. This feature is in marked contrast with

the algebraic error decrease of most other methods, such as the immersed-boundary method.

The no-slip condition at the particle surface is satisfied exactly for any degree of truncation

of the series expansion. A unique feature of Physalis, which makes it very suitable for the

present study, is that the coefficients of the expansion directly furnish the torque acting on

the particle with no need for additional calculations. For these reasons the method furnishes

the torque on the particle with a very high degree of accuracy which would be difficult to

approach with conventional immersed-boundary methods. In the present work, the Lamb

expansion was truncated keeping terms of order 0, 1, and 2, which corresponds to retaining

a total of 25 coefficients as in [25].

Isotropic, homogeneous turbulence is generated in a 210× 210× 210-cells cubic domain

using the linear forcing scheme of refs. [26–28]. We checked that the features of the turbu-

lence, and in particular the intensity and integral length scales, matched the results reported
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Rep Reλ η/d λg/d L/d u′/U η/∆x

80
Inlet 59.1 0.0223 0.337 1.33 – 0.668

Particle center 36.1 0.0366 0.431 1.06 1.04 1.10

150
Inlet 47.2 0.0313 0.423 1.33 – 0.938

Particle center 30.7 0.0454 0.495 1.03 0.413 1.36

TABLE I: Simulation parameters at the inlet plane and at the plane containing the particle center

for Rep = 80 (upper two lines) and 150; d is the particle diameter; η = (ν3/ǫ)1/4 the Kolmogorov

length scale, λg the Taylor length scale, L = u′3/ǫ the integral length scale, u′ the RMS of velocity

fluctuations and ∆x the mesh length.

in [27]. This turbulent field, augmented by a constant velocity U along the z direction, is

imposed at the inlet of an equal domain containing the particle in the manner described in

Ref. [25]. The integral time scale, defined below in Eq. (2), is at least four times shorter

than the convection time over the length of the computational domain, which ensures the

absence of artificial periodicity in the convected turbulence as discussed in [25]. As shown

in Table I, the turbulence undergoes a strong decay as it is transported toward the particle.

We use 30 mesh lengths ∆x per particle diameter d which, on the basis of our previous

experience, provides a very good accuracy in the range of Reynolds numbers relevant for this

study. The sides of both domains have a length of 7d so that the area blockage due to the

particle is less than 2%. We consider two different particle Reynolds numbers Rep = dU/ν

(with ν the kinematic viscosity of the fluid), Rep = 80 and 150. The particle center is fixed

at a distance 3.5d downstream of the inlet boundary in a symmetric position with respect to

the lateral boundaries of the domain. The turbulence decays as it is convected toward the

particle, and the forcing is adjusted so that, at the plane of the particle center, the values of

the Taylor microscale Reynolds number, Reλ, are comparable, 36 for Rep = 80 and 31 for

Rep = 150.

III. PARAMETER VALUES

Values of the parameters characterizing the incident flow are shown in Table I. By the

time the turbulence has reached the plane of the particle center, the Taylor microscale is
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about 1/3-1/2 of the particle diameter, while the Kolmogorov length η = (ν3/ǫ)1/4 is more

than one order of magnitude smaller. From the last column of the table, showing values of

η/∆x, it can be seen that the Kolmogorov scale is adequately resolved [see e.g. 29, p. 347].

Several time scales are relevant for the present problem. In the first place, the turbulence

is characterized by the Kolmogorov time scale τK and the integral time scale τE , respectively

given by

τK =

√

ν

ǫ
, τE =

k

ǫ
, (2)

with k the turbulent kinetic energy and ǫ the dissipation, both evaluated at the particle

plane. The particle response time for rotational motion is given by

τp =
I

8πµd3
, (3)

where µ is the fluid viscosity. On the basis of these three time scales we can define two

Stokes numbers:

StK =
τp
τK

and StE =
τp
τE

. (4)

Numerical values of these and other normalized scales to be introduced presently are provided

in Table II.

In spite of the fact that our particle size is close to the integral length scale, inertial-

range scaling provides a convenient, if approximate, framework to analyze the particle-

turbulence interaction as confirmed by the fact that the scaled mean angular velocities and

hydrodynamic torques are numbers of order 1 (see Table III below). On this basis, we

normalize the particle angular velocity by the angular velocity of an eddy of the same size

of the particle which, for homogeneous isotropic turbulence, can be estimated to be

Ofl =
1

2

( ǫ

d2

)1/3

, (5)

where the factor 1

2
reflects the relation between the vorticity and the angular velocity of a

fluid particle.

We define a dimensionless moment of inertia I∗ by

I∗ =
I

1

10

(

π
6
d3ρ
)

d2
, (6)

with ρ the fluid density. We consider two different values of this quantity, I∗ = 2 and 10/3,

the former corresponding, for example, to a particle with a uniform density ρp/ρ = 2, the
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Rep τc/τE τc/τp StK StE τEOfl τpOfl ντE/d
2 ℓp/d

80 0.669 0.376 25.37 1.78 0.778 1.38 0.0187 4.59

150 0.271 0.152 16.33 1.78 0.763 1.36 0.0246 4.49

TABLE II: Numerical values of several quantities characterizing the simulations; τc = d/U is the

convection time past the particle, τE the integral time scale, StK and StE the Stokes numbers

based on the Kolmogorov and integral time scales; Ofl, defined in (5) is the mean angular velocity

of a fluid eddy with the size of the particle; ℓp/d is the size of eddies having the same time constant

τp as the particle. The particle time scale shown here has been calculated for the solid sphere; that

for the shell is a factor 10/3 larger.

latter to a thin spherical shell with the same radius and mass as the particle. The particle

time scale (3) is, in terms of I∗, τp = (I∗/480)d2/ν.

The length scale ℓp of eddies having the same time scale as the particle is readily estimated

by equating the time scale τℓ of an inertial-range eddy of size ℓ, as given by the theory of

homogeneous isotropic turbulence,

τℓ =

(

ℓ2

ǫ

)1/3

, (7)

to τp given in (3) to find
ℓp
d

= (8 τpOfl)
3/2 . (8)

The values of ℓp/d produced by this relation are shown in Table II. For both values of Rep we

find ℓp/d ∼ 4.5, which is significantly larger than the integral length scale. Even if present,

therefore, such long-lived eddies will be very infrequent in both situations investigated. Thus,

since the particle will mostly interact with eddies having a smaller characteristic time than

its own, one may expect that the angular velocity that it will pick up will be smaller than

that of the eddies with which it interacts. Another factor reinforcing this expectation is

that, as Table II shows, the convection time τc past the particle,

τc =
d

U
, (9)

is also shorter than the time scale τp of the particle.

As shown in Table I, u′/U is about 1 for Rep = 80, and about 0.4 for Rep = 150. A Taylor-

hypothesis-like picture of turbulent eddies frozen in the flow is therefore inappropriate in the
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first case and not very well justified even in the second one. Nevertheless it is of some interest

to estimate the spatial scale ℓc of an eddy having the same time scale as the convection time

(9) past the particle at the velocity of the imposed mean flow. Unless the eddy persisted at

least this long, it would be unlikely that it be able to impart much rotation to the particle.

Upon setting τℓ = τc and solving for ℓ ≡ ℓc we find

ℓc
d

=
1

Re
3/2
p

(

d

η

)2

. (10)

For Rep = 80 and Rep = 150 this relation gives ℓc/d ≃ 1.04 and ℓc/d ≃ 0.264, respectively.

On average, eddies smaller than the scale indicated by this relation will not maintain their

integrity for the time during which they are able to interact with the particle. As Rep

increases, this threshold becomes less stringent and more eddies will last long enough to

interact with the particle. However, the effect of this trend is countered by the fact that

smaller eddies have a smaller energy even though they carry a larger vorticity.

An eddy of size ℓ cannot impart to the particle a greater angular velocity than its own,

of order 1/τℓ, nor can it give the particle more kinetic energy that itself has, of the order of

ρℓ3ǫτℓ. By equating this energy to that of a particle rotating with the eddy’s angular velocity

1/τℓ we can estimate the length scale of these hypothetical “asymptotic eddies” (in the sense

that they transfer all their energy to the particle and give it the largest angular velocity that

they can impart) to be ℓ/d ∼ (πI∗/120)1/5 ≃ 0.55 for I∗ = 2. The numerical constant is just

a crude estimate as it will depend on the shape of the eddy, on whether the particle angular

velocity is taken as 1/τℓ or 1/1

2
τℓ and so on, but it nevertheless shows that an eddy too

much smaller than the particle diameter cannot impart to the particle a significant angular

velocity even if the interaction occurred under the most favorable idealized conditions. All

of these considerations lead us to expect that the angular velocities picked up by the particle

will be relatively small and unlikely to be larger (in modulus) than the scale Ofl defined in

(5).

For each value of Rep and each realization of the turbulent flow, three types of simulations

were carried out, one without the particle, one with a particle with I∗ = 2, referred to as

“solid sphere”, and one with a spherical shell of equal radius and mass, having the larger

moment of inertia I∗ = 10/3. To mitigate the effect of statistical fluctuations, the results that

we present have been obtained by averaging over seven different realizations of the turbulent

field, each one lasting between 60 and 100 integral times as calculated in correspondence
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Rep = 80 Rep = 150

sphere shell sphere shell

Ω∗′
x 0.580 0.424 0.378 0.328

Ω∗′
y 0.492 0.438 0.356 0.329

Ω∗′
z 0.503 0.469 0.389 0.306

L∗′
x 1.525 1.716 1.275 1.630

L∗′
y 1.469 1.665 1.255 1.517

L∗′
z 1.295 1.572 1.008 1.193

TABLE III: Root mean square values of the normalized angular velocity and torque components.

of the inlet conditions. Each set of simulations required about 12 weeks on a single Nvidia

K80s GPU installed in a Dell PowerEdge R730 with dual Intel Haswell Xeon E5-2680v3 and

two Nvidia K80s.

For fixed, non-rotating spheres in steady uniform flow, experimental values of the drag

coefficient CD = Fz/(
π
8
ρd2U2) are 1.23 for Rep = 80 and 0.894 for Rep = 150 [30]. The well-

known Schiller-Naumann correlation [see e.g. 31] gives 1.21 and 0.910 respectively. Drag

coefficients in turbulent flow are larger [see e.g. 32]. In our case, for Rep = 80 we find CD

= 1.31 ± 0.52 while, for Rep = 150, CD = 1.05 ± 0.09. These values have been calculated

by averaging over the last 40 integral times to avoid the effect of the initial transients. The

large standard deviation for Rep = 80 is due to the very strong turbulence intensity (see

Table I). Due to the strong intermittency, convergence of the averaging is very slow in this

case. Interestingly, the results for the spherical shell are different, CD = 1.06 ± 0.44 and

1.19 ± 0.15 for Rep = 80 and Rep = 150, respectively. It may be observed that the average

values for the solid sphere decrease with increasing Rep, as expected, while those for the

shell seem to slightly increase. Whether this is a consequence of insufficient statistics or a

genuine physical effect cannot be determined on the basis of the numerical results. Generally

speaking, one would expect that, on increasing the moment of inertia, the particle should

become more and more reluctant to rotate and, therefore, behave more and more like a fixed

sphere. On this basis, we incline toward the first explanation.
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IV. RESULTS: ANGULAR VELOCITY AND ACCELERATION

We non-dimensionalize the particle angular velocity in terms of Ofl, the angular velocity

of eddies having the scale of the particle diameter, defined in (5):

ΩΩΩ∗ =
ΩΩΩ

Ofl
. (11)

In the calculation of Ofl, ǫ is evaluated on the plane of the particle center in the absence of

the particle. The RMS values of the three components of this normalized angular velocity

are shown in Table III.

The rotational Reynolds number for the particle is given by

ReΩ =
d2Ω

ν
=

1

2

(

d

η

)4/3

Ω∗ . (12)

With the numerical values of Tables I and III this is of the order of 20. Inertial effects are

therefore important, but it is convenient to non-dimensionalize the torque on a viscous scale

by

L∗ =
L

8πµd3Ofl

. (13)

The RMS values of the three components of this normalized torque are also shown in Ta-

ble III. The results for both ΩΩΩ∗ and L∗ are numbers of order one, which shows the adequacy

of the non-dimensionalizations adopted in spite of the magnitude of the rotational Reynolds

number. For both quantities, the components in the cross-stream plane are comparable,

as expected. The angular velocities for the sphere are somewhat larger than for the shell,

which can be imputed to the smaller rotational inertia. For the same reason, the torques

acting on the shell are larger than those acting on the sphere, in agreement with the results

shown later in figure 2. It appears likely that this feature is a consequence of the larger

difference between the angular velocity of the the fluid and that of the shell which, due to

its larger inertia, opposes a greater resistance to rotation. The torque in the flow direction

is somewhat smaller than that in the cross-stream plane, which suggests some difference

in the way in which the turbulent eddies responsible for rotation in the different directions

interact with the particle.

It was suggested in [19] that the mean square particle angular velocity 〈ΩΩΩ ·ΩΩΩ〉 satisfies a

relation of the form

〈ΩΩΩ ·ΩΩΩ〉τ 2K

(

d̂

η

)4/3

≃ 2 . (14)
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The length d̂ used in [19] was the length of their rods. A similar relation was also found

to be verified in Refs. [8] and [9], where d̂ was taken as the volume-equivalent spherical

diameter of their particles. In terms of the dimensionless variables used here, the left-hand

side of this relation is simply

1

4
[(Ω∗′

x )
2 + (Ω∗′

y )
2 + (Ω∗′

z )
2] . (15)

With the results shown in Tables I, II and III for the sphere this quantity evaluates to

0.208 and 0.105 for Rep = 80 and 150, respectively. The order-of-magnitude difference with

the reported experimental values is likely due to the fact that the particles used in the

experiments were free to move and neutrally buoyant. Thus, they were able to interact

with the turbulent eddies for a much longer time than the convection time τc for which

our fixed particle remained exposed to them. The fact that the quantity (15) is smaller

for the larger convection velocity (i.e., the larger particle Reynolds number and the shorter

interaction time) lends some support to this conjecture. Of course, the much larger Reλ in

the experiment (about 250, vs. the present one close to 30) may also play a role. Since (15)

is independent of d/η, the validity of the scaling (14) would also imply a constant value of

the dimensionless angular velocity (15) irrespective of the Reynolds number. The fact that

our results do not support this consequence of (14), irrespective of the numerical value in

the right-hand side, gives another indication of the difference between our situation and the

experiments referred to.

Another interesting remark to be made in connection with the results of Table III is that

the root mean square values of the angular velocities are larger for Rep = 80 than Rep = 150.

This result is likely due to the fact that, for the same convected turbulence, a particle will

be exposed to eddies having size and energy able to set it into rotation for a shorter and

shorter time as the speed of the incident flow increases.

The two panels in figure 1 show the PDF of Ω∗
x,y, the particle angular velocity in the plane

perpendicular to the mean incident velocity. Since the directions x and y are equivalent,

here and in the graphs that follow we have not distinguished between them in calculating

the PDFs. The upper panel is for Rep = 80 and the lower one for Rep = 150. The tallest,

most peaked curves (red) are for the shell and the somewhat lower and broader ones (black)

for the solid sphere. The lowest curve (blue) is the PDF for the fluid angular velocity (i.e.,

vorticity/2) averaged over a sphere of radius d/2 while the other one (yellow) is for the fluid
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FIG. 1: PDF of the angular velocity in the cross-stream plane (x, y) normalized as in (11) for Rep =

80 (above) and 150. The highest-peaked (red) and second-highest peaked (black) curves are for the

shell and the sphere, respectively. The broadest curve (blue) is for the fluid angular velocity (i.e.,

1

2
×vorticity) averaged over a sphere of radius d/2 (RMS value 3.7179); the other curve (yellow) is

for the fluid angular velocity averaged over a sphere of radius d (RMS value 1.8361), both centered

at the position of the particle center in the absence of the particle. The dashed lines are Gaussian

fits.

angular velocity averaged over a sphere of radius d, both calculated at the particle position

in the absence of the particle. The dashed lines are Gaussian fits. The RMS values are

3.7179 (for the blue curve) and 1.8361 (for the yellow curve). These values are larger than

those for the particle shown in Table III, which is another indication of the inability of the
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smaller eddies to impart a significant angular velocity to the particle in spite of their larger

angular velocity.

The PDF’s for the solid sphere and the shell closely approximate Gaussian distributions

with a flatness deviating by less than 5% from 3. The PDF’s for the angular velocity in

the flow direction (not shown) are similar. The PDF’s of the averaged fluid vorticity are

much broader and exhibit intermittency with a flatness of about 4.2, although they appear

to exhibit only a small difference from the corresponding Gaussian fits (dashed lines). These

results agree with the observations reported in Ref. [8], which suggest that particles with

η/d < 0.037, in a turbulent field with Reλ ≃ 250, “do not respond, in any distinct way,

to the intermittency of the surrounding turbulence.” Ref. [8], however, also reports that

the particle angular velocity has a statistical distribution similar to that of the vorticity

filtered over scales comparable with the particle diameter. This generates a paradox; citing

from [8]: “This statistical analogy [the Gaussianity of the particle angular velocity and other

results] suggests that inertial particles experience turbulence only as random forcing without

responding to any structure of turbulence. On the other hand, it contradicts evidences that

these particles do respond to turbulence structures equal to or larger than their size, which

should lead to structured motion following the non-random statistics of the coarse-grained

velocity gradient tensor.” The paradox may perhaps be explained in the following way: as

argued in the previous section, the smaller eddies, which have the largest vorticity, cannot

impart a large angular velocity to the particle. By the law of large numbers, the accumulation

of successive small torques imparted by them will then tend to generate an approximately

Gaussian angular velocity distribution. In view of the randomness of the direction of the

torque, the angular velocity generated by this process will also necessarily tend to be small, as

indeed shown in figure 1. Large angular velocities can only be the result of interactions with

the less frequent larger eddies, the probability distribution of which is closer to a Gaussian.

By these distinct mechanisms, therefore, both the small- and the large-scale eddies conspire

to impart to the overall probability distribution of the particle an angular velocity close to

a Gaussian.

The PDF’s of the dimensionless torque are shown in figure 2. Unlike the particle angular

velocity, these PDF’s are non-Gaussian and exhibit a relatively strong intermittency. The

flatness is about 4 which, not coincidentally given that the torques are due to interaction

with the fluid vorticity, is quite close to the flatness of the latter. Qualitatively, these results
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FIG. 2: PDF of the dimensionless torque in the cross-stream plane (x, y) (black lines, squares) and

in the direction of the incident flow (red lines, circles) normalized as in (13) for Rep = 80 (above)

and 150. The solid lines and solid symbols are for the solid sphere and the dashed lines and open

symbols for the spherical shell.

are similar to those reported in Ref. [7], which deals with a buoyant particle rising in a

downward turbulent flow, and which also reports a Gaussian distribution for the angular

velocity and significant tails for the angular acceleration. However, the particle Reynolds

number in this study was significantly greater than ours and the particle dynamics was

strongly affected by vortex shedding. Ref. [2] reports a flatness of about 4 for the angular
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velocity and of about 7 for the angular acceleration. While the relation between the particle

size and the integral scale in that study is similar to ours, the two differ substantially in the

turbulence level (Reλ = 300 in [7] vs. our Reλ ∼30) and, more importantly, in the fact that

the particle of Ref. [2] was neutrally buoyant, free to move and not subjected to a mean

flow.

It is also interesting to note that the PDF of the torque acting on the spherical shell has

somewhat broader wings than that on the solid sphere. The effect is particularly noticeable

for the larger (absolute) values of the torque. A likely explanation is that the greater inertia

makes the spherical shell less responsive to the vorticity of the flow, with a consequent larger

relative angular velocity and, therefore, larger torques. (An illuminating analogy is the flow

past a plate free to move: the faster the plate picks up speed, the faster the drag force

decreases.) Another interesting point is the narrower PDF in the direction of the incident

flow than in the cross-stream plane, consistently with the smaller values for L∗
z shown in

Table III.

A simple calculation shows that

ΩΩΩd

u′
=

1

2Rep

(

d

η

)4/3
ΩΩΩ∗

u′/U
. (16)

With the data of Tables I, II and III we find results of the order of 0.25 for Rep = 80

and 0.18 for Rep = 150. In spite of the difference mentioned before between the situations

investigated, these magnitudes are comparable to the value ∼ 0.3 reported in Ref. [2] for

neutrally buoyant particles in homogeneous turbulence. The authors point out that these

values are consistent with “the rotation that would result from imposing a velocity difference

equal to almost u′ across the diameter of the sphere.”

Figure 1 shows that the range of appreciable particle angular velocities extends little

beyond the scale of the angular velocity of fluid eddies having the scale of the particle.

In the previous section we have provided several considerations on the basis of which this

result was to be expected. We reiterate here the importance of the particle rotational inertia

demonstrated by the fact that the RMS angular velocity of the shell is smaller than that of

the solid sphere and its PDF distribution is narrower and more peaked around zero. Another

contributing factor, also mentioned before, is the limited time available for energetic incident

turbulent eddies to interact with the particle.

To cast some light on this latter aspect figure 3 shows a portion of the time history of one
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FIG. 3: Time history of the dimensionless torque L∗
x for the sphere with Rep = 150. Time is

normalized by the convection time τc = d/U . The persistence time of the sign of L∗
x is denoted by

∆.

component of the normalized torque acting on the sphere for Rep = 150; time is normalized

by the convection time τc. Rapid sign changes of the torque are evident here, but one also

notices a few more extended time intervals, lasting several convection times, in which the

torque maintains the same sign.

To investigate the matter quantitatively we consider the sign persistence ∆ of the torque,

defined in the figure. The solid lines in the two panels of figure 4 show the PDF of this

quantity for the two values of Rep. The first data points of the curves correspond to ∆/τc =

0.100 and 0.187 in the upper and lower panels, respectively, which are the intervals separating

two successive data outputs of the simulations. The lack of smoothness displayed by these

results is due to the strong intensity of the turbulence the effects of which have not been

completely removed by the limited averaging over seven realizations used in this work. The

dashed lines show the PDF’s of the sign persistence of the cross-stream component of the

fluid vorticity, in the absence of the particle, averaged over volumes with radii d/4 (solid

square), d/2 (solid circle), d (open square) and 1.5d (open circle). Of course the turbulent

eddies will interact with the particle and considering their characteristics disregarding this

interaction as we do here requires some justification, which is presented in the Appendix.
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FIG. 4: The solid lines show the PDF’s of the sign persistence of the components of the torque

in the cross-stream plane acting on the sphere for Rep = 80 (upper panel) and Rep = 150. The

dashed lines are the sign persistence of the cross-stream vorticity in the absence of the particle

averaged over spherical volumes with radius d/4 (solid square), d/2 (solid circle), d (open square)

and 1.5d (open circle).

Briefly, although appeal to the rapid distortion theory of turbulence is only marginally

justified even for Rep = 150, this theory suggests that incident eddies will retain their sign

while interacting with the particle.

These figures present several elements of interest. In the first place, for ∆/τc greater

than about 1-2, it is seen that the sign persistence for the fluid angular velocity agrees with

what would be expected on the basis of (7): the intrinsic time scale of eddies increases with

the eddy size, which would lead to a longer sign persistence. (Smaller eddies can also have

a longer persistence, but with a low probability as shown in the figure.) The ordering is
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reversed for small values of ∆, as the lifetime τℓ of eddies of scale ℓ decreases with ℓ as shown

by (7) (and a short persistence of larger eddies is unlikely).

If the sign persistence of the torque is dependent on the sign persistence of the eddies, one

would expect the torque to be generated by eddies which, in the absence of the particle, would

have a longer lifetime than the torque itself, as these would be damped by the interaction

with the particle. We see that, for ∆/τc small (∆/τc < 0.5 for Rep = 80 and ∆/τc < 1 for

Rep = 150) eddies with a sign persistence longer than that of the particle angular velocity

have a radius of about d/4 for Rep = 80 which increases to between d/2 and d for Rep = 150.

These results suggest that the interactions giving rise to the most probable sign persistence

of the particle angular velocity are with eddies the size of which increases somewhat with the

particle Reynolds number, while remaining of a size comparable with that of the particle.

The considerations on the “asymptotic eddies” made in section III may explain this result.

Eddies with scales between d/4 and d would typically have an angular velocity slightly larger

than Ofl but a time scale much shorter than τp, so that the angular velocity they can impart

to the particle will be quite a bit smaller than Ofl, as indeed shown by in figure 1.

Figure 1, however, also shows values of the particle angular velocity comparable with Ofl.

These larger values must arise from interactions with larger eddies. Indeed, figure 4 shows

the presence of eddies with a diameter of order d or larger with a sign persistence larger

than that of the torque on the particle. As measured on the convective time scale τc, the

sign persistence increases with Reynolds number, probably as a consequence of the estimate

(10) of the scale of eddies lasting a convection time. Another way to look at this feature

is to consider the ratio of the characteristic time τℓ for an eddy of size ℓ to the convection

time:
τℓ
τc

=

(

ℓ

d

)1/3
η

d
Rep . (17)

With the data of Table I, for the two values of Rep, we find (η/d)Rep = 2.93 for Rep = 80

and Rep = 6.81 for Rep = 150. Thus, for the same ℓ/d, on the scale τc eddies at Rep = 150

have a longer lifetime than at Rep = 80 and, therefore, the torque that they cause also has

a longer persistence.

The previous considerations as to the size of eddies responsible for the particle torque

are confirmed by an analysis of the auto-correlation time of the torque and of the vorticity

averaged over volumes of different sizes, which is shown in figure 5. Once again we see

that, for Rep = 80, the torque auto-correlation is intermediate between that of the vorticity
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FIG. 5: The solid lines show the auto-correlation of the cross-stream components of the torque

acting on the sphere for Rep = 80 (upper panel) and Rep = 150. The dashed lines are the auto-

correlations of the vorticity averaged over spherical volumes with radius d/4 (solid square), d/2

(solid circle), d (open square) and 1.5d (open circle) in the absence of the particle.

averaged over volumes of radii d/4 and d/2 while the scale increases somewhat for Rep

=150. It was pointed out earlier after (8) that eddies with a time scale close to that of

the particle are larger than the particle diameter, which would lead one to expect that the

auto-correlation of the torque would be closer to that of the larger, rather than the smaller,

eddies. Figure 5 shows in fact that the opposite is true. This result suggests that the torque
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FIG. 6: Auto-correlation of the cross-stream components of the particle angular velocity. The solid

lines are for the sphere and the dashed lines for the spherical shell. The squares are for Rep = 80

and the circles for Rep = 150.

is mostly influenced by eddies smaller than d, which are more numerous than larger ones

and buffet the particle in greater number as they are convected past it.

For increasing time lags the averaged fluid vorticity becomes only very weakly anti-

correlated with itself, in contrast with the torque on the particle, which exhibits a much

stronger anti-correlation. This difference is likely a consequence of the particle inertia: the

rotation produced by an eddy will cause a torque in the opposite sense whenever another

eddy is convected by the incident flow, even if it has the same sign as the previous one (but

a different angular velocity), or even if it carries zero vorticity. As Rep increases, the first

zero crossing of the torque occurs earlier and earlier, and significantly before a convection

time has elapsed, indicative of the effect of smaller eddies quickly swept by the flow.

Figure 6 shows the auto-correlation of the particle angular velocity normalized by the

integral time scale. Two features of this figure demonstrate the effect of rotational inertia.

In the first place, the auto-correlation of the angular velocity is seen to be much longer that

that of the torque shown in figure 5 (note that a given value of t/τE in figure 6 corresponds

to a value of t/τc smaller by a factor of about 0.7 for for Rep = 80 and 0.3 for Rep = 150).

Secondly, the first zero crossing for the shell occurs later than for the solid sphere because of
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FIG. 7: The shedding of counter-clockwise (negative) vorticity on the right imparts to the particle

a (negative) reaction force Fx to the left and, by conservation of angular momentum, a clockwise

(positive) rotation Ωy. As a consequence, this process is associated with a negative value of the

products FxΩy and FxLy.

the longer persistence of the angular velocity associated with a larger moment of inertia. A

third feature present in the numerical results, which we do not show for brevity, is the longer

sign persistence of the angular velocity for the shell in comparison with the solid sphere.

The auto-correlation decays faster at the larger Rep, likely for the same reason mentioned

before in connection with the zero-crossing of the auto-correlation of the torque.

V. RESULTS: FORCES

Although the force component in the flow direction is dominant, as expected, there are

significant forces in the cross stream plane. A possible origin of these components are

the velocity fluctuations the action of which may be interpreted as tilting the mean flow

incident on the particle as found, for example, in [25]. Another possibility is vortex shedding.

Although the mean-flow Reynolds numbers considered here are much below the threshold for

this phenomenon in a uniform steady flow, which is close to 280 [see e.g. 33], vortex shedding

can be induced by the vorticity transported near the particle by the flow as found in [25].

A third possibility, investigated experimentally in [2] for a neutrally buoyant particle in a
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FIG. 8: PDF of the normalized product FxΩy for the sphere with Rep = 150. The slight bias

toward negative values is compatible with a cross-stream force component due to vortex shedding.

homogeneous turbulent field, is a Magnus lift force caused by the interaction of the particle

rotation with the incident flow [34–37].

The vortex shedding studied in [6, 7] would tend to impose a relation between the sign of

the force induced by the shedding and that of the shed vorticity. Indeed, a vortex shed on one

side of the particle imparts to it a force directed toward the opposite side and conservation of

angular momentum suggests that the particle would tend to rotate in the direction opposite

that of the shed vortex (figure 7). With the present choice of axes, a consideration of the

signs of forces and torques shows that a positive/negative Fx should be associated with a

negative/positive Ωy, while Fy and Ωx should have the same sign. Figure 8 shows the PDF

of the product FxΩy normalized by the product of the RMS values. The PDF is slightly

skewed to the left, showing a prevalence of negative values of FxΩy, which is compatible

with the vortex shedding mechanism.

The previous argument suffers from the weakness that, when the particle sheds the vortex,

it might already be rotating in the “wrong” direction due to prior encounters with turbulent

eddies. In this case vortex shedding would retard the rotation but not necessarily be strong

enough to reverse it. To strengthen the previous conclusion it is therefore useful to consider

the hydrodynamic torque acting on the particle to which, after all, the acquisition of rotation

in the “right” direction after the vortex shedding event would be due. It is clear that the
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FIG. 9: Scatter plot of L∗
y vs. F ∗

x (left) and L∗
x vs. F ∗

y for the sphere with Rep = 150 normalized as

in (13) and (18), respectively. In spite of the large scatter, a trend compatible with vortex shedding

from the particle is clearly visible.

mutual sign relation of Fx,y and Lx,y should be the same as that between Fx,y and Ωx,y

mentioned before. The two panels in figure 9 show scatter plots of L∗
y vs. F ∗

x and L∗
x vs Fy∗

for a single realization with Rep = 150; here the dimensionless force components are defined

by

F∗ =
F

π
8
d2ρU2

, (18)

while L∗ is as defined in (13) above. Both figures show a significant amount of scatter,

but a general trend compatible with the sign considerations just described is clear. This

conclusion can be reinforced by a consideration of figure 10, which shows the PDF of the

product FxLy normalized by the respective RMS values for all 7 simulations with Rep = 150.

Here, the bias toward opposite signs is even clearer than in figure 8. Numerous instances

of vortex shedding can be seen in visualizations of the vorticity distribution. An example

is shown in the sequence of figure 11 and the movie clip from which this sequence has been

extracted is available as Supplemental Material [38].

Plots analogous to that of figure 8 for Rep = 80 give PDF’s that are very nearly symmetric

about zero. In this case the turbulence intensity is very large (close to 100% in fact, as

shown in Table I) and force components in the cross-stream directions are mostly due to the

rapidly changing direction of the incident flow rather than to vortex shedding (weakened by

the smaller incident velocity) or Magnus mechanisms.
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FIG. 10: PDF of the product FxLy normalized by the respective RMS values of the two factors

for the sphere with Rep = 150. The prevalence of negative values is compatible with the effect of

vortex shedding in generating the cross-stream force component Fx.

The Magnus force on a stationary particle subjected to an incident flow with velocity V

and rotating with angular velocity ΩΩΩ is given by [see e.g. 2, 35, 39] F = CLρvV ×ΩΩΩ, with

CL a numerical coefficient of order 1 (Ref. [36] reports CL ≃ 0.55, Ref. [35] CL = 1

2
) and

v = 1

6
πd3 the particle volume. Upon using this formula with Vz = U + u′

z, Vx,y = u′
x,y (in

which U is the imposed mean flow and u′
xyz are the fluctuating velocity components) we find

Fx = CLρv
[

Ωzu
′
y − Ωy(U + u′

z)
]

, Fy = CLρv [Ωx(U + u′
z)− Ωzu

′
x] . (19)

In the present situation, at least for Rep = 150, U (which is positive) is dominant and

therefore we should expect that, to a very rough approximation,

Fx ≃ −CLρvΩyU , Fy ≃ CLρvΩxU . (20)

The relative sign between force and angular velocity components exhibited by these rela-

tions is the same as that due to the vortex shedding phenomenon considered before. Thus,

the Magnus mechanism would reinforce vortex shedding to produce a lift force on the sphere,

a conclusion also reached in [2] in spite of the difference in the Reynolds numbers investi-

gated and of the fact that, in that study, the particle was free to move. In order to gain sme

insight into the relative importance of the two mechanisms we can study the magnitude of

the forces (20). By non-dimensionalizing them according to (18); we find

F ∗
x ≃ −

2

3

1

Rep

(

d

η

)4/3

CLΩ
∗
y , F ∗

y ≃
2

3

1

Rep

(

d

η

)4/3

CLΩ
∗
x . (21)
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FIG. 11: Six successive images separated by 0.1875 τc showing an example of the induced shedding

of positive (red) vorticity Ω∗
y from the sphere for Rep = 150. The range of the blue to red color

scale is -2.5 ≤ Ω∗
y ≤ 2.5. The mean incident flow is vertically upward in the z direction; the x axis is

horizontal to the right and the y axis into the page. This sequence is part of the movie clip available

as Supplemental Material [38]; the first image (a) corresponds to approximately t = 31.7 τc after

the start of te movie and the last one (f) to about t = 32.6 τc.
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According to Table II the factor multiplying CLΩ
∗
x,y is approximately 0.274 fo Rep =150.

Since both CL and Ω∗
x,y are smaller than 1 while, from figure 9, the normalized cross-

stream forces are of order 1, this result suggests that the Magnus mechanism is somewhat

less effective than vortex shedding in generating a cross-stream force on the sphere. This

conclusion is not necessarily in contradiction with the results of [2] because, with a neutrally

buoyant sphere free to move, one may expect a much smaller fluid-sphere relative velocity

and, therefore, a significantly reduced vortex shedding. For Rep = 80 the factor above

is 0.686, but it is difficult to draw definite conclusions due to the very strong turbulence

buffeting the sphere in this case.

VI. SUMMARY AND CONCLUSIONS

In this paper we have presented results of the fully-resolved numerical simulation of

turbulent flow (Reλ ≃ 31−36) past a solid sphere and a spherical shell free to rotate around

a fixed center. This situation approximates the behavior of a particle whose relative motion

with respect to the fluid is driven by a density difference in the gravitational field. The

somewhat artificial condition imposed by the fixity of the particle center is balanced by the

advantage of being able to have precise information on the turbulent flow incident on the

particle by repeating the same simulation with the particle removed.

By studying the auto-correlation of the torques acting on the particle and the persis-

tence of their sign we have concluded that, at the lower Reynolds number considered, Rep

= 80, the particle is mostly influenced by turbulent eddies somewhat smaller than itself. As

the Reynolds number of the incident flow increases to Rep = 150, the scale of the eddies

interacting with the particle also increases. The explanation resides in the effects of rota-

tional inertia, as acquiring a significant angular velocity requires exposure of the particle to

a fluid torque of the appropriate sign and direction over a certain amount of time. With

increasing flow velocity (and, therefore, increasing Rep), eddies pass by the particle faster

and the required exposure can only take place if the scale of the eddies increases. These

results are in qualitative agreement with the experimental observations reported in [3] (at a

higher Reynolds number and with Reλ = 400) according to which the particle is influenced

by flow structures with a scale of the order of its diameter. While vortex structures of these

scales appear to be most important for the rotational dynamics of the particle, the high
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frequency of sign reversals of the torque suggests that the effect of these relatively large

eddies is modulated by the smaller eddies that they contain.

We have examined the numerical results to detect the presence of cross-stream forces due

to vortex shedding and to a Magnus-like mechanism due to the interaction of the particle

rotation with the incident flow. Vortex shedding is found to be clearly detectable for Rep

= 150, in spite of the fact that this Reynolds number is much below that for spontaneous

vortex shedding in a uniform flow. The vortex shedding that we find is induced by the

interaction with the turbulence transported by the incident flow as was observed an earlier

work [25]. A semi-quantitative analysis of the results is consistent with the presence of a

Magnus mechanism which, however, is found to be less significant than vortex shedding in

generating the cross-stream force.
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APPENDIX: PERSISTENCE OF THE SIGN OF VORTICITY

According to the rapid distortion theory of turbulence [see e.g. Ref. 29], the vorticity

transported by a mean flow V satisfies the approximate relation

dωωω

dt
= (ωωω · ∇)V , (A.1)

in which the convective derivative in the left-hand side is with the velocity V. We approx-

imate the mean incident flow V as a potential flow, which is reasonable upstream of the

separation region, so that

V = Uk +∇

[

Uz

(

1 +
d3

16r3

)]

, (A.2)

in which k is the unit vector in the direction z of the incident flow, U is the magnitude of

the mean incident flow upstream of the sphere and r =
√

x2 + y2 + z2. If we focus on ωx
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we need to calculate the derivatives of Vx which are

∂Vx

∂x
= −

3

16

Ud3z

r5

(

1− 5
x2

r2

)

≃ −
3

16

Ud3z

|z|5
, (A.3)

∂Vx

∂y
=

15

16

Ud3xyz

r7
≃ 0 , (A.4)

∂Vx

∂z
= −

3

16

Ud3x

r5

(

1− 5
z2

r2

)

≃ 0 , (A.5)

where in the last steps we have made the near-axis approximation |x, y| ≪ |z|. With these

results (A.1) gives, approximately,

dωx

dt
≃ −

3

16

Ud3z

|z|5
ωx . (A.6)

This expression shows that, upstream of the sphere (where z < 0), the incident ωx-vorticity

increases as the fluid particles approach the sphere. Since, upstream of the sphere, dωx/dt

and ωx have the same sign, it is evident that ωx cannot change sign as the eddy approaches

the sphere.

As for the applicability of the rapid distortion theory we can consider the magnitude of

τE

∣

∣

∣

∣

dVx

dx

∣

∣

∣

∣

≃
3

16
τE

Ud3

z4
=

3

16
Rep

τEν

d2
d4

z4
. (A.7)

Near the sphere, where z ∼ d, with the data shown in Table II, this quantity is found

to be somewhat less than 1, which puts into question the exact applicability of the rapid

distortion theory. Nevertheless, the result is suggestive of the character of the interaction of

the eddies with the sphere which appear unlikely to be so strong as to flip the sign of the

incident vorticity. Another indication of a certain robustness of the eddy properties as they

interact with the particle is given by the near equality of the flatness of the vorticity and of

the particle torque noted in section IV.
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