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Abstract

The topology of the fine-scale motions in decaying isotropic turbulence laden with droplets of

super-Kolmogorov size is investigated using results from direct numerical simulations. The in-

variants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors are computed in the

carrier phase. The joint probability density functions of the invariants are calculated and condi-

tioned on different distances from the droplet surface. The results show that outside the viscous

region near the interface, the flow topologies favor stable focus/stretching and unstable node/sad-

dle/saddle structures, which is in agreement with those found in canonical homogeneous isotropic

turbulence. Inside the viscous layer at the droplet surface, the flow topologies shift from a prefer-

ence for high enstrophy/low dissipation motions to favoring low enstrophy/high dissipation. At the

droplet surface, there is a strong tendency for boundary-layer-like and vortex-sheet flow topologies

in which the strain and rotation rates are positively correlated. An interesting observation is that

the shapes of the invariant distributions at the droplet surface are remarkably similar to those

reported in the viscous sublayer of turbulent wall-bounded flows. Also, the results show that the

smallest hydrodynamic length scale of the carrier fluid turbulence is located at the droplet interface

and that this length scale is one-half to one-third as large as that of the surrounding bulk flow.

From a computational viewpoint, this suggests a more stringent spatial resolution requirement for

the direct numerical simulation of finite-size droplets in isotropic turbulence than its single-phase

counterpart.
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I. INTRODUCTION

Droplet-laden turbulent flows are important in numerous industrial and natural pro-

cesses, such as spray combustion [1] and rain formation [2]. As a result of the consistent

rise of computing power over the last decades, the use of computational approaches have

become an indispensable tool for the analysis and design of such complex systems. Direct

numerical simulation (DNS), resolving all length and time scales of turbulent flows interact-

ing with interfaces without significant modeling assumptions, is now feasible for moderate

Reynolds number [3] or for reduced computational complexity (i.e., interfaces undergoing

small deformation and/or limited number of droplets/bubbles) two-phase flows [4]. The

case investigated in this work is of the former category —complex two-phase flow involving

many droplets, but with moderate Reynolds number. While this study is primarily aimed

at improving the fundamental understanding of turbulent flow structures in the vicinity

of two-phase interfaces (e.g., boundary layers and wakes), the insights are expected to be

useful also for reduced-order and subgrid-scale (SGS) modeling. Particular focus is placed

on two-phase interface dynamics and associated turbulent kinetic energy (TKE) dissipation

mechanisms. An accurate reproduction of such effects is of central importance with regards

to the dynamics and energetics of droplet-laden turbulent flows.

Turbulence modeling in dispersed multiphase flows remains an outstanding challenge,

especially when the dispersed phase has characteristic sizes larger than the smallest length

scales of the flow, rendering a point particle approximation inaccurate. As a result, the

development of predictive, coarse-grained models for design and optimization of engineering

applications, like for example Reynolds-averaged Navier-Stokes (RANS) approaches, remains

an open problem. It is now well established that, since the large-scale features of turbulence

are typically flow dependent, different models are needed for different flows [5]. On the other

hand, a major motivation for the development of large-eddy simulation (LES) approaches

is the belief that, although large structures may vary between flows, at smaller scales the

features should be less flow-dependent and more amenable to modeling. This belief in the

fine-scale universality of turbulent flows is supported by evidence from investigations in the

past decades, e.g., [6–10]. Universal fine-scale features, if they can be identified, should

potentially be of greater utility in construction of SGS models than broad assumptions

concerning statistical isotropy of turbulent fluctuations at high wavenumbers [11, 12]. For
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example, in the case of finite-size droplets and particles, it is unclear whether the small scales

are universal and statistically isotropic. In particular, a question arises concerning how the

structure of the turbulence changes with respect to distance from the dispersed phase.

Computational studies have shown that the introduction of finite-size particles, or

droplets, into isotropic turbulence increases the decay rate of TKE [3, 13], and that this

increase is primarily due to enhanced dissipation at the particle/droplet surface. In [13],

by conditionally averaging the dissipation rate and the velocity-gradient tensor eigenvalues

on distance from the particle surface, it was shown that the particle augments the dissipa-

tion rate by increasing both the extensional and compressive eigenvalues near the particle

surface. An analogous study in droplet-laden isotropic turbulence has yet to be performed.

Droplets introduce additional physical mechanisms into the flow compared to solid particles

due to the droplet’s ability to deform, breakup, coalesce with other droplets, and develop

internal fluid motion.

Local topology, or streamline patterns, is notably useful for characterizing flow features

and regimes as it is very efficient in quantifying the levels of fluid element deformation and

mixing. For example, a strain-dominated streamline pattern will deform a fluid element

and lead to increased mixing, while a rotation-dominated pattern, on the other hand, will

merely reorient a fluid element without much increase in mixing. Motivated by the need of

a general methodology, Perry, Chong & Cantwell [14, 15] proposed a scheme based on the

three invariants (P , Q, R) of second-order tensors to effectively infer local flow topologies in

velocity fields. Subsequently, Soria et al. [16], using DNS results, studied the joint statistical

distributions of Q and R in mixing layers. They found that the scatter plot of second and

third invariants (i) presents small amounts of data in the lower right quadrant, whereas (ii)

the bulk of data lies in the upper left and lower right quadrants roughly distributed uni-

formly over an elliptical region. The local topologies associated with these two regions are

unstable node/saddle/saddle and stable focus stretching (described in detail later). These

prominent topological features immediately attracted considerable research attention and

were later found to be quite general across a variety of turbulent flows. Examples of such

studies include high-symmetry flows [17], turbulent boundary layers [18], turbulent chan-

nel flows [19], turbulent jets [20], and compressible turbulence [21]. For a review of the

dynamics of small-scale turbulence and various modeling approaches we refer the reader

to the article by Meneveau [22]. In the context of multiphase flows, the methodology has
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been recently applied, for instance, to analyze the flow structures in turbulence generated

by rising bubbles [4, 23]. The utility of correctly predicting small-scale flow topologies has

been demonstrated in LES of droplet-laden turbulent channel flow, where the micro-physics

of sub-Kolmogorov size, inertialess droplets was captured in the one-way coupled regime

using a subgrid-scale model for the evolution of the velocity-gradient tensor [24]. However,

to the best of the authors’ knowledge, this paper is the first work to characterize the flow

structures in the vicinity of finite-size droplets in homogeneous isotropic turbulence (HIT).

This paper is organized as follows. Section II provides an overview of the methodology

utilized to infer the local flow topology based on velocity-gradient invariants. Next, in

Section III, a description of the droplet-laden HIT dataset considered in this work is given.

Results and important findings are discussed in Section IV. Finally, conclusions are drawn

and future work is proposed in Section V.

II. CLASSIFICATION OF LOCAL FLOW TOPOLOGY

The use of DNS to study the velocity-gradient statistics in turbulent flows has been pri-

marily confined to single-phase flows. The theoretical work that connected invariants of the

velocity-gradient tensor to flow topologies was established by Perry, Chong & Cantwell [14,

15]. They employed critical point theory (i.e., local streamlines have indeterminate slope)

to relate the invariants of the velocity-gradient tensor to the local three-dimensional flow

field as seen by an observer traveling with the flow.

For completeness of the present work, and to introduce the notation utilized, the subsec-

tions below summarize the theoretical framework of the tensor-invariant based flow topology

classification developed and comprehensively presented by Perry, Chong & Cantwell [14, 15].

The averaging methodology proposed to compute statistical quantities conditioned on dis-

tance from two-phase interfaces is described in Section IIIC.

A. Invariants of the velocity-gradient tensor

The velocity-gradient tensor Aij ≡ ∂ui/∂xj can be decomposed into symmetric and skew-

symmetric parts. The symmetric part is the rate-of-strain tensor

Sij ≡
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

, (1)
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and the skew-symmetric part is the rate-of-rotation tensor

Ωij ≡
1

2

(

∂ui

∂xj
− ∂uj

∂xi

)

, (2)

such that Aij = Sij + Ωij .

The coefficients (PA, QA, RA) multiplying the eigenvalues λi of the characteristic equation

of Aij , written in the form

λ3
i + PAλ

2
i +QAλi +RA = 0, (3)

are the tensor invariants, which, for incompressible flow (∂ui/∂xi = 0), are given by

PA = −tr(A) = −Aii = −(Sii + Ωii) = 0, (4)

QA = −1

2
tr(A2) = −1

2
AijAji = −1

2
(SijSji + ΩijΩji), (5)

RA = −1

3
tr(A3) = −1

3
AijAjkAki = −1

3
(SijSjkSki + 3ΩijΩjkSki). (6)

The topological features of the velocity-gradient tensor for an incompressible flow as

a function of position in (QA, RA) space can be classified according to the value of the

discriminant

DA =
27

4
R2

A +Q3
A, (7)

which determines the real/imaginary nature of the eigenvalues of Aij. As illustrated in

Figure 1(a), a positive discriminant, DA > 0, corresponds to one real and two complex-

conjugate eigenvalues (enstrophy prevalence); a negative discriminant, DA < 0, gives raise

to three real, distinct eigenvalues (dissipation prevalence); and a zero-valued discriminant,

DA = 0, corresponding to the lines RA = ±(2
√
3/9)(−QA)

3/2, indicate three real eigenvalues

of which two are equal. A further classification can be made according to the sign of RA. On

the left half of the (QA, RA) plane the real parts of the complex-conjugate eigenvalues are

negative and the critical points of the flow are classified as stable, while on the right half-plane

the real part of the eigenvalues are positive and the critical points are classified as unstable.

The physical interpretation of RA depends on the sign of DA. One the one hand, if DA > 0,

RA < 0 implies a predominance of vortex stretching over vortex compression (the opposite is

true for RA > 0). On the other hand, if DA < 0, RA > 0 is associated with converging flow

trajectories, whereas RA < 0 is connected to diverging flow trajectories. Following Chong et

al. [15] terminology, critical point topologies falling in the upper left(right) region are called

stable(unstable) focus/stretching(compressing), and those in the lower left(right) region are

referred to as stable(unstable) node/saddle/saddle.
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FIG. 1: Topological classification of local flow fields (streamlines) for an observer travelling

with the flow on the RA versus QA diagram (a): upper-left, stable focus/stretching (SFS);

upper right, unstable focus/compressing (UFC); lower left, stable node/saddle/saddle

(SN/S/S); lower right, unstable node/saddle/saddle (UN/S/S). Lines in (RS, QS)-space

corresponding to different ratios of principal strains λ1 : λ2 : λ3 (b): 2 : −1 : −1,

axisymmetric contraction; 1 : 0 : −1, two-dimensional straining limit; 1 : 1 : −2,

axisymmetric expansion.

B. Invariants of the rate-of-strain and rate-of-rotation tensors

The local topology of any second-order tensor field, such as Sij and Ωij , can be classified

as described above, which leads to PS = PΩ = 0 due to incompressibility, and RΩ =

− det(Ωij) = 0 due to Ωij being skew-symmetric.

Owing to the symmetry of Sij, all eigenvalues are real. Hence, only classifications for

which DS = (27/4)R2
S + Q3

S ≤ 0 can be obtained on the (RS, QS)-plane as shown in Fig-

ure 1(b). In particular, all (Qr, RS) pairs must fall below the lines corresponding to the

eigenvalue ratios (eigenvalues of Sij λ1, λ2, λ3 in descending order) 2 : −1 : −1 (axisymmet-

ric contraction) and 1 : 1 : −2 (axisymmetric expansion). The ratio 1 : 0 : −1 corresponds

to the two-dimensional straining limit. Note also that the local dissipation rate of TKE, ε′,

and enstrophy, ω′, can be expressed in terms of QS and QΩ as ε′ ≡ 2νSijSij = −4νQS and

6



ω′ ≡ 2ΩijΩij = 4QΩ, respectively, with ν the kinematic viscosity of the fluid. Therefore,

regions corresponding to large negative values of QS are sites of high dissipation, while large

values of QΩ indicate flow regions characterized by high vorticity.

In addition, the second invariant of Aij, QA = QS + QΩ, is a measure of the relative

importance of the straining and rotational parts of the velocity-gradient tensor. Regions

of the flow in which QA is large and positive, vorticity is high and dominates the strain

rate, while the reverse is true if QA is large and negative. This relative importance can be

directly visualized by plotting QΩ against −QS. Points which lie near the QΩ-axis are in

the nearly pure solid-body rotation, whereas points which lie near the −QS-axis have nearly

pure straining motions. Points around the 45◦ line, where strain rate and rotation are of the

same order, correspond to regions of the flow dominated by sheet-like motions, like those

found in boundary layers [16].

III. NUMERICAL SIMULATION AND FLOW PROPERTIES

This study uses results from DNS of droplet-laden decaying HIT [3]. These simulations

used the volume-of-fluid (VoF) method to resolve the flow inside and outside the droplets

and modeled surface tension effects. A full description of the numerical methods that were

used to simulate this flow is offered by [25, 26].

A. Initial conditions and droplet properties

Table I shows the dimensionless flow parameters at different times t for the droplet-free

flow (case A): ℓ and τℓ are the integral length and timescales; Reℓ is the Reynolds number

based on ℓ; λ is the Taylor length scale; and η and τη are the Kolmogorov length and

timescales. The initial turbulent flow field is well-resolved, as indicated by κmaxη = 4.3 at

t = 0, where κmax = πN is the maximum resolved wavenumber and N = 1024 is the number

of grid points in each direction of the computational grid.

The dataset contains one simulation (case A) of droplet-free flow and eight simulations

(A⋆–H) of droplet-laden isotropic turbulence (Table II). Case A⋆ is a limiting case in which

the viscosity and density ratio are unity and the Weber number of the droplets is infinity.

We analyze the effects of varying the initial droplet Weber number (Werms = D0U
2
rmsρc/σ),
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where σ is the surface tension coefficient, droplet- to carrier-fluid density ratio (ϕ = ρd/ρc),

and droplet- to carrier-fluid viscosity ratio (γ = µd/µc) in the three sets BCD, CEF, and

CGH, respectively, while keeping the other two parameters constant. In cases B, C, and D,

Werms increases from 0.1 to 5.0 by decreasing the surface tension coefficient. In cases C,

E, and F, ϕ increases from 1 to 100 by increasing ρd. In cases C, G, and H, γ increases

from 1 to 100 by increasing µd. For all cases, the droplet volume fraction is αv = 0.05, the

initial number of droplets is Nd = 3130, and the initial non-dimensional droplet diameter

is D0 = 0.03125, which is 20η1 (or 1.1λ1), where η1 and λ1 are the Kolmogorov and Taylor

length scales, respectively, at the time the droplets are released in the flow (t = 1). This

yields a droplet resolution of 32 grid points per diameter (Ngp,d = 32). We will first focus

on case C as a base scenario and subsequently analyze the effects of varying Werms, ϕ, and

γ on the velocity-gradient invariants.

B. Length scales of droplet-laden isotropic turbulence

In single-phase isotropic turbulence, η characterizes the smallest length scales of the flow.

Whether this still holds in isotropic turbulence laden with finite-size droplets depends on

the flow and droplet properties. If droplet breakup and coalescence are considered, then

thin ligaments and gas films are almost always several orders of magnitude smaller than the

smallest length scales of the surrounding flow, and therefore expected to be much smaller

than η. In the present flow, breakup events are limited by keeping the Weber number order

unity and coalescence events are minimized by setting the droplet volume fraction to a

relatively low value (5%).

The other length scale that could be smaller than η is the one associated with the velocity

gradients that develop at the interface between the droplet and carrier fluid. We can obtain

a conservative estimate of the thickness of this transition region in which viscous effects

dominate if we assume its thickness to be equal to the thickness of the boundary layer on a

rigid sphere immersed in a uniform flow. This estimate is conservative because, compared

to rigid spheres, droplets develop internal circulation in the direction of the free-stream flow,

which effectively lowers the free-stream velocity (U∞) and thus increases the boundary-layer

thickness.

To estimate the nominal boundary-layer thickness of the droplet, we model the droplet as
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t Urms ε ℓ λ η Reℓ Reλ ℓ/η τℓ τλ τη

0.0 0.0509 1.15 × 10−3 0.0965 0.0229 1.35 × 10−3 316 75.0 71.7 1.89 0.45 0.116

1.0 0.0457 6.10 × 10−4 0.1038 0.0283 1.58 × 10−3 305 83.1 65.8 2.27 0.62 0.160

2.5 0.0397 4.49 × 10−4 0.1030 0.0286 1.70 × 10−3 262 72.3 60.5 2.60 0.72 0.186

6.0 0.0285 2.18 × 10−4 0.1082 0.0295 2.04 × 10−3 198 54.0 53.0 3.80 1.04 0.268

TABLE I: Flow parameters (dimensionless) at initial time (t = 0), droplet release time

(t = 1), time at which tensor invariants are computed (t = 2.5), and final time (t = 6) in

case A.

a rigid sphere in uniform flow. The free-stream velocity seen by the droplet is taken as the

r.m.s. velocity of the surrounding turbulent flow. This approximation is reasonable given

that the droplet diameter is roughly one-third as large as the integral scale of turbulence

(ℓ/D0 = 3.3); therefore, the energy-containing scales, as experienced by the droplet, are

relatively large compared to its size. We find an approximate laminar boundary-layer solu-

tion for the sphere by numerically solving the momentum integral equation for arbitrarily

varying free-stream velocity over a body of revolution. Using Urms at t = 2.5 as the free-

stream velocity (U∞ = 0.0397 and ReD = U∞D0/ν = 80), which corresponds to roughly

one integral time scale after droplet release, the calculated non-dimensional boundary-layer

thickness at the forward stagnation point (θ = 0, where the boundary layer is thinnest)

is δ99 = 0.0036, and near the separation point (θ = 90◦) it is δ99 = 0.0068. The average

non-dimensional boundary-layer thickness over the leading surface is δ̄99 = 0.0044, which,

in terms of the initial droplet diameter, gives D0/δ̄99 = 7.1. This value for δ̄99 should be

taken as a rough estimate of the mean boundary-layer thickness on the droplets since we

are neglecting droplet shape effects, nonuniform and unsteady flow effects, and droplet in-

ternal circulation. Nevertheless, the DNS results will show that δ̄99 accurately demarcates

the transition from boundary-layer-like flow topologies to those characteristic of HIT.
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Case Werms ϕ ≡ ρd/ρc γ ≡ µd/µc τd τd/τℓ τd/τη φm φv We

A – – – – – – 0 0 –

A⋆ ∞ 1 1 – – – 0.05 0.05 ∞

B 0.1 10 10 35.9 15.8 225 0.5 0.05 1.53 × 103

C 1.0 10 10 35.9 15.8 225 0.5 0.05 1.53 × 104

D 5.0 10 10 35.9 15.8 225 0.5 0.05 7.65 × 104

E 1.0 1 10 3.59 1.58 22.5 0.05 0.05 1.53 × 104

F 1.0 100 10 359 158 2250 5.0 0.05 1.53 × 104

G 1.0 10 1 41.8 18.4 261 0.5 0.05 1.53 × 104

H 1.0 10 100 34.9 15.4 219 0.5 0.05 1.53 × 104

TABLE II: Droplet properties (dimensionless) at release time (t = 1).

C. Conditional averaging methodology

Motivated by isolating the flow topologies near the droplet surface, we introduce a con-

ditional averaging procedure to compute statistical quantities conditioned on distance from

the interface. Starting with the VoF field, we use the marching cubes algorithm [27] to

compute a level set (LS) or signed distance function representing the shortest distance to

the interface, which has the property φ = 0 at the interface, φ < 0 in the droplet fluid, and

φ > 0 in the carrier fluid. Figure 2 shows the VoF and LS fields in an x–y plane at the time

when the tensor invariants are computed (t = 2.5). Note that the computational cost of our

algorithm to compute φ for a given C scales as (|φ|maxN)3, where |φ|max is the maximum

search distance for computing φ and N is the number of grid points in each spatial direction.

Therefore, to limit computational cost while still adequately capturing the boundary-layer

region, we set |φ|max to approximately one droplet diameter D0. This limitation explains

the white regions in Figure 2(b).
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FIG. 2: Instantaneous contours in the x–y plane of (a) the VoF field, C = C(x, t), and (b)

the level-set field, φ = φ(x, t), for case C at t = 2.5.

IV. RESULTS

A. Conditionally averaged dissipation rate

The introduction of finite-size droplets into HIT increases the decay rate of TKE relative

to droplet-free flow [3]. By comparing the relative magnitudes of the terms in the carrier-fluid

TKE budget equation

dkc(t)

dt
= −εc(t) + Tν,c(t) + Tp,c(t), (8)

where εc(t) is the dissipation rate of TKE, Tν,c(t) is the viscous power, and Tp,c(t) is the

pressure power, DNS has shown that the enhanced decay rate of kc is primarily caused

by an increase in magnitude of εc. Analyzing contours of the local dissipation rate in

the presence of the droplets, has qualitatively shown that the dissipation rate is enhanced

near the droplet interface, explaining the increase in the magnitude of εc(t). To quantify

the enhanced dissipation of TKE near the interface, we condition ε′ ≡ Re−1(2µSijSij) on φ

using the method described in Section IIIC. Figure 3 shows the conditional dissipation rate,

〈ε′|φ〉, as a function of distance from the interface, φ, and normalized by the dissipation rate

at t = 1, ε1, for all cases. When computing the conditional mean, we only include those

statistics in which there are at least one million samples, which has been shown to yield

11



statistically converged results [3]. Note that in case A∗ (We = ∞), the interface is a fluid

tracer surface; therefore, as the flow evolves, the interface area increases substantially due

to strain, so the probability of finding a point at some distance from the interface decreases

in time. This explains, in part, why the domain of 〈ε′|φ〉 in case A∗ decreases in time and

is less than for the finite-Weber-number cases.

Figure 3 shows that in the droplet-laden cases (B–H), 〈ε′|φ〉 is maximum at the interface

(φ = 0) for all times. In fact the dissipation rate at φ = 0 on both the droplet-fluid and

carrier-fluid sides of the interface is several times larger than the rate away from the interface

(|φ/D0| > 0.2). In addition, in the cases of highest Weber number (case B in Figure 3(b))

and highest viscosity ratio (case H in Figure 3(h)), 〈ε′|φ〉 is always an order of magnitude

larger at the interface than away from the interface. Because the dissipation enhancement

persists in time and is markedly higher than in case A∗, it suggests that this effect is not a

result of the initial condition of setting the initial droplet velocity to zero, but rather robust.

The enhanced dissipation near the interface is a result of an increase in the velocity gradient

∂ui/∂xj . This is caused by the droplet Stokes number based on both the Kolmogorov and

integral timescales (τd/τη and τd/τℓ) being much larger than unity; consequently, the droplet

motion deviates from the carrier-fluid turbulent eddies. Due to the continuity condition that

uc = ud at the interface, the carrier-fluid velocity uc at φ = 0 is strongly influenced by the

droplet motion.

B. Viscous scales

We define viscous scales that characterize the velocity scales and length scales near the

droplet surface. These scales serve as (i) a measure of the smallest hydrodynamic scale at

the droplet surface and (ii) a reference quantity for normalizing the velocity gradient and

distance from the interface.

We first compute the mean interfacial shear stress

τΣ =

〈

√

(t1 · 2µS · n)2 + (t2 · 2µS · n)2
〉

Σ

, (9)

where t1 and t2 are two orthogonal unit vectors that are tangent to the droplet surface, n is

the unit normal, and the brackets 〈. . .〉Σ denote ensemble averaging over all computational

cells containing the interface. Note that in the absence of surface tension gradients (i.e., no
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FIG. 3: Dissipation rate conditionally averaged on distance from the interface (〈ε′|φ〉) for
(a)–(h) cases A⋆ to H and various times from t = 1 to 6. The intensity of the line decreases

as time increases as indicated in panel (a).
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Marangoni stresses), the shear stress is continuous across the interface (τΣ = τΣ,c = τΣ,d).

Next, the friction velocity

uτk,Σ ≡
√

τΣ
ρk

(10)

and viscous length scale

δνk,Σ ≡ νk

√

ρk
τΣ

=
νk

uτk,Σ
(11)

are defined in the same manner as for turbulent wall-bounded flows, where the subscript

k = c or d denotes carrier- or droplet-phase quantities, respectively. Using δνc,Σ and uτc,Σ,

the distance φ and velocity gradient tensor A are normalized in the carrier phase in terms

of wall units as

φ+ ≡ φ

δνc,Σ
, A+ ≡ δνc,ΣA

uτc,Σ

. (12)

The values of uτc,Σ and δνc,Σ are reported in Table III for all cases.

A fundamental question we aim to address is how does δνc,Σ compare to the smallest

length scale of the surrounding turbulent flow, the Kolmogorov scale of the carrier phase ηc.

To make the comparison direct, we compute the viscous length scale of the carrier phase

δνc = νc

√

ρc
τc
, (13)

where the mean shear stress for canonical decaying isotropic turbulence is

τc = µc

√

4εc
15νc

. (14)

Note that, in this context, δνc is simply an alternative definition of the Kolmogorov mi-

croscale. The relationship between δν and η is δν = (15/4)1/4η ≈ 1.39η.

Table III shows that δνc,Σ/δνc in case A⋆ is close to unity as would be expected for canonical

decaying HIT which indicates that the effect of initial conditions is undetectable at t = 2.5.

If we compare δν,c/δνc for case A⋆ to the droplet-laden cases B–H, δν,c/δνc for the droplet-

laden cases is consistently one-third to one-half as large. Figure 4 shows the time evolution

of δνc,Σ normalized by δν,c. For all cases and all times, δν,c/δνc is less than unity, therefore

the smallest length scale is always located at the droplet surface due to the induced velocity

gradient. Looking at the time evolution of δν,c/δνc, we recall that the droplets are released

from rest at t = 1, leading to an instantaneous increase in τΣ which explains the minimum in

δνc,Σ/δνc. However, after roughly one integral time scale (t ≥ 1 + τℓ ≈ 2.8), δνc,Σ/δνc reaches
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a quasi-stationary value, which suggests that the effect of the initial conditions is forgotten

after one integral time scale.

The effects of varying Werms, ϕ, and γ on δνc,Σ are as follows. Figure 4(a) shows that

as Werms increases δνc,Σ/δνc increases. The decrease in δνc,Σ/δνc for case B at later times is

explained by droplet coalescence. Droplet coalescence produces velocity fluctuations (TKE)

at the droplet scale through the power of the surface tension Ψσ, and because the interfacial

surface energy scales as We−1, the effect is most pronounced for the lowest Weber number

case B (Werms = 0.1). As the density ratio increases, shown in Figure 4(b), δνc,Σ/δνc

decreases, showing that higher inertia droplets have larger velocity gradients and smaller

length scales near their surfaces than lighter droplets. Figure 4(c) shows that increasing the

viscosity ratio γ leads to a decrease in δνc,Σ/δνc . This suggests that in the solid particle limit

(γ → ∞), δνc,Σ/δνc would be minimum. This implies that, from a computational perspective,

solid particles are the most costly dispersed medium to simulate in terms of resolving the

velocity gradient near the particle surface.

After one integral time scale, δνc,Σ/δνc ranges between 0.35 and 0.5 depending on the

case, indicating that δνc,Σ is two to three times smaller than the smallest length scale in the

surrounding turbulent flow. Consequently, to perform fully-resolved DNS of droplet-laden

flows (ignoring breakup and coalescence for the time being), there is an additional microscale

that must be resolved that is significantly smaller than the Kolmogorov scale. For the cases

considered here, the number of grid points required on a fixed mesh is roughly eight to

twenty-seven (23–33) times higher than single-phase isotropic turbulence at an identical

Reynolds number. This fact, in part, explains why a numerical resolution of κmaxη = 4.3

was used to produce this DNS dataset.

C. Joint PDFs of tensor invariants

1. Effect of distance from the interface

In this section we present the invariants of the velocity-gradient tensor in the carrier

fluid for case C and investigate how the topology of the turbulence changes as the droplet

interface is approached. The tensor invariants are computed at every point in the flow using

second-order central differences, except near the interface, where the central difference stencil
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FIG. 4: Time evolution of the interfacial viscous length scale in the carrier phase δνc,Σ(t)

normalized by the mean viscous length scale of the carrier phase δν,c(t) for varying (a)

Weber number, (b) density ratio, and (c) viscosity ratio.

would lead to mixing droplet- and carrier-fluid velocities. In that scenario, a second-order

one-sided scheme is used.

The joint PDFs are computed in four different layers on the basis of the distance from

the interface at 0 ≤ φ+ ≤ 1, 1 ≤ φ+ ≤ 2, 4 ≤ φ+ ≤ 5, and 9 ≤ φ+ ≤ 10, which we will term

the φ+ = 1, 2, 5, and 10 layers, respectively. These layers are represented schematically

in Figure 5. The approximate mean boundary layer thickness in wall units at t = 2.5 is

δ̄+99 = 4.4, and therefore the φ+ = 10 is outside the boundary layer, φ+ = 5 is at the edge of

the boundary layer and φ+ = 2 and φ+ = 1 are inside the boundary layer. Figure 6 shows

the joint PDFs of Q+

A versus R+

A , Q
+

S versus R+

S , and −Q+

S versus Q+

Ω
conditionally averaged

on the different layers. The joint PDF of Q+

A versus R+

A in the φ+ = 10 layer shows that the

most probable flow topologies are in the upper left (Q+

A > 0 and R+

A < 0) and lower right

(Q+

A < 0 and R+

A > 0) quadrants, indicating that the most likely flow topologies are stable

focus/stretching and unstable node/saddle/saddle. As a reminder, topologies corresponding
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Case τΣ uτcΣ δνc,Σ δνc,Σ/δνc

A⋆ 4.85 × 10−5 6.96 × 10−3 2.24 × 10−3 1.02

B 2.45 × 10−4 1.57 × 10−2 9.94 × 10−4 0.453

C 2.41 × 10−4 1.55 × 10−2 1.00 × 10−3 0.458

D 2.33 × 10−4 1.53 × 10−2 1.02 × 10−3 0.465

E 1.77 × 10−4 1.33 × 10−2 1.17 × 10−3 0.533

F 3.40 × 10−4 1.84 × 10−2 8.45 × 10−4 0.385

G 1.40 × 10−4 1.18 × 10−2 1.31 × 10−3 0.599

H 3.40 × 10−4 1.84 × 10−2 8.45 × 10−4 0.386

TABLE III: Viscous scaling parameters at t = 2.5: shear stress at the interface, τΣ,

interfacial friction velocity in the carrier phase, uτcΣ, viscous length scale in the carrier

phase, δνc,Σ, and interfacial viscous length scale in the carrier phase normalized by the

mean viscous length scale of the carrier phase δνc,Σ/δνc .

to (Q+

A > 0 and R+

A < 0) represent high enstrophy, vortical motions that contribute to the

production of enstrophy via vortex stretching. When Q+

A < 0 and R+

A > 0, this is indicative

of regions of high strain/dissipation that are undergoing compression in one direction and

extension in the two other directions (biaxial strain). The particularly inclined teardrop

shape, the clustering along the so-called Vieillefosse tail in the lower right quadrant, and

self-similarity of the joint PDF shown in Figure 6(a) closely resemble those found in single-

phase HIT [28] as well as various inhomogeneous turbulent flows [16, 19, 29]. This suggests

that for φ+ > δ̄+99, the small-scale motions closely follow the universal properties of single-

phase turbulence and that the modulation of turbulence by the droplets is undetected by

looking at the fine-scale motions.

The sequence of Figure 6(a,d,g,j), shows the joint PDFs of Q+

A versus R+

A as the interface

is approached. By comparing lines of constant probability density, the results show that the

magnitudes of Q+

A and R+

A increase monotonically from the layers at φ+ = 10 to φ+ = 1,

meaning that, on average, the magnitude of the velocity gradients increases as the interface

is approached. This is consistent with the droplets’ inertia causing their trajectories to

deviate from the carrier fluid and leading to increased velocity gradients. For φ+ = 1, the
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FIG. 5: Schematic illustrating the layers near the droplet interface used for conditional

averaging.

shape of the joint PDFs departs from teardrop and becomes more symmetric with respect

to the R+

A-axis, presenting the highest probabilities at Q+

A = 0 and R+

A = 0.

Events clustered at QA = 0 and RA = 0 are indicative of boundary-layer-like flow topolo-

gies [19]. To see this, consider Aij in a planar boundary-layer flow. Without loss of generality,

the interface is oriented such that the interface normal is aligned with the y axis and the

velocity is aligned with the x axis, such that at the droplet surface the velocity-gradient

tensor, to leading order [30], is

Aij =











0 ∂u/∂y 0

0 0 0

0 0 0











. (15)

The invariants of Eq. (15) are QA = RA = 0, QS = (∂u/∂y)2/4, RS = 0, and QΩ = −QS.

It is perhaps not surprising then that the symmetry about the R+

A-axis and clustering near

the origin were also reported in turbulent channel flow [19].

Figure 6(b,e,h,k) shows the joint PDFs of Q+

S versus R+

S for the four layers near the

interface. Farthest from the interface and outside the droplet boundary layer (φ+ = 10),

Figure 6(b) shows that the PDF is skewed toward R+

S > 0, with most of the events attracted

to the line 27R2
S + 4Q3

S = 0. Along this line, the principal rates of strain are in the ratio

λ1 : λ2 : λ3 = 1 : 1 : −2; therefore, the flow is expanding in two directions and contracting in

the third direction, forming disk-like structures. A comparison of Figure 6(b,e,h,k), shows
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FIG. 6: Joint PDFs of (a,d,g,j) Q+

A versus R+

A, (b,e,h,k) Q
+

S versus R+

S , and (c,f,i,l) −Q+

S

versus Q+

Ω
for case C conditioned on different distances from the interface: (a–c) φ+ = 10,

(d–f) φ+ = 5, (g–i) φ+ = 2, and (j–l) φ+ = 1.
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that as φ decreases the flow becomes less skewed toward the biaxial straining topologies.

At the droplet interface, there is equal probability of finding biaxial (R+

S > 0) and axial

(R+

S < 0) strain fields, and the most likely events appear to lie along the line R+

S = 0.

The clustering along R+

S = 0 is consistent with the invariants for A in a planar boundary

layer as shown in Eq. (15). The increasing preference for R+

S = 0 events as the interface

is approached is also in agreement with the behavior of QS and RS reported in turbulent

channel flow [19] as the distance to the wall decreases.

We now look at the joint PDFs of Q+

S and Q+

Ω
shown in Figure 6(c,f,i,l). At the distance

farthest from the droplet surface (φ+ = 10), shown in Figure 6(c), the PDF is skewed toward

small-scale motions with low dissipation and high enstrophy (Q+

Ω
> −Q+

S ). This is explained

by the fact that motions with high enstrophy are solid-body rotations and, therefore, persist

for a longer time than unstable straining motions [28]. The shape of the joint PDF in

Figure 6(c) is in good agreement with that found in single-phase isotropic turbulence. As

φ decreases, the magnitude of the invariants increases by nearly an order of magnitude,

indicating that both the mean enstrophy and dissipation rate increase substantially as the

droplet surface is approached. Interestingly, as φ+ changes from 10 to 5 in Figure 6(c,f),

the PDF goes from being skewed toward Q+

S = 0 to Q+

Ω
= 0. This signals that outside the

boundary layer, there is a preference for vortical motions, as previously mentioned, but at

the edge of the droplet boundary layer, more dissipative flow topologies are prevailing.

Moving into the boundary layer from φ+ = 5 to φ+ = 2 and 1, shown in Figure 6(i,l),

the distribution of Q+

S and Q+

Ω
clusters along the line QΩ = −QS, corresponding to vortex

sheet structures. This preference for QΩ = −QS is explained by Eq. (15) and was also

observed in the buffer and viscous regions of a turbulent boundary layer [19]. Figure 7 shows

instantaneous two-dimensional contours of −Q+

S + Q+

Ω
in a subregion of the computational

domain at t = 2.5 in case C. We observe dark blue regions on the windward side of some of

the droplets where both the dissipation rate and enstrophy are high, which is characteristic

of vortex sheet topologies. Values of −Q+

S +Q+

Ω
≈ 2.5 correspond to the more rare/extreme

events shown in the joint PDFs of Figure 6(i,l) (e.g., events where −Q+

S ≈ Q+

Ω
≈ 1.25).
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(= AijAij/2)

for case C at t = 2.5. The droplet interface is marked by a black line and the velocity

vectors are projected onto the x-y plane at every 12th grid point.

2. Weber number effects

As the droplet Weber number increases (cases B–D), the surface tension forces decrease

relative to the aerodynamic forces on the droplet surface, which leads to larger droplet

deformations. The fact that the droplet is freer to undergo larger deformations has a relieving

effect and causes the interfacial shear stress τΣ to decrease by 5% with increasing Werms as

shown in Table III. The effects of increasing Werms on the invariants QA, RA, QS, RS, and

QΩ conditioned on φ+ = 1 are shown in Figure 8.

The sequence of panels in Figure 8(a–c) shows that increasing Werms does not have a

strong effect on the QA and RA invariants. In all cases, there is clustering near the origin.

There is a slight trend for increasing probability of events along the line R+

A = 0 and for

Q+

A > 0 with large Q+

A values becoming more likely as Werms increases. R
+

A = 0 and Q+ > 0

correspond to two purely imaginary eigenvalues and one eigenvalue being zero. Physically,

this denotes a flow field undergoing solid body rotation (e.g., (u, v, w) = (−y, x, 0)). The

similarity among the joint PDFs of QS versus RS in Figure 8(d–f), indicates that increasing

Werms has a negligible effect on modifying the topology of the strain field. The PDFs of −Q+

S
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FIG. 8: Joint PDFs of (a–c) Q+

A versus R+

A, (d–f) Q
+

S versus R+

S , and (g–h) −Q+

S versus

Q+

Ω
for cases of increasing Weber number Werms = (a,d,g) 0.1, (b,e,h) 1, and (c,f,i) 5 (cases

B–D) conditioned on φ+ = 1.

versus Q+

Ω
shown in Figure 8(g–i) indicate that the probability of vortex sheet topologies

(−Q+

S = Q+

Ω
) decreases with increasing Werms. For the most deformableWerms = 5 droplets,

Figure 8(i) shows that the PDF is skewed towards higher enstrophy topologies. This suggests

that more spherical droplets (lower Werms) promote the formation of vortex sheet topologies.
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3. Density ratio effects

In this section we analyze cases E, C, and F, in which the density ratio between the

droplet and carrier fluid is increased as ϕ = 1, 10, and 100, respectively, by increasing the

density of the droplet fluid. This increases the droplet inertia and thereby increases its

response time to changes in the surrounding fluid flow, which, consequently, leads to larger

velocity differences between the droplet and carrier fluid. Table III shows that as the density

ratio increases from 1 to 100, τΣ nearly doubles in magnitude, which is associated with a

significant decrease in δνc,Σ.

Figure 9 shows the joint PDFs of the invariants for varying ϕ. The Q+

A and R+

A invariants,

as shown in Figure 9(a–c), indicate that for unity density ratio, the distribution shows

some resemblance to the canonical teardrop shape of HIT, especially with unstable node

saddle/saddle topologies favored, but as the density ratio increases, the distribution becomes

symmetric with respect to the R+

A axis. Looking at the rate-of-strain invariants, Figure 9(g–

i), it is observed that as ϕ increases, the probability of finding vortex sheet topologies

increases. At unity density ratio, a broader distribution of −Q+

S and Q+

Ω
invariants is shown

with a shift in preference for vortex sheets to vortex tubes.

4. Viscosity ratio effects

The viscosity ratio between the droplet and carrier fluid is augmented by increasing the

viscosity of the droplet fluid. In cases G, C, and H, γ = 1, 10, and 100, respectively. The

effect of increasing γ on the the interfacial shear stress is pronounced; Table III shows that as

γ increases from 1 to 100, τΣ increases by 140%. As γ increases, the velocity gradient in the

carrier phase increases while that in the droplet phase decreases. This physical mechanism

is described in greater detail in [3].

Figure 10 shows the joint PDFs of the Aij, Sij , and Ωij invariants for increasing γ condi-

tioned on φ+ = 1. The PDFs of the velocity gradient invariants, shown in Figure 10(a–c),

indicate that for low viscosity ratio (γ = 1), vortical motions (Q+

A > 0) are preferred, but

for the highest viscosity ratio (γ = 100), strain-dominated flow topologies are favored. It is

interesting to note that for γ = 100, the rate-of-strain invariants, as shown in Figure 10(f),

show an equal preference for axisymmetric contraction and axisymmetric expansion. The
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FIG. 9: Joint PDFs of (a–c) Q+

A versus R+

A, (d–f) Q
+

S versus R+

S , and (g–h) −Q+

S versus

Q+

Ω
for cases of increasing density ratio ϕ = (a,d,g) 1, (b,e,h) 10, and (c,f,i) 100 (cases

E,C,F) conditioned on φ+ = 1.

shift from enstrophy- to strain-dominated topologies is also clear in the joint PDFs of −Q+

S

and Q+

Ω
(Figure 10(g–i)). For γ = 1, the PDF is skewed towards the Q+

Ω
axis indicating

a preference for topologies associated with low strain and high vorticity. The emergence

of structures along the 45◦ line for γ = 10 is indicative of vortex sheet topologies. At the

highest viscosity ratio tested, γ = 100, there is an even more pronounced preference for

vortex sheet topologies, and, interestingly, there also emerges a secondary structure in the

vertical direction that denotes irrotational dissipation (−Q+

S > 0 and Q+

Ω
= 0).
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FIG. 10: Joint PDFs of (a–c) Q+

A versus R+

A, (d–f) Q
+

S versus R+

S , and (g–h) −Q+

S versus

Q+

Ω
for cases of increasing viscosity ratio γ = (a,d,g) 1, (b,e,h) 10, and (c,f,i) 100 (cases

G,C,H) conditioned on φ+ = 1.

V. CONCLUSIONS

This work reports the joint PDFs of the invariants of the velocity-gradient, rate-of-strain,

and rate-of-rotation tensors in decaying isotropic turbulence laden with finite-size droplets

(D0/η = 20). The joint PDFs were computed in the carrier phase for different distances from

the interface using a novel conditional averaging procedure. Four distinct regions of local

flow topology with respect to the mean droplet boundary layer thickness δ are identified:
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1. An outer region (φ > δ) where the flow topologies show a preference for stable fo-

cus/stretching (QA > 0 and RA < 0) and unstable node/saddle/saddle (QA < 0 and

RA > 0) topologies that closely resemble canonical isotropic turbulence.

2. A transition region (φ ≈ δ) marked by a shift in the skewness of the joint PDF of QΩ

and −QS from a preference for high enstrophy/low dissipation (QΩ > −QS) to high

dissipation/low enstrophy (−QS > QΩ). The transition is also apparent in the joint

PDFs of QA versus RA, which show a marked increase in density along the Vieillefosse

tail, the region of (QA,RA)-space where strain production is highest.

3. An inner region (φ < δ, φ+ > 1) denoted by an increased density of Qω = −QS, which

is characteristic of boundary-layer flows with a predominance of vortex sheets.

4. A viscous region dominated by boundary-layer-like flow topologies leading to clustering

at QA = 0 and RA = 0. The probability of axial and biaxial straining motions becomes

equal, as denoted by symmetry about the RS-axis in the QS versus RS PDF.

The effect of increasing the droplet Weber number was to decrease the mean interfacial

shear stress and viscous length scale at the droplet surface. The joint PDFs of QS and QΩ

showed that the probability of vortex sheet topologies near the droplet surface increased with

increasing Weber number. Increasing the density and viscosity ratio between the droplet

and carrier fluid lead to an increase in interfacial shear stress and showed that in all cases

the most dissipative motions near the droplet surface were primarily vortex sheet structures.

Our view is that accurately capturing the velocity gradient near the droplet interface

is crucial for the accurate prediction of the dissipation rate of TKE as well as the viscous

coupling force between the carrier and droplet phases. Inadequate numerical resolution

in DNS or inaccurate SGS models in an LES framework will lead to incorrect turbulent

energetics and droplet dynamics. The similarities between the small-scale flow topologies in

droplet-laden isotropic turbulence and turbulent wall flows suggest that models in the latter

could be applied or adapted to the former. A possible modeling paradigm would resolve

the smallest length scales of the bulk flow, use a reduced number of grid points per droplet

diameter to capture the droplet interface (e.g., Ngp,d = 8 instead of 32), and apply a wall

model to accurately predict the shear stress induced by the droplet.
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