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Abstract

We use three-dimensional computer simulations to examine turning strategies for a biomimetic

oscillating elastic rectangular plate propulsor submerged in a viscous fluid. The elastic plate is

actuated near the first natural frequency at the leading edge. Two kinematic actuation patterns

are probed to produce both pitching and yaw moments: 1) periodic plunging with asymmetric

velocities on the upstroke and downstroke and 2) combined sinusoidal plunging and twisting motion.

Both strategies lead to net lateral forces and turning moments. For the first case, we find that

the magnitudes of the force and turning moment increase with the degree of asymmetry in the

stroke. For the second case, our simulations reveal a range of optimal phase angles and twisting

amplitudes that lead to the maximum yaw moment.
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I. INTRODUCTION

Fish use a combination of their multiple fins to achieve gradual turning or to accelerate

quickly in a different direction to perform an escape maneuver. Weihs [1] extensively studied

fish maneuvers using Lighthill’s theory, which he adopted for situations where the center

of mass follows a curvilinear path. He split the turning motion into several phases and

used forces and moment balances to describe the phenomena taking place while fish turn.

Notably fish use drag and asymmetric forces produced by dorsal fins to optimize the turning,

which is highly efficient when compared to standard ship turning strategies. Sfakiotakis et

al. [2] reviewed several swimming mechanisms used by fish highlighting that the main

research efforts focused on reproducing body and caudal fin movements. From different

turning strategies, the authors indicated flexible actuators as promising approach for the

use in fish mimetics. More recently, Tan [3] demonstrated that using a flexible tail is more

advantageous than using a rigid tail for maneuvering with a bias angle.

Motivated by the agile performance of fish, a variety of turning designs have been adapted

in robotic fish prototypes. Hu et al. [4] proposed a design with a solid body and three

servomotors to actuate a flexible tail in order to reproduce sharp turns. The main limitation

of their design compared to actual fish was the rigidity of the robotic fish body. The flexibility

of a fish from head to tail is essential for the efficient swimming pattern. In the case of their

robotic fish only the tail was able to bend, which still yielded sharp turning, yet far from

the efficiency found in biological fish.

This approach was further explored by several research groups [5–7]. Multijointed robotic

fishes were designed with bodies consisting of segments interconnected by flexible joints.

These fishes were able to reproduce sharp turns, however the turning performance was

significantly weaker than that found in nature. Moreover, the results showed that the caudal

fin plays a critical part in the design enabling sharp turns. A fully biomimetic approach for

designing maneuverable robotic fish would require including individually controllable fins.

Such a strategy, however, adds another level of complexity to the robotic fish design in terms

of implementation, cost, and space requirements. Cen [8] demonstrated that smart materials

can be used to create fins with asymmetric beating pattern enabling robotic fish turning,

which is a promising scenario integrating maneuvering capabilities into robotic fish using a

single fin.

In this study, we use numerical simulations to examine potential turning strategies for
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a plunging flexible plate propulsor and quantify the turning performance as a function

of actuation parameters. Two turning strategies are considered: 1) asymmetric passive

plunging, which leads to a pitching moment and changes the swimming direction in the xz–

plane (see coordinate system in Figure 1), and 2) a combination of plunging with rotation,

which leads to a yaw moment and changes the swimming direction in the xy–plane. To

realize the first strategy, we introduce asymmetry in the plunging pattern by performing

the upstroke and downstroke with different velocities. We find that the net lift force and

pitching moment increase with the ratio between upstroke and downstroke velocities. The

use of second strategy produces a lateral force and yaw moment that depend on the phase

between plunging and rotation. We find that the lateral force and moment are maximized

at a specific range of phase values.

II. COMPUTATIONAL MODEL

In our computational study we consider an oscillating elastic plate fully submerged in

a viscous fluid. The oscillating rectangular plate has length L, thickness b, and width w

yielding an aspect ratio AR = L/w. The plate is actuated at the leading edge with different

periodic plunging patterns of constant vertical amplitude A0 = 0.1L (see Figure 1) and

constant frequency ω. The plate is submerged within an incompressible Newtonian fluid with

viscosity µ and density ρ, leading to a constant Reynolds number Re = ρωA0L/µ = 250.

The plate deformation is dictated by the ratio of the actuation frequency to the natural

frequency of the plate. The natural frequency, in turn, depends on the plate mechani-

cal properties, geometry, and mass. In vacuum, the classic beam theory gives the first

natural frequency as ωvac,1 =
λ21
L2

√
EI
ρsbw

, with λ1 = 1.875 being the first positive root of

1 + coshλn cosλn = 0. Here, ρs is the density of the solid plate and EI is the bending

rigidity. In a viscous fluid, this natural frequency is shifted due to the added mass effect

characterized by the fluid/solid mass ratio χ = ρw/ρsb and viscous dissipation [9]. The lin-

ear theory estimates the first natural frequency in a fluid ωf,1 for high aspect ratio, isotropic

plates as ωf,1 =
λ21
L2

√
EI
ρsbw

[
1 + π

4
χΓ(ωf,1)

]
with Γ being the hydrodynamic function that de-

pends recursively on ωf,1 [9]. In this study, we consider resonance oscillations of the plate

leading to larger plate deflections and maximizing the propulsion [10, 11]. We, therefore, set

the bending rigidity of the plate EI such that the actuation frequency ω in our simulations

is equal to the plate natural frequency ωf,1.
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When a plate plunges in the vertical direction sinusoidally, the drag force on the upstroke

cancels with the drag force on the downstroke. In order to create a net force normal to the

plate (for flows with a finite Reynolds number), the actuation pattern must be asymmetric

between the upstroke and the downstroke. Because the drag forces during the strokes is a

function of velocity normal to plate, a simple mechanism to create a net drag is to actuate

the upstroke and downstroke at different velocities.

Following this principle for the first turning strategy, we actuate the leading edge with

the following asymmetric plunging pattern:

A(t) =

 A0 cos[π/τ1(t− nτ)] nτ ≤ t ≤ nτ + τ1

−A0 cos[π/τ2(t− τ1 − nτ)] nτ + τ1 ≤ t ≤ (n+ 1)τ
(1)

This parametric equation represents motion in two parts. The downstroke motion is a half-

cosine wave with amplitude A0 and half-period τ1. The upstroke motion is also a half-cosine

wave with the same amplitude, but a different half-period τ2. The total stroke period is

τ = τ1 + τ2 = 2π/ω, and n is the current period number. The maximum speed on the

downstroke is v1 = A0π/τ1 and upstroke is v2 = A0π/τ2. We consider values of velocity

ratios, v1/v2 ranging from 1 to 14, so that the downstroke is faster than the upstroke.

This particular actuation pattern is suitable because the motion has continuity in both

displacement and velocity. Figure 1c illustrates the asymmetric plunging stroke during one

period for different values of velocity ratio.

We expect that the asymmetric plunging pattern on the leading edge would result in an

asymmetric plunging response on the remainder of the flexible plate, thereby creating a net

force in the direction of plunging. The plate is actuated such that the total stroke period

τ corresponds to the first natural frequency in fluid, and the deformation response would

be amplified near the trailing edge. In this way the net hydrodynamic force is acting at

a location off-center and closer to the trailing edge, which creates the necessary pitching

moment in order to change direction within the xz–plane.

Our second strategy to create a turning motion is to combine sinusoidal plunging with a

sinusoidal rotation. This actuation pattern is similar to simplified models of insect hovering

flight [12], although in this case the application is for generating a net lateral force perpendic-

ular to the swimming direction in the xy–plane. We apply this combined plunging-rotation

actuation pattern on the leading edge of the passive flexible swimmer. As shown in Figure

1b, the center of the leading edge is prescribed with sinusoidal plunging A(t) = A0 cos(ωt),

where A0 is the plunging amplitude. The leading edge also undergoes a sinusoidal rotation
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FIG. 1: Schematics of (a) asymmetric plunging actuation and (b) combined plunging and

rotation as turning strategies for biomimetic flexible plate swimmer. The black outline

indicates the zero-displacement plate position. (c) Plots of the leading edge displacement

for different values of velocity ratio v1/v2 as asymmetric plunging strategy.

with a tunable phase, given by α(t) = α0 cos(ωt + ψ), where α0 is the rotation amplitude

and ψ represents the phase difference between rotation and plunging.

We expect that the resulting kinematics and deformation response of the plate would

lead to a motion that is asymmetric in the y–direction, thus creating a net lateral force and

yawing moment. The lateral force and turning moment is expected to be a function of the

phase ψ and rotational amplitude α0. We set the actuation frequency to the swimmer’s first

natural frequency and measure the forces and moments as functions of ψ and α0.

A three-dimensional fully-coupled fluid-structure interaction solver is used to compute

the combined fluid flow and elastic plate response. Our hybrid lattice Boltzmann (LBM)
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and lattice spring model (LSM) has been used and validated previously [13–18] including

plate propulsor studies [10, 11, 19–21]. Briefly, LBM [22–24] is a particle-based method for

simulating fluid flow. In LSM [25, 26], the continuous plate is discretized into a network

of masses connected by springs. The models are coupled through boundary conditions

[13], where the LSM solid surface acts as a no-slip and no-penetration boundary for fluid

represented by LBM [27], while hydrodynamic forces computed from LBM are acted upon

the LSM solid [13].

The LSM uses a triangular lattice of mass nodes to represent the elastic plate. The lattice

spacing is about 1.4 LBM units. The plate is located at the center of the fluid computational

domain, which has size 8L × 6L × 8L, where L = 50 is the length of the plate. Here and

in what follows all dimensionless values are given in LBM units. We use a refined LBM

grid of size 4L× 3L× 3L around the oscillating plate in order to accurately resolve the flow

near the plate surface. The fine grid is coupled at the boundaries to the coarse grid filling

the rest of the domain [28]. The grid spacings are ∆f,r = 1 and ∆f,c = 2 for the refined

and coarse grid, respectively. The far field boundaries of the coarse grid have impenetrable

wall boundary conditions and are located sufficiently far to not impact the flow near the

oscillating plate. We use an oscillation period τ = 2π/ω = 2000, the plunging amplitude

of A0 = 0.1L, and set the fluid density ρ = 1 and the fluid viscosity to yield Re = 250.

Furthermore, we examine plates with aspect ratios AR equal to 1 and 2.5, and fluid/solid

mass ratios χ equal to 1, and 2. Details of the implementation of our computational model

can be found elsewhere [29].

We define the following scales to non-dimensionalize our quantities of interest: charac-

teristic length is the length of the plate L, characteristic time is the oscillation period τ ,

characteristic velocity is U0 = ωA0, characteristic force is F0 = 1
2
ρU2

0wL, characteristic

power is P0 = 1
2
ρU3

0wL, and characteristic moment in the z–direction is Mz0 = 2Imzz/τ
2,

where Imzz = m
12

(L2 + w2) is the z–axis mass moment of inertia. The later definition of the

characteristic moment approximates the pitch angle change per stroke period in the absence

of fluid resistance.

III. RESULTS AND DISCUSSION

We first assess the turning performance of asymmetric plunging swimmers with veloc-

ity ratios ranging from 1 to 14. Typical flow structures generated by such swimmers are
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illustrated in Video S1 in the Supplementary Information [30]. In Figure 2, we plot the

period-averaged net thrust (x–direction), and lift force (z–direction), as a function of the

velocity ratio for several values of fluid/solid and aspect ratios.
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FIG. 2: (a) Lift force and (b) thrust force generated by asymmetric plunging swimmer as a

function of the velocity ratio.

We find that the thrust generated by plunging swimmers only slightly changes as a

function of the velocity ratio with a minor increase with increasing velocity ratio. This

behavior is independent of the fluid/solid ratios and aspect ratios we tested. The magnitude

of the thrust decreases for heavier and increases for wider swimmers. This is consistent
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with previously reported results [10, 11]. The increase in the generated thrust for heavier

swimmers is related to the greater bending of such swimmers at resonance leading to larger

trailing edge (TE) displacement as shown in Figure 3. Forward thrust is proportional to the

TE displacement which is suppressed when the relative mass of displaced fluid increases for

lighter swimmers. Note that the magnitude of the TE displacement increases with increasing

velocity ratio. This increase is due to faster accelerations experienced by the plunging elastic

swimmer as v1/v2 increases. The increase of the TE displacement with v1/v2 explains the

increase in the thrust with v1/v2 shown in Figure 2a. The TE displacement and deflection

are insensitive to the swimmer aspect ratio (Figure 3a and 3b). Since wider swimmers

experience lesser effect of side edge vortices [31], such swimmers can generate greater thrust

for the same actuation pattern.

Whereas increasing velocity ratio has only a minor effect on the thrust generation, it does

strongly affect the lift force generated by the asymmetrically plunging elastic swimmer (Fig-

ure 2b). We find that the lift force increases with increasing v1/v2. The higher the velocity

ratio, the larger the asymmetry exists between the upstroke and downstroke, leading to a

larger net lift force. Remarkable that the magnitude of the lift force is almost independent

of the mass ratio. Furthermore, the wider swimmer with AR = 1 slightly outperforms the

narrow swimmer with AR = 2.5 for v1/v2 < 8. This indicates that the magnitude of the TE

displacement alone is not a significant factor in the production of the lift force.

To further examine the generation of lift force by asymmetric plunging, we characterize

the asymmetry of the resulting bending pattern. We use the difference between the drag

forces experienced by the plate between up and down strokes to quantify the stroke asym-

metry. Since the drag force is proportional to the velocity squared, we evaluate the root

mean square velocities Urms of the upstroke and downstroke at the plate trailing edge. In

Figure 3b we plot ∆Urms, which represents as the difference between the root mean square

velocities of the upstroke and downstroke as a function of the velocity ratio. We find that

the asymmetry of Urms increases with an increasing velocity ratio up to v1/v2 about 10, after

which it either saturates or decreases. This explains a weak sensitivity of lift force in Figure

2b to the values of added mass and plate aspect ratio. We further note that the bending

pattern of the wide plate exhibits more complex motion than the narrow plates including

a range of higher frequency oscillation modes. These oscillation modes are excited due to

the discontinuity of the higher derivatives of the actuation pattern given by Eq 1 and are

enhanced with increasing v1/v2.
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FIG. 3: (a) Maximum trailing edge displacement and (b) difference between root mean

square trailing edge upstroke and downstroke velocity as a function of the velocity ratio.

While the lift force can displace the swimmer side-wise, it does not necessarily result in

the swimmer changing spatial orientation and, therefore, propulsion direction. To assess the

ability of asymmetric plunging to change the swimmer’s swimming direction we evaluate

the turning moment My generated by plunging actuation with different velocity ratios. The

turning moment My is calculated with respect to the y–axis through the plate’s centroid.

We find that the turning moment My exhibits a non-monotonic behavior with the velocity

ratio. This is in spite of a nearly monotonic increase of the lift force generated by the plate
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FIG. 4: Turning moment on asymmetric plunging swimmer as a function of the velocity

ratio.

for v1/v2 6 14. Interestingly, for the narrow plate the moment increases almost linearly

until v1/v2 ' 10, whereas the wider plate exhibits fluctuations of the moment which can be

attributed to higher frequency modes emerging during the plate oscillations. Although the

lift is not a strong function of the fluid/solid ratio, the pitching moment depends strongly on

this ratio. The moment increases roughly linearly with the fluid/solid ratio for the heavier

plate. This result suggests that the changing mass ratio shifted the point of application of

the lift force, magnitude of which in turn remains insensitive to the mass ratio.

To quantify the turning efficiency, we define two efficiency parameters εFx = Fx/F0

Pinput/P0

and εMy = My/Mz0

Pinput/P0
that represent respectively the thrust and the moment efficiency. Their

values are plotted in Figure 5a. We find that the thrust efficiency decreases with an in-

creasing velocity ratio indicating an increased losses due to formation of side edge vortices.

The thrust efficiency is nearly independent of the fluid/solid ratio, yet it depends on the

plate aspect ratio. The later can be explained by a reduced relative contribution of side

vortices to the efficiency of the wider swimmer. The moment efficiency shown in Figure 5b

exhibits an opposing trend. Here, the efficiency strongly depends on the fluid/solid ratio

and remains independent of the plate aspect ratio. The efficiency is maximized for lower

velocity ratios after which it gradually decreases that can be attributed to increasing viscous

losses and therefore increasing input power. For the two lightest swimmers the maximum
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FIG. 5: (a) Thrust and (b) pitching moment efficiency on asymmetric plunging swimmer

as a function of the velocity ratio.

moment efficiency takes place for v1/v2 = 3. Thus, for the efficiency point of view the plate

should be operated with relatively small velocity ratios in the range below approximately 5.

Using higher velocity ratios leads to sub-optimal performance that can be attributed to the

contribution of the higher oscillation modes.

To provide a further insight into the turning moment behavior, we examine v1/v2 = 5

as a representative case and plot in Figure 6a the time history of the leading and trailing

edge displacements for one period. We find that the trailing edge motion represents as a
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combination of the stroke frequency (remember the swimmer period corresponds to the plate

natural frequency in fluid) and higher frequency oscillations. A closer examination shows

that one of the more pronounced higher frequencies is the frequency of the downstroke.
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FIG. 6: (a) Displacement time history with (b) bending profile at times A, B, and C,

corresponding to times t/τ = 0, 0.16, and 0.5, respectively. The asymmetry in the bending

pattern is mainly caused by the quick movement from A to B.

The higher frequency oscillations of the trailing edge imply that the hydrodynamic force

experienced by the plate also exhibits the higher frequency oscillations. This multimodal

excitation can be used to explain the non-monotonic behavior of the turning moment at

higher velocity ratios. Thus, we conclude that the velocity ratio allows us to directly control

the pitching moment for sufficiently small velocity ratio values, below ∼ 10 in our system.

Snapshots of the bending pattern are plotted in Figure 6b at the representative times as
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indicated on Figure 6a with the vertical dashed lines. Point A (t/τ = 0), shows the bending

pattern of the plate at the start of the downstroke just before the swimmer accelerates

downward. At this time, the trailing edge is located at approximately 80% of its peak

amplitude. At point B (t/τ=0.16), the plate has finished the downstroke. Because of the

high velocity, the trailing edge does not have time to respond and still stays near its peak

amplitude. Near point B, the relative deflection is maximized. After that the leading edge

slowly moves upwards, whereas the trailing edge continues to move downwards dominated

by the plate’s natural frequency. At point C (t/τ = 0.5), the trailing edge is located at

its minimum position, after which it begins its upstroke until it reaches the position at

the beginning of a period. From these bending patterns we observe that the trailing edge

response is relatively symmetric about the equilibrium position, but the motion of the leading

edge imposes the asymmetry in the kinematics, particularly through the motion between

the points A and B.

The vorticity contours plotted in Figure 7 for, respectively, a narrow swimmer and a

wider swimmer provide further insights in the understanding of the swimmer performance.

Both swimmers display similar flow structures composed of trailing edge vortices (TEV) and

side edge vortices (SEV). The combination of SEV and TEV detaching from the trailing

edge form a horseshoe structure in the wake of the swimmer. Side edge vortices create

vortex-induced drag, which has preponderant contribution to overall drag experienced by

the oscillating elastic swimmers. We find that the characteristic sizes of SEV are similar for

both swimmers. As a result, the wider swimmer produces a lower overall drag per width

compared to the more narrow swimmer, which explains the enhanced thrust performance of

the wider swimmer shown in Figure 2a.

To evaluate the turning performance of the combined plunging and rotation actuation,

we simulate a plate actuated at the first natural frequency and compute the net forces and

moments during a stroke period. Video S2 in the Supplementary Information [30] shows

flow structures produced by an elastic swimmer with combined plunging and rotation. In

Figures 8a and 8b, we plot the propulsive and lateral forces as a function of phase, ψ. The

different lines represent the different values of rotational amplitude, α0. Note that the values

of ψ > π lead to redundant results because Fx(ψ) = Fx(ψ − π) and Fy(ψ) = −Fy(ψ − π)

from the symmetry of the problem.

We find that the propulsion decreases with increasing α0, but it does not depend strongly

on the phase ψ. This is due to the fact that the projected area in the plunging direction
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FIG. 7: Surface of constant vorticity magnitude (ω = 20 normalized by leading edge

frequency) plotted for χ = 1.0, (a) AR = 2.5 and (b) AR = 1.0 at time t/τ = 0.16 which

corresponds to point B of figure 6 (top view).

decreases with increasing α0. When the swimmer moves vertically, it also rotates, decreasing

the projected area. As a result, less fluid is deflected backwards so the resulting thrust is

weaker. The thrust curves also imply that the net propulsion can be tuned by increasing or

decreasing the rotational amplitude.

In contrast, the lateral force is a strong function of both α0 and ψ. When comparing

at the maximum lateral force for each value of α0, we observe that the optimal rotational

amplitude is α0 = π/4. For this rotational amplitude, we find that the optimal phase to

generate the largest lateral force is ψ = π/6, but this optimum is shallow. When considering

the “high-performing” amplitude values of π/6, π/4, and π/3, high lateral force is found in

the range between ψ = −π/12 and ψ = 5π/12. Similarly, there is also a region between

ψ = 7π/12 and ψ = 3π/4 that leads to weak lateral force.
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FIG. 8: (a) Propulsive and (b) lateral forces for combined plunging and rotating swimmer.

Propulsive forces decrease with increasing α0, which is related to the smaller projected

areas for increasing α0. Lateral force is maximized in a range of phase values ψ = −π/12

and ψ = 5π/12.

A net lateral force itself does not necessarily result in a change in direction. To examine

this capability, we compute the net moment due to the fluid, Mz, about the z–axis through

the plate’s centroid at equilibrium position. The net moment leads to a change in the yaw

angle about the z–axis. In Figure 9, we plot the moment as a function of ψ and α0. The

trends for moment correlate with the trends for the lateral force, suggesting that the net
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FIG. 9: Turning moment for combined plunging and rotating swimmer. The moment

follows similar trends to lateral force.

lateral force is indeed responsible for the yawing moment. Interestingly, we find that for

α0 = 5π/12, the lateral force is small, but the moment is non-zero. This suggests that a net

lateral couple is applied on this particular swimmer, so it can turn without drifting.

Figures 10a and b show the effects of the mass ratio and aspect ratio on the thrust and

lateral force for α0 = π/4. We find a weak dependency of the thrust on mass ratio, whereas

increasing the plate width significantly enhances produced thrust. The larger thrust of

wider plate can be associated with more significant plate twisting than that experienced by

the narrow plates. This in turn leads to a greater displacement of the trailing edge and,

therefore, greater thrust generated by the wider plate.

The lateral force shown in Figure 10b follows a similar trend in terms of its dependence

on the mass and aspect ratios, with a high lateral force production range between ψ =

−π/12 and ψ = π/2. We note that the non-dimensional lateral force magnitude of the

wider swimmer is roughly 2.5 times larger than the lateral force magnitude of the narrow

swimmer. This suggests that the lateral force scales with the width squared, and therefore

the characteristic force experienced by the plate is proportional to the added mass, which

scales as Lw2.

Figure 11 shows that the turning moment increases with the increasing magnitude of the

mass ratio and the aspect ratio. Conversely to the lateral force and thrust, the moment is
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FIG. 10: (a) Propulsive and (b) lateral forces for combined plunging and rotating swimmer

for α0 = π/4 and several fluid/solid and aspect ratios.

roughly comparable between all the cases. This result indicates that the moment Mz0 scales

with the width squared similar to the magnitude of the lateral force.

In order to understand the mechanism that leads to high lateral force production, we

first seek to understand the kinematics of the swimmer response. In Figure 12a, we consider

a rotating coordinate system (shown in red), denoted by the (xyz)′ axes, that is attached

to the leading edge so that the z′–axis is always normal to the leading edge. Figure 12b

gives the perspective of the swimmer relative to the (xyz)′ axes. We denote the position
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FIG. 11: Turning moment for combined plunging and rotating swimmer for α0 = π/4 and

several fluid/solid and aspect ratios.

vectors of the maximum extent of the trailing edge corners by ry+ and ry−. The absolute

displacements of the trailing edge corner points are denoted by δy,± as labeled in Figure

12a. The displacements of these corner points relative to the surface normal are given by

δrel,y± = ry± · ẑ′, as labeled in Figure 12b.

In Figure 12c, we plot δy± and δrel,y± as functions of ψ for the case α0 = π/4. We

observe that at low phase angles ψ < π/4, where lateral force is maximized, the absolute

displacements are also maximized, suggesting that the larger displacements yield larger

lateral forces. What is interesting though is that the relative displacements of the two trailing

edge corner points nearly coincide, showing that the plate undergoes a negligible amount

of twisting during the swimming stroke. Therefore, the plate plunges vertically relative to

the surface normal, but the surface normal is also continuously changing direction based on

α(t).

Another step to understanding the physics behind the lateral force production is to exam-

ine the symmetric vertical force production of a plunging plate undergoing no rotation. Fig-

ure 13 shows the time histories of the relative trailing edge velocity vTE,r(t) = d
dt

[δt(t)−A(t)]

and the vertical force. We observe that the maximum (most negative) trailing edge relative

velocity has a phase delay of approximately 0.29π to the maximum vertical force, as indi-

cated by the dotted lines. We would expect that the vertical force and velocity are correlated
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FIG. 12: (a) Schematic showing rotating (xyz)′ axes relative to the fixed (xyz) axes. (b)

Perspective of swimmer in (xyz)′ axes. (c) Absolute and relative deflections of the trailing

edge corner points. The relative deflection of the corner points nearly coincide, showing

that the swimmer has negligible twist motion.

because the faster a plate moves normal to its surface, the larger drag force it experiences.

Then, we examine the time histories of the rotation angle α, lateral force Fy, moment Mz,

and relative trailing edge velocity in the (xyz)′ reference frame, vTE,r = d
dt

[0.5(δrel,y+(t) + δrel,y−(t))].

The time histories for α0 = π/4 and ψ = π/6, the case which exhibits the largest net lat-

eral force (Figure 8b), are plotted in Figure 14 and provide insight into the lateral force

production.

We find first that the maximum moment, lateral force, and rotation angle occur at the

same t. Thus, the largest lateral force production occurs at the maximum rotation angle. As

Figure 12 suggests, the plate is plunging up and down without twisting, while changing its

surface normal. Force production should therefore be primarily normal to the surface. The
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FIG. 13: Time histories of relative trailing edge velocity for a plunging plate with no

rotation showing the time of maximum vertical force production relative to the maximum

trailing edge velocity.
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FIG. 14: Time histories for multiple quantities for α0 = π/4 and ψ = π/6. Large lateral

force and turning moment are produced because the time of maximum force production

based on the relative trailing edge velocity is tuned to the maximum of α.

time history of vTE,r is also shown in Figure 14, where the dotted line represents the time of

maximum force production based on the phase difference computed for a plunging swimmer
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in Figure 13. The time of the maximum force production coincides closely with the maxima

of α(t) and the other quantities. This explains the mechanism of the large lateral force

production. The phase difference ψ must be tuned so that the maximum rotation occurs at

the same time of maximum force production based on the correlation with vTE,r. This way,

the largest amount of force produced, which is in the direction normal to the plate surface,

can be directed laterally during the stroke.
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FIG. 15: Time histories for multiple quantities for α0 = π/4 and ψ = 7π/12. Little lateral

force and moment production is due to the time of maximum force production occurring

when α ≈ 0, so force is directed vertically, not laterally.

We can also notice that the first peaks of lateral force and moment correspond to a

trailing edge downstroke relative to the surface normal based on the negative value of vTE,r.

At this point, α is negative, which means that in the inertial frame, the downstroke has a

−ŷ–component, generating a lateral force in +ŷ–direction and moment in the +ẑ–direction.

The second peak corresponds to an upstroke, but now α is positive, so the upstroke has a

−ŷ–component, generating a force again in the +ŷ–direction and a moment again in the

+ẑ–direction. At the valleys of Fy, the force production is small based on the velocity–

relative deflection phase difference and α is small, so force is directed mostly parallel to

the ẑ–direction. Evidently, tuning ψ to match the force production has also the benefit of

reducing unwanted lateral force in the opposite direction.

This principle also explains the poor lateral force and moment production at values of
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FIG. 16: (a) Propulsive and (b) lateral forces efficiency for combined plunging and rotating

swimmer for α0 = π/4 and several fluid/solid and aspect ratios.

ψ about π/2. In Figure 15, we plot the time histories of the same quantities for α0 = π/4

and ψ = 7π/12. We find that the maximum force production is aligned with α when

α ≈ 0, so the maximum force is directed in the ẑ–direction. Furthermore, when α is largest,

the time of maximum force production is near zero, and thus the lateral force produced is

correspondingly near zero. At the peaks of lateral force and moment, the α value and force

production are suboptimal, and the peaks and valleys also cancel each other. Thus, the

force production and α are not synchronized, which causes little to no turning moment or
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lateral force produced.
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FIG. 17: Turning moment effiency for combined plunging and rotating swimmer for

α0 = π/4 and several fluid/solid and aspect ratios.

We quantify the turning performance of combined plunging and rotating motion by defin-

ing the following efficiencies εFx = Fx/F0

Pinput/P0
, εFy = Fy/F0

Pinput/P0
and εMz = Mz/Mz0

Pinput/P0
that respec-

tively represent the thrust efficiency, the lateral force efficiency, and the turning moment

efficiency. Figure 16a shows that the thrust efficiency is comparable for the three cases con-

sidered. Moreover, we find that the maximum of thrust efficiency approximately coincides

with the minimum of lateral force efficiency and vice verse. This points to the redistribution

of the generated thrust between the forward and lateral directions while keeping the total

force about the same. The moment efficiency drops when the maximum force production

occurs when α ' 0 so that the power input mainly feeds the thrust.

The moment efficiency is shown in Figure 17. Its value is minimized for the phase ψ = π/2

at which the moment is about zero (Figure 11). The maximum of the moment efficiency

occurs for ψ = 3π/4. This phase does not coincide with the phase of the maximum moment,

however the moment magnitude at the maximum efficiency is close to the maximum moment

magnitude. In contrast to the thrust and lateral force efficiencies, the moment efficiency

depends strongly on the mass and aspect ratio. We find that the wider swimmer has the

lowest moment efficiency, whereas the lighter swimmer has the strongest moment efficiency.

Thus, lighter and more narrow swimmers are beneficial both in terms of turning moment
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production and turning moment efficiency.

IV. CONCLUSION

We studied two strategies for steering an oscillating flexible plate swimmer by changing

actuation patterns. The first strategy was to impose a plunging motion with a faster velocity

on the downstroke compared to the upstroke. This created a pitching moment. We found

that the asymmetric plunging stroke created a net lift force on the trailing edge during

each stroke period, which contributed to a turning moment. The magnitude of the lift

force increased monotonically with increasing velocity ratio, whereas the pitching moment

exhibits a maximum around v1/v2 = 10. The asymmetry of the bending pattern was mainly

associated with the trailing edge delay during the fast downstroke.

The second strategy was to combine sinusoidal plunging with sinusoidal rotation, which

resulted in a yawing moment. We investigated the lateral force production as a function

of the rotation amplitude and phase difference between plunging and rotation. We found

a range of optimal phase angles in which lateral force and moment production is best.

Furthermore, we examined the resulting plate kinematics and found that the bending is

primarily normal to the surface with negligible twisting motion. We examined the time

history of relative trailing edge velocity and force production, and showed that in order to

optimize turning moment and lateral force, the phase must be tuned so that the instant of

time during maximum rotation coincides with the instant during maximum force production.
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