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We consider the long-standing problem of Rayleigh-Taylor instability with variable acceleration, and 

focus on the early-time scale-dependent dynamics of an interface separating incompressible ideal fluids of 

different densities subject to an acceleration being a power-law function of time for a spatially extended 

three-dimensional flow periodic in the plane normal to the acceleration with symmetry group p6mm. By 

employing group theory and scaling analysis, we discover two distinct sub-regimes of the early time 

dynamics depending on the exponent of the acceleration power-law. The time-scale and the early-time 

dynamics are set by the acceleration for exponents greater than -2, and by the initial growth-rate (due to, 

e.g., initial conditions) for exponents smaller than -2. At the exponent value (-2) a transition occurs from 

one sub-regime to the other with varying acceleration strength. For a broad range of the acceleration 

parameters, the instability growth-rate is explicitly found, the dependence of the dynamics on the initial 

conditions is investigated, and theory benchmarks are elaborated. 
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Section 1 - Introduction 

Rayleigh-Taylor instability (RTI) controls a broad range of processes in nature and technology, in 

fluids, plasmas and materials [1,2]. RTI develops when the fluids of different densities are accelerated 

against their density gradients [3,4]. Intense interfacial Rayleigh-Taylor (RT) mixing of the fluids ensues 

with time [1,2]. Examples of RT-relevant processes include inertial confinement fusion, supernova 

explosion, material transformation under impact, as well as fossil fuel recovery and nano-electronics 

[1,2]. In realistic environments RTI is often driven by variable acceleration, whereas the bulk of existing 

studies is focused on the cases of sustained and impulsive accelerations [1,2]. The case of impulsive 

acceleration induced by a steady shock is referred as Richtmyer-Meshkov (RM) instability [5,6]. In this 

work we consider the long-standing problem of RTI subject to an acceleration being a power-law function 

of time [1,2,7]. We focus on the early-time dynamics, and, by applying group theory and scaling analysis 

[7-9], identify the instability growth-rate for a broad range of acceleration parameters and initial 

conditions. We find two sub-regimes depending on the acceleration exponent - acceleration-driven RT-

type and initial-growth-rate-driven RM-type, with each sub-regime having its own time-scale, type of 

dynamics, and theory benchmarks. 

RT flows, while occurring in vastly different physical circumstances, have some similar features 

of the evolution [9]. RTI starts to develop when the fluid interface (or, the flow fields) is (are) slightly 

perturbed near the equilibrium state [3,4]. Over time the interface is transformed to a composition of 

small-scale shear driven vortical structures and a large-scale coherent structure of bubbles and spikes, 

with the bubble (spike) being a portion of the light (heavy) fluid penetrating the heavy (light) fluid [8]. 

Eventually, the flow transits to the stage of intensive interfacial mixing [7]. 

Non-equilibrium RT dynamics is extremely challenging to study due to, e.g., tight requirements 

on the flow control and diagnostics in experiments, the need to track interfaces and capture small-scale 

processes in simulations, the necessity to account for the non-local and singular character of the dynamics 

in theory [1,2]. Remarkable success has been recently achieved in understanding of the fundamentals of 

RTI and RT mixing [1,2,7-16]. In particular, the group theory approach has found that nonlinear RTI has 

a multi-scale character and that RT mixing with constant acceleration may keep order, thus explaining the 

observations [7-10]. 

A number of important aspects of RT dynamics still require a deeper understanding. One of them 

is variable acceleration. RT flows with variable accelerations occur commonly in nature and technology 

[1,2]. These include RTI induced by unsteady shocks in inertial confinement fusion, blast-wave-driven 

RT mixing in core-collapse supernovae, RT-unstable plasma irregularities in the Earth’s ionosphere, and 

fossil fuel recovery in industry [17-22]. RTI and RT mixing with variable acceleration is a long-standing 
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problem [1,2]. Only limited information is currently available on RT dynamics under these conditions 

[22-24]. 

Here we consider RTI subject to variable acceleration with power-law time dependence. On the 

side of fundamentals, power-law functions are important to study because they may result in new 

invariant and scaling properties of the dynamics [25,26]. On the side of applications, power-law functions 

can be used to adjust the acceleration’s time-dependence in realistic environments and thus ensure 

practicality of our results [17-21]. We consider a three-dimensional spatially extended periodic flow, 

apply group theory and scaling analysis [7,8], identify the dependence of the instability growth-rate on the 

acceleration’s exponent and strength, and elaborate theory benchmarks for observations. Particularly, we 

find that the early-time dynamics is set by the acceleration for acceleration exponents greater than -2, and 

by the initial growth-rate for acceleration exponents smaller than -2, and that at the exponent value (-2) 

the transition occurs between the sub-regimes by varying the acceleration strength [22-24]. 

 

 

Section 2 – Method 

Sub-section 2.1 - Governing equations 

The dynamics of ideal fluids is governed by conservation of mass, momentum and energy: 
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where ( ) ( )z,y,xx,x,x =321  are the spatial coordinates with, t  is time, ( )E,P,,vρ  are the fields of 

density ρ , velocity v , pressure P  and energy ( )22v+ρ= eE , e is the specific internal energy [25].  

We introduce a continuous local scalar function ( )t,z,y,xθ , whose derivatives θ&  and θ∇  exist 

(the dot marks a partial time-derivative), such that 0=θ  at the interface, and the heavy (light) fluid is 

located in the region 0>θ  ( 0<θ ); its fields are ( ) ( ) ( )lhE,P,,E,P,, vv ρ→ρ  and are marked with the 

subscript ( )lh  hereafter [7,8,24,32]. By using the Heaviside step-function ( )θH , we represent in the fluid 

fields in the entire domain as ( ) ( ) ( ) ( ) ( )θ−ρ+θρ=ρ HE,P,,HE,P,,E,P,, lh vvv  [7,8,24,32]. At the 

interface, the balance of fluxes of mass and normal and tangential components of momentum and energy 

obey the boundary conditions: 
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where [ ]...  denotes the jump of a quantity across the interface; n and τ  are the normal and tangential 

unit vectors of the interface with θ∇θ∇=n  and ( ) 0=⋅τn ; ( )vnj +θ∇θρ= &~
 is the mass flux across 

the moving interface; the specific enthalpy is ρ+= PeW  [7,8,24,25,32]. 

The boundary conditions Eqs.(1.2) are derived from the governing equations Eqs.(1.1) assuming 

that the mass flux is conserved at the interface, [ ] [ ] 0==⋅ nj
~~ nj , with nj ⋅= ~j~n . There is the important 

particular case, when the mass flux is conserved at the interface and when it is zero at the interface, 

0
0

=
±=θnj

~ . This case corresponds to a so-called contact discontinuity, or a front, between, and describes 

the interface between two immiscible fluids [7,8,24,25,32]. As is seen from Eqs.(1.2), this special 

condition 0
0

=
±=θnj

~  leads to the continuity of normal component of velocity at the interface [ ] 0=⋅nv , 

and transforms the condition for the conservation of normal component of momentum at the interface to 

the continuity of pressure at the interface, [ ] 0=P . Moreover, for the zero mass flux at the interface, 

0
0

=
±=θnj

~ , the condition of continuity of tangential component of momentum at the interface holds true 

for an arbitrary jump of the tangential velocity at the interface [ ] arbitrary=⋅ τv , whereas the 

condition of continuity of the energy flux at the interface holds true for any jump of the enthalpy at the 

interface [ ] arbitraryW = . Hence, in full consistency with the classic results [25], in case of zero mass 

flux at the interface, 0
0

=
±=θnj

~ , the boundary conditions at the interface are 

[ ] [ ] [ ] [ ] ( )200 arbitraryW,arbitrary,P, ==⋅==⋅ τvnv  

The flow is periodic in the plane ( )yx,  normal to the z  direction of the acceleration g , g=g  

[7,8], Figure 1. The acceleration is directed from the heavy to the light fluid, ( )g,, −= 00g , and is a 

power-law functions of time, aGtg = , 0>t . Here a  is the acceleration exponent, ( )+∞∞−∈ ,a , and 

G  is the pre-factor, 0>G ; their dimensions are [ ] asmG += 2  and [ ] 1=a  [22-24]. In the presence of 

acceleration g , the pressure is modified as gzPP ρ−→  [7,8,24]. The flow is free from mass sources: 

( )300 == ∞−→∞+→ zz , vv  
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The initial conditions are initial perturbations of the flow’s fields. We consider incompressible fluids with 

negligible stratification and density variations. The spatial period (wavelength) λ  of the initial 

perturbation sets the dynamics’ length-scale [25,27-30]. The Atwood number ( ) ( )lhlhA ρ+ρρ−ρ=  

parameterizes the ratio of the fluids’ densities, with ( )01→A  for ( ) ( )10→ρρ hl . 

 

Sub-section 2.2 – Group theory for Rayleigh-Taylor dynamics 

To solve the problem of RTI with variable acceleration, group theory can be employed [7,8,30]. 

For spatially periodic flows, space groups can be applied, since RT dynamics is invariant with respect to 

a group G , whose generators are translations in the plane, rotations and reflections [7,8,24,33,34]. These 

groups are also known as Fedorov and/or Schoenflies groups, and they are commonly used in physics 

[7,8,24,25,30,33,34]. Figure 2 presents sample patterns for one-dimensional space space group 11pm  in 

case of two-dimensional (2D) flow, and two-dimensional space groups mmp,mmp 64  in case of a three-

dimensional (3D) flow. We use international classification [25,33]. Here p  stands for periodicity in one 

(two) direction(s), and, for each of spatial directions, 1 is for unit element, m  is for mirror plane of 

reflection, and 64,n= is for n-fold axis of rotation [7,8,24,33]. While there are 7 one-dimensional and 

17 two-dimensional space groups, only some of these groups should be considered, Figure 2. Particularly, 

groups relevant to structurally stable RT dynamics must have anisotropy in the acceleration direction and 

inversion in the normal plane, such as groups of hexagon mmp6  or square mmp4  for a three-

dimensional (3D) flow, and group 11pm  in a two-dimensional (2D) flow [7,8,24,25,30,33,34]. 

By using the techniques of group theory, we apply irreducible representations of a relevant group 

to expand the flow fields as Fourier series, including Fourier series of the velocity and pressure fields and 

the interface, and further make spatial expansions in a vicinity of a regular point at the interface (i.e., the 

tip of the bubble or spike). The governing equations are thus reduced to a dynamical system in terms of 

surface variables and moments, and the solution is sought [7,8,22-24]. We focus on the large-scale 

coherent dynamics with length scale λ~ , presuming that length scale of shear-driven interfacial vortical 

structures is small, λ<< . For convenience, all derivations are performed in the frame of reference 

moving with velocity ( )tv  in the z-direction, where ( )tv  is the bubble (spike) tip velocity in the 

laboratory frame of references [7,8,22-24]. 

 

  



6 

Sub-section 2.3 – Fourier series and spatial expansions for group mmp6  

For the large-scale coherent structure, the fluid motion is potential, and the velocity of the heavy 

(light) fluid is ( ) ( )lhlh Φ∇=v . For incompressible ideal fluids the equation for the conservation of mass in 

Eqs.(1.1) leads to the Laplace equation ( ) 0=ΔΦ lh  in the bulk(s) for ( )00 <>θ  [7,8,30]. Here we 

consider a three-dimensional structure with space group mmp6  [7,8,30,33-35]. 

In order to make a Fourier series expansions, we recall that for group mmp6  with hexagonal 

lattice the spatial periods ( )21a  have equal lengths, ( ) λ=21a , and are inclined relative to one another at 

the angle 32π , with 2121 −=⋅aa , Figure 3. Their coordinates in the ( )y,x  plane are ( ) λ= 011 ,a  

and ( )λ−= 23212 ,a . The wave-vectors ( )21k  of the reciprocal lattice are defined by the relations 

( ) ( ) 01221 =⋅ak  and ( ) ( ) π=⋅ 22121 ak , leading to ( )k, 21231 =k  and ( ) k,102 =k  with 

( )34 λπ=k  and 2121 =⋅kk  [7,8,24,25,30,33-35]. Linear combination of independent spatial 

periods ( )21a  defines the spatial period ( )213 aaa +−= , whereas linear combination of independent 

wave-vectors of the reciprocal lattice ( )21k  defines the wavevector 213 kkk −=  with 

( )k, 21233 −=k , Figure 3. The wave-vectors ( )21k  (as well as wave-vectors ( )31k ) are inclined 

relative to one another at the angle 3π , Figure 3 [7,8,24,25,30,33]. 

The Fourier series expansions of the potentials ( )lhΦ  have the form: 
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Here ( )y,x=r , ( )mm
~ΦΦ  are the Fourier amplitudes of the heavy (light) fluid with 00 =Φ=Φ m

~ , ( )lhf  

are time-dependent functions, and m  is integer [7,8,30,34]. Cross terms appear in high orders. These 

Fourier series expansions hold true upon transformations of the group mmp6 , including the rotations on 

angles π±π±π± ,, 323  with the axis of rotation in the z -direction, and the reflections xx −→ , 

yy −→  as well as ( ) ( )y,xy,x −→  in the mirror reflection planes along the x - and y - directions: 
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The fluid interface is ( )t,zz * r+−=θ , and function ( )t,z* r  is defined locally as 
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Here N  is natural, Nζ  are the surface variables, ζ=ζ1  is the principal curvature at the bubble (spike) 

tip. Cross terms appear in high orders. 

The solution is sought for 0>t , and, as time evolves, with 00 ≥≤ζ v,  for bubbles, and 

00 ≤≥ζ v,  for spikes. 

 

Sub-section 2.4 – Dynamical system for group mmp6  

Upon substituting these expansions in the governing equations and further expanding the 

equations in the vicinity of the bubble tip, we derive from the governing equations a dynamical system in 

terms of moments and surface variables. For group p6mm, to first order 1=N , the interface is 

( )22 yxz* +ζ= , and the dynamical system is [7,8,24,30]: 
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These equations represent the absence of mass sources, the continuity of the normal component of 

velocities and the normal component of momentum at the interface, and the discontinuity of the tangential 

component of velocity at the interface. Values ( )M~M  are the moments, with 
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with integer n . 

 

 

Section 3 - Results 

Sub-section 3.1 – Early-time dynamics 

For the early-time dynamics only the first order harmonics are retained in the expressions for the 

momentum, 21011 ,,n,~kM~,kM n
n

n
n =Φ=Φ= , transforming the dynamical system to: 
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The initial conditions at time 0t  are the initial curvature ( )00 tζ=ζ  and velocity ( )0tv . The latter sets the 

initial growth-rate ( )00 tvv = . For a given wavelength λ  and for 2−≠a , there are two time-scales in 

the dynamics, ( ) ( )21 +−=τ a
G kG  and ( ) 1

00
−=τ kv . At 2−=a  the time-scale is ( ) 1

00
−=τ kv , and the 

acceleration strength is parameterized by the value ( )Gk . We consider dynamics for { }00 ττ> ,t G . 

For a broad class of initial conditions, integration of the governing equations is a challenge [24]. 

The solution can be found when the initial perturbation amplitude is small and the interface is nearly flat, 

1<<ζ k , particularly, 81<<ζ k  (hence 41<< ). Indeed, for 81<<ζ k  in Eqs.(7), with 

42 0
2

0 MkkM <<ζ  and 42 0
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0 M~kM~k <<ζ , the equations for the continuity of the normal 

component of velocities at the interface are transformed to 
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For 41<<ζ k  in Eqs.(7) with 00
2 4 MMk && ζ>>  and 00

2 4 M~M~k && ζ>> , the equation for the 

continuity of the normal component of momentum at the interface is transformed to 
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With account for that vM~M −=−= 00  and 2
0
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2 M~Mv == , the system Eqs.(7) is transformed to 
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Note that the term involving 2v  should be kept since it defines the time scale at 0=g  [22-24,31]. 

Consider the dynamics for 2−≠a . With ( ) stT,vvV,k τ==ζ−=σ 0 , where sτ  is some 

time-scale, the system gets the form 
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This system indicates the existence of two distinct sub-regimes depending on the interplay of the 

acceleration parameters and the initial growth-rate – the acceleration-driven (Rayleigh-Taylor type) 

sub0regime and the initial growth-rate driven (Richtmyer-Meshkov type) sub-regime. Indeed, with 

0τ=τs , we find from the first equation in the system, see Figure 4: 
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Sub-section 3.2 – Solutions for early-time dynamics 

Sub-section 3.2.1 – Acceleration exponents greater than -2 

For 2−>a  the smallest time-scale is Gτ , 0τ<<τG , the relative contribution of the terms is 

( ) ( )22
0 2 dTdT a

G
a σ>>ττσ + , and the dynamics is driven by the acceleration (and is Rayleigh-

Taylor type). With the time-scale of the fastest process Gs τ=τ , the system is transformed to 



10 

[ ] ( )111040 0
2

2

.
dT
dV,TA

dT
d

G

a =σ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τ
τ−=σ−σ

 

The solution of the system is 
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⎞
⎜⎜
⎝

⎛
=σ

−
 

where ( ) 22+= as  and pI  is the modified Bessel function of the p th order. In complete agreement 

with the classic results, for constant acceleration, 0=a , the solution is transformed to 

( ) ( ) ( )3114 0
21 .

dT
dV,TACTAexpC

G

σ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τ
τ=−+=σ  

In the dimensional form with ( ) ( )21 +−=τ a
G kG  the solution is 

( ) ( ) ( ) ( )4114
2
12

2
11 .

dt
kd

k
v,

s
tAItC

s
tAItC

k

s
G

sG

s
G

sG

ζ−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ τ
τ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ τ
τ

=⎟
⎠
⎞

⎜
⎝
⎛ ζ− −  

Table 1 summarizes these results. Figure 5 illustrates the solutions in Eqs.(11) for bubbles with 

00 ≥≤ζ v,  and spikes with 00 ≤≥ζ v,  at various values of the acceleration exponents. 

 

Sub-section 3.2.2 – Acceleration exponents smaller than -2 

For 2−<a  the smallest time-scale is 0τ , Gτ<<τ0 , the relative contribution of the terms is 

( ) ( )22
0 2 dTdT a

G
a σ<<ττσ + , and the dynamics is driven by the initial growth-rate (and is 

Richtmyer-Meshkov type). With the time-scale of the fastest process 0τ=τs , the system is transformed 

to 

( )1120402
2

2

2

.
dT
dV,

dT
dA

dT
d =⎟

⎠
⎞

⎜
⎝
⎛ σ−=⎟

⎠
⎞

⎜
⎝
⎛ σ+σ

 

The solution of the system is 

( ) ( )2124
2

12 .
dT
dV,

A
CTCln

⎟
⎠
⎞

⎜
⎝
⎛ σ=+=σ  

or, in the dimensional form 

( )( ) ( ) ( )3124
2

102 .
dt
kd

k
v,

A
CtCln

k
ζ−

=
+τ

=⎟
⎠
⎞

⎜
⎝
⎛ ζ−  

Table 2 summarizes these results. Figure 6 illustrates the solutions in Eqs.(12) for bubbles with 

00 ≥≤ζ v,  and spikes with 00 ≤≥ζ v,  at various values of the acceleration exponents. 
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Sub-section 3.2.3 – Acceleration exponent -2 

At 2−=a , the acceleration is 2−=Gtg , the time-scale is ( ) 1
00

−=τ kv , the acceleration strength 

is parameterized by ( )Gk , and the system is transformed to 

( )130
4

02
2

22

2

=−σ=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ σ−σ−σ V

dT
d,

dT
d

T
GkA

dT
d  

For strong acceleration 1>>Gk  with terms related as ( ) ( )22 2 dTdGkT σ>>σ − , the 

dynamics is acceleration-driven, and the system is transformed to 

( )1140
4

022

2

.V
dT
d,

T
AGk

dT
d =−σ=σ−σ

 

The solution of the system is 

( ) ( )21444112121
21 .

dT
dV,AGkp,TCTC ,

pp σ=+±=+=σ  

In the limiting case of strong acceleration 1>>AGk  

( )3144421 .
dT
dV,AGkp,TCTC pp σ==+=σ −  

and, in the dimensional form, the solution is 

( ) ( )41444
0

2
0

1 .
dt
kd

k
v,AGkp,tCtC

k

pp
ζ−

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τ

=⎟
⎠
⎞

⎜
⎝
⎛ ζ−

−

 

For weak acceleration 1<<Gk  with terms related as ( ) ( )22 2 dTdGkT σ<<σ − , the 

dynamics is driven by the initial growth-rate, and the system is transformed to 

( )1150402
2

2

2

.
dT
dV,

dT
dA

dT
d =σ−=⎟

⎠
⎞

⎜
⎝
⎛ σ+σ

 

The solution of the system in the dimensionless and dimensional forms is 

( ) ( )2154
2

12 .
dT
dV,

A
CTCln σ=+=σ  

( )( ) ( ) ( )3154
2

102 .
dt
kd

k
v,

A
CtCln

k
ζ−

=
+τ

=⎟
⎠
⎞

⎜
⎝
⎛ ζ−  

Table 3 presents solutions in the limiting cases of strong and weak accelerations. Figure 7 

illustrates the solutions in Eqs.(14) and Eqs.(15) for bubbles with 00 ≥≤ζ v,  and spikes with 

00 ≤≥ζ v,  at various values of the acceleration strength. 
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Sub-section 3.2.4 – Very early time dynamics 

For very early time dynamics with very short time intervals, ( ) 100 <<− ttt  and { }00 ττ> ,t G , 

the governing equations can be linearized. By using the sign function sgn , the solution is 

( ) ( ) ( ) ( ) ( ) ( )164
24 000

2
00

0

0
00

2

0 ttGt
k
AvAktvv,

v
tvsgnttvkt a −⎟

⎠
⎞

⎜
⎝
⎛ ζ+−=−⎥

⎦

⎤
⎢
⎣

⎡
−−=ζ−ζ  

in full consistency with the foregoing results [23,24]. Table 4 summarizes these results. 

 

Section 3.3 - Effect of initial conditions 

Our general solutions are applicable for any sign of k0ζ  and ( ) 00 vtv . To study qualitatively 

how the bubbles and spikes are being formed in the early time dynamics [7,8,31], we represent the short 

time interval solution, for ( ) 10 00 <<−< ttt  with { }00 ττ>> ,t G , in the form 

( ) ( )

( ) ( )
( ) ( )174

2

4

00
1

0

0

0
00

0

0

0

0
0

⎥
⎦

⎤
⎢
⎣

⎡
τ
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ττ

ζ−⎥
⎦

⎤
⎢
⎣

⎡
τ
−−=−

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
τ
−−=ζ−ζ

−

G

a

GG

ttt
k
kAttvAtvv

,
v
tvsgnttkt

 

Two sub-regimes are clearly seen from this expression: the acceleration-driven (Rayleigh-Taylor 

type) sub-regime, with 10 <<ττG  and ( ) ( )( ) ( )aGGG tkkv ττζ<<ττ −
0

1
000 8 , and the initial 

growth-rate-driven (Richtmyer-Meshkov type) sub-regime, with 10 <<ττ G  and 

( ) ( )( ) ( )aGGG tkkv ττζ>>ττ −
0

1
000 8 . 

In the acceleration-driven regime, 10 <<ττG , the morphology and the velocity of the interface 

near the tip change with time as follows: For ( ) 000 >vtv  and 00 <ζ k , the interface becomes more 

curved and its velocity increases, since ( )( ) ( )( )( ) 00 00 >τ−<ζ−ζ ktvv,kt G . For ( ) 000 >vtv  and 

00 >ζ k , the interface flattens and the velocity decreases, ( )( ) ( )( )( ) 00 00 <τ−<ζ−ζ ktvv,kt G . For 

( ) 000 <vtv  and 00 >ζ k , the interface becomes more curved and the velocity magnitude increases, 

( )( ) ( )( )( ) 00 00 <τ−>ζ−ζ ktvv,kt G . For 00 <ζ k  and ( ) 000 <vtv , the interface flattens and the 

velocity magnitude decreases, ( )( ) ( )( )( ) 00 00 >τ−>ζ−ζ ktvv,kt G . This suggests that the bubbles 

are formed at the regular points of the interface with 00 <ζ k , whereas the spikes are formed at the 
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regular points of the interface with 00 >ζ k . In the acceleration-driven (Rayleigh-Taylor type) dynamics, 

the positions of the bubbles and spikes are set by the initial morphology of the interface. 

In the initial growth-rate driven regime, 10 <<ττ G , the morphology and the velocity of the 

interface near the tip change with time as follows: For ( ) 000 >vtv  and 00 <ζ k , the interface becomes 

more curved and its velocity decreases, since ( )( ) ( )( )( ) 00 00 <τ−<ζ−ζ ktvv,kt G . For ( ) 000 >vtv  

and 00 >ζ k , the interface flattens and velocity decreases, ( )( ) ( )( )( ) 00 00 <τ−<ζ−ζ ktvv,kt G . For 

( ) 000 <vtv  and 00 >ζ k , the interface becomes more curved and velocity magnitude increases, since 

( )( ) ( )( )( ) 00 00 >τ−>ζ−ζ ktvv,kt G . For ( ) 000 <vtv  and 00 <ζ k , the interface flattens and the 

velocity magnitude increases, ( )( ) ( )( )( ) 00 00 <τ−>ζ−ζ ktvv,kt G . This suggests that the bubbles 

are formed at the regular points of the interface with ( ) 000 >vtv , and the spikes are formed at the 

regular points of the interface with ( ) 000 >vtv . In the initial growth-rate driven (Richtmyer-Meshkov 

type) dynamics, the positions of the bubbles and spikes are set by the initial velocity field. 

Figure 8 presents the schematics of the effect of initial conditions on the early time dynamics and 

illustrates the process of formation of bubbles and spikes. 

 

Sub-section 3.4 - Theory benchmarks 

According to our results, for variable acceleration with power-law time-dependence, for the 

acceleration exponents 2−>a  and at 12 >>−= Gk,a , the early time dynamics is driven by the 

acceleration and the positions of the bubbles and spikes are set by the interface morphology, similarly to 

the case of RTI with constant acceleration. Hence we call the acceleration-driven dynamics as being ‘RT-

type’ [3,4,7,9,10,29,31]. For the acceleration exponents 2−<a  and at 12 <<−= Gk,a , the early time 

dynamics is driven by the initial growth-rate and the positions of the bubbles and spikes are set by the 

initial velocity field. This dynamics is similar to the case of the Richtmyer-Meshkov instability, where the 

growth of the interface perturbation is due to impulsive acceleration by the shock; in a broad parameter 

regime the initial growth-rate is constant and the associated motion is nearly incompressible. Hence we 

call the initial-growth-rate-driven dynamics as being ‘RM-type’ [4,5,7,10,16,29,31]. 

Note that in the RTI and RMI in supernova blasts and in ICF environments, typical values of the 

acceleration exponents are 2−>a  [17,18,24,26] According to our results, while in these cases the 

acceleration is usually induced by unsteady shocks, the early time dynamics of the unstable flow is RT-

type: It is defined by the acceleration parameters, with the positions of bubbles and spikes set by the 

initial morphology of the interface [3,4,7,9,10,29,31]. 



14 

Our results identify theory benchmarks for experiments and simulations, which, to our 

knowledge, have not been discussed before [7-24]. Specifically, by implementing in experiments and 

simulations an acceleration with exponents 2−>a  one can study RT-type dynamics, and observe super-

exponential growth of the interface perturbations for 0>a  and sub-exponential growth for 02 <<− a , 

Figure 4, Figure 5. By implementing in experiments and simulations an accelerations with exponents 

2−<a  one can study RM-type dynamics, and observe the growth of the interface perturbations, which is 

set by the initial growth-rate and is independent of the exponent, Figure 4, Figure 6. By implementing an 

acceleration with exponent 2−=a , one can further observe the effect of the acceleration strength on the 

dynamics, Figure 4, Figure 7. 

In addition to quantitative study of dependence of the instability growth-rate on the acceleration 

parameters and the initial growth-rate, one can investigate the dependence of the unstable dynamics on 

the initial conditions. Particularly, for RT-type dynamics, one can observe that the formation of bubbles 

and spikes structure is prescribed by the morphology of the initially perturbed interface, Figure 8. This 

result is in excellent agreement with experiments [9-16,29]. For RM-type dynamics, one can further 

observe that the process of formation of the structure of bubbles and spikes is prescribed by the initial 

velocity field at the interface, Figure 8. For some initial conditions, it may lead to the so-called ‘phase 

reversal’, with bubbles (spikes) turning to spikes (bubbles), in excellent agreement with experiments and 

simulations [12,29,31]. 

The other important diagnostic parameter found by our theory is the qualitative velocity field 

[23,24]. According to our results in RT- and RM-type dynamics the non-equilibrium velocity field is 

characterized by effectively no motion of the fluids away from the interface, intensive motion of the 

fluids in a vicinity of the interface, and the production of shear-driven vortical structures at small scales at 

the interface, Figure 9 [7,8,23,24,30]. This result excellently agrees with experiments and simulations [9-

16]. Note that for a shock-induced acceleration, the non-equilibrium velocity is referred to the velocity in 

a frame of reference moving with the velocity of the background motion [5,6,12,10,16]. This is because 

for a spatially extended periodic flow the post-shock dynamics is a superposition of two motions – the 

background motions of the fluids and the interface in the transmitted shock direction, and the growth of 

the interface perturbations due to impulsive acceleration by the shock. The velocity scale of the 

background motion is substantially greater than the initial growth-rate; for strong shock the former is 

usually super-sonic, whereas the latter is sub-sonic [16]. 

Our analysis can be applied for three-dimensional flows with other symmetries and two-

dimensional flow [7,8,24,33]. Particularly, for three-dimensional highly symmetric flows, the dynamics is 

universal, except for the difference in the wavevector value for a given λ  [7,8,30]. This universality is 

due to a nearly isotropic character of the dynamics in the plane normal to the acceleration [7,8,30]. 
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Section 4 – Discussion 

We have studied the long-standing problem of the early-time dynamics of Rayleigh-Taylor 

instability with time-variable acceleration and for a spatially extended three-dimensional flow periodic in 

the plane normal to the acceleration with symmetry group p6mm, Eqs.(1-17). For the acceleration with 

power-law time-dependence, aGtg = , by employing group theory and scaling analysis, we have 

explicitly found the instability growth-rate in a broad range of the acceleration parameters, have 

investigated the dependence of the dynamics on the initial conditions, and have elaborated theory 

benchmarks. Two distinct sub-regimes of the early time dynamics, depending on the acceleration 

exponent, have been discovered. To our knowledge, these findings have not been discussed in details 

before [1-35]. 

Particularly, we have found that for exponents 2−>a , the time-scale is ( ) ( )21 +−=τ a
G kG , and 

the dynamics is of the acceleration-driven RT-type, Eqs.(11). For exponents 2−<a , the time-scale is 

( ) 1
00

−=τ kv , and the dynamics is of the initial growth-rate driven RM-type, Eqs.(12). At the exponent 

2−=a , the time-scale is ( ) 1
00

−=τ kv , and the dynamics changes its character from RT to RM-type with 

decrease of the acceleration strength Gk , Eqs.(14,15) For very early time dynamics, the solution depends 

linearly on the short time interval, Eqs.(16). The formation of the structure of bubbles and spikes is 

prescribed by the initial morphology of the interface for RT-type dynamics, and by the initial velocity 

field for RM-type dynamics, Eqs.(17). 

Our results are in excellent agreement with available experiments and simulations [9-17,24,29], 

and elaborate theory benchmarks for future experiments and simulations. These include the dependence 

of the instability growth-rate on the acceleration parameters and the initial growth-rate, the dependence of 

the process of formation of the structure of bubbles and spikes on the initial morphology of the interface 

and the initial velocity filed, along with qualitative properties of non-equilibrium flow fields, including 

the intense motions of the fluids near the interface and effectively no motion of the fluids away from the 

interface. 

Our analysis can be extended to study advanced stages of RTI and RT mixing [24], and to 

systematically account for the properties of non-ideal fluids, including the effects of compressibility, 

surface tension, and viscosity [10-20,27,28], to be done in future research. By further applying the multi-

scale method for scale-dependent RT dynamics with variable acceleration, one can conduct a scrupulous 

quantitative study of the effect of initial conditions on the acceleration-driven RT-type dynamics, and the 

effect of acceleration on the initial growth-rate driven RM-type dynamics, to be done in future research. 

Finally note that our analysis is of particular interest for the studies of RT-relevant phenomena 

under conditions of high energy density, such as supernova or fusion, where the instability is often driven 
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by explosions or implosions with acceleration exponents set by blast waves or impact waves [24]. In this 

case the exponent value is 12 −<<− a , and the dynamics is RT-type in the early-time scale-dependent 

regime and is RM-type in the self-similar mixing regime [24]. Accurate numerical modeling and 

experimental diagnostics of RT dynamics for 12 −<<− a  is a challenge requiring extensive theory 

benchmarks [24]. Our results suggest that in addition to a direct comparison of experiments and 

simulations with the theory for a particular exponent a , one can also conduct a comparative study of RT 

dynamics for various values of acceleration exponents [24]. Specifically, since for variable acceleration 
aGtg =  the instability growth-rate in the early-time regime is given by tabular special functions, such as 

modified Bessel functions, an excellent performance of numerical codes and experimental diagnostics in 

the case of ‘fast’ dynamics with exponents 1−>a  may provide more confidence in their performance in 

the case of ‘slow’ dynamics with exponents ( )12 −−∈ ,a  under conditions relevant for a supernova [24]. 
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Section 7 – Tables 

 

Table 1: Solutions for early-time dynamics of Rayleigh-Taylor type for 

Rayleigh-Taylor instability with variable acceleration aGtg =  

Early-time dynamics of Rayleigh-Taylor type  

a  τ  Solution 
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Table 2: Solutions for early-time dynamics of Richtmyer-Meshkov type for 

Rayleigh-Taylor instability with variable acceleration aGtg =  

Early-time dynamics of Richtmyer-Meshkov type  
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Table 3: Solutions for early-time dynamics of Rayleigh-Taylor type and Richtmyer-Meshkov type for 

Rayleigh-Taylor instability with variable acceleration aGtg =  

Early-time dynamics of Rayleigh-Taylor type and Richtmyer-Meshkov type  

2−=a  ( ) 1
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Table 4: Solutions for very early-time dynamics of Rayleigh-Taylor type and Richtmyer-Meshkov type 

for Rayleigh-Taylor instability with variable acceleration aGtg =  

Very early time dynamics of Rayleigh-Taylor type and Richtmyer-Meshkov type  
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Section 8 –Figures captions and Figures 

Figure 1: Schematics of large-scale coherent structure of bubbles and spikes in Rayleigh-Taylor 

instability. Arrows mark directions of the fluid motion near the tip of the bubble (up) and spike (down). 

Small-scale shear-driven interfacial vortical structures (not shown) may result in a mushroom shape of 

the spike. 

Figure 2: Sample patterns for (a) a one-dimensional space group in a two-dimensional flow and (b) two-

dimensional space groups of square and hexagon in a three-dimensional flow. 

Figure 3: Two-dimensional space groups of hexagon with (a) group generators; (b) spatial period vectors 

of the hexagonal lattice and wave-vectors of the reciprocal lattice. 

Figure 4: Acceleration exponents for the early time dynamics of Rayleigh-Taylor instability with variable 

acceleration of (top) acceleration-driven Rayleigh-Taylor (RT) type and (bottom) initial growth-rate-

driven Richtmyer-Meshkov type. 

Figure 5: Solutions for the early-time dynamics of acceleration-driven Rayleigh-Taylor (RT) type with 

exponents greater than -2 for Rayleigh-Taylor instability with variable acceleration. 

Figure 6: Solutions for the early-time dynamics of initial growth-rate-driven Richtmyer-Meshkov type 

with exponents smaller than -2 for Rayleigh-Taylor instability with variable acceleration. 

Figure 7: Solutions for the early-time dynamics of acceleration-driven Rayleigh-Taylor (RT) type and 

initial growth-rate-driven Richtmyer-Meshkov (RM) type at exponent -2 and transition between sub-

regimes with varying the acceleration strength for Rayleigh-Taylor instability with variable 

acceleration. 

Figure 8: Schematics of the effect of initial conditions on the interface evolution in Rayleigh-Taylor 

instability with variable acceleration of (top) Rayleigh-Taylor (RT) type and (bottom) Richtmyer-

Meshkov (RM) type. 

Figure 9: Qualitative fields of the velocity, the velocity streamlines and the interface perturbation in the 

plane along the acceleration for the early-time Rayleigh-Taylor instability with variable acceleration. 

Each plot has its own range of values to better illustrate the plot features. 
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