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We investigate the collapse of a cloud composed of 12′500 gas bubbles in a liquid through large-
scale simulations. The gas bubbles are discretized by a diffuse interface method and a finite volume
scheme is used to solve on a structured Cartesian grid the Euler equations. We investigate the
propagation of the collapse wave front through the cloud and provide comparisons to existing models
such as Mørch’s ordinary differential equations and a homogeneous mixture approach. We analyze
the flow field to examine the evolution of individual gas bubbles and in particular their associated
microjet. We find that the velocity magnitude of the microjets depends on the local strength of the
collapse wave and hence on the radial position of the bubbles in the cloud. At the same time, the
direction of the microjets is influenced by the distribution of the bubbles in its vicinity. We envision
that the present, state of the art, large scale simulations will serve the further development of low
order models for bubble collapse.

I. INTRODUCTION

Collapsing and interacting bubbles are encountered in a variety of industrial and scientific applications ranging from
cavitation phenomena associated with engineering devices, such as marine propellers, hydroelectric turbines and fuel
injectors [1–3], to non-invasive biomedical procedures, for instance, kidney stone lithotripsy, drug delivery and tissue
ablation histotripsy [4–6]. The collective (growth and) rapid collapse of a large number of bubbles, i.e., a cloud of
bubbles, in a liquid subjected to large pressure variation has been investigated both experimentally and numerically.
Experiments in [7] studied the collapse of a cloud of bubbles via the formation of an inward propagating shock wave
and the geometric focusing of this shock at the center of the cloud. Experimental measurements with hydrofoils
subjected to cloud cavitation, conducted in [8], showed that very large pressure pulses occur within the cloud and
are radiated outward during the collapse process. A technique developed in [9] allowed for controlling the bubble
distance within a two-dimensional cloud. The study revealed the shielding effect of the outer bubbles and showed
the formation of an inward-directed microjet. The final stage of the collapse of a hemispherical cloud near a solid
surface was investigated using ultra high-speed photography in [10]. Cloud cavitation in a water jet was examined
in [11]. Various numerical studies were also reported in literature; for instance, early ones assuming a potential flow
in the liquid in [12, 13]. The recently presented study [14] used an Euler-Lagrange approach, combining the Navier-
Stokes equations with subgrid-scale spherical bubbles governed by a Rayleigh-Plesset-like equation, to investigate
spherical clouds collapsing near a rigid wall. A similar approach was applied in [15] to study the impulsive loads
generated by a cloud with 400 bubbles under an imposed oscillating pressure field. Resolved and deforming bubbles
were considered in [16–19]. A two-dimensional simulation of the collapse of a small cluster with 7 bubbles in an
incompressible liquid using a front tracking method was presented in [16]. The collapse dynamics of a cloud composed
of 125 vapor bubbles with random radii was studied in [17], while [18] reported the evolution of a hemispherical cloud
of 50 air bubbles. In [18], a homogeneous mixture model and a coupled system of Rayleigh-Plesset-like equations
were considered in addition, but provided qualitatively different predictions of the pressure field. A recent study [19]
addressed uncertainty quantification for the collapse of clouds with 500 randomly located gas bubbles. The goal of
the present paper is to advance the state of the art in studies of cloud collapse processes by simulating thousands of
gas bubbles and studying their collective interactions.

Numerical methods for multicomponent flow that resolve both components on the computational grid may be
classified into single-fluid and two-fluid approaches. In two-fluid methods, each component is governed by an individual
set of conservation equations for mass, momentum and energy, and discontinuities at the interface are treated explicitly
[20–23]. In contrast, single-fluid methods, such as the diffuse interface method [24–27] introduce a zone around each
interface where the transition from one component to the other is smeared over a few grid cells. In this context,
single-fluid models present a compromise between accuracy and computational efficiency; that is, both components
are explicitly distinguished, while the same numerical scheme can be used throughout the computational domain.
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This feature renders diffuse interface methods particularly appropriate for the large-scale simulation of flow problems
with thousands of bubbles, as demonstrated by the compressible multicomponent flow solver presented in [28] which
showed a throughput of up to 7 · 1011 computational cells per second on 96 racks of the IBM Sequoia.

Here, we employ an extended version of this compressible multicomponent flow solver to simulate the collapse
process of a cloud of 12′500 resolved gas bubbles. The number of bubbles in the present simulation is up to two orders
of magnitude larger than the ones considered in previous studies. Clouds of this size recover the separation of scales,
i.e., a cloud of large extent formed by small bubbles. Therefore, the present cloud complies with the assumptions of
Mørch’s ordinary differential equation for the propagation of the pressure wave resulting from the cloud collapse. At
the same time, the large bubble count enables reliable statistics on the behavior of the individual bubbles and their
associated microjets.

The paper is organized as follows: Sec. II summarizes the governing equations together with the computational
method and presents the setup of the cloud collapse problem. Sec. III reports on the cloud collapse dynamics from
a macroscopic point of view. In Sec. IV, the dynamical behavior of the bubbles and their associated microjets are
analyzed. Sec. V concludes the study.

II. GOVERNING EQUATIONS AND COMPUTATIONAL APPROACH

In the following, we summarize the governing equations, the applied numerical scheme and the setup of the cloud
collapse problem. The simulation presented in this study is conducted using the open source software Cubism-MPCF
[28, 29] and [30] for download. The reader is referred to [31] for the verification and validation of the compressible
multicomponent flow solver for two-component shock-tube problems and for single-bubble collapse. Additionally, a
grid convergence study for a small spherical cloud composed of 400 air bubbles is shown in App. A.

A. Governing equations

We study the collapse process of a cloud of gas (i.e., air) bubbles in a liquid (i.e., water). The two components, water
and air, are assumed immiscible and are captured by the diffuse interface method for compressible multicomponent
flows. The present investigation involves the collapse of highly non-spherical bubbles that come along with strong
microjets. In the case of strong microjets, inertia forces dominate the initial stages of the collapse process while
viscous effects and surface tension may be considered negligible; see [18, 32]. This assumption is justified in App. A
for a major part of the pre-collapse phase of the cloud, i.e., the time period before the cloud reaches the state of
minimum gas volume. However, during the final stages of the bubble collapse, when the bubble scales are small and
local interface curvatures are high, surface tension and viscosity may influence some details of the bubble collapse
process. Being aware of these limitations of our approach, we exclude data corresponding to this collapse phase from
our microscopic analyses.

Hence, we adopt the Euler equations consisting of the mass conservation equations for each component, conservation
equations for momentum and total energy in mixture- (or single-)fluid formulation and a transport equation for the
volume fraction of one of the two components:

∂α1ρ1

∂t
+∇ · (α1ρ1u) = 0, (1)

∂α2ρ2

∂t
+∇ · (α2ρ2u) = 0, (2)

∂ (ρu)

∂t
+∇ · (ρu⊗ u + pI) = 0, (3)

∂E

∂t
+∇ · ((E + p)u) = 0, (4)

∂α2

∂t
+ u · ∇α2 = K∇ · u, (5)

where

K =
α1α2(ρ1c

2
1 − ρ2c

2
2)

α1ρ2c22 + α2ρ1c21
; (6)

see [33, 34] for derivation. In Eqs. (1)-(5), u denotes the velocity, p the pressure, I the identity tensor, ρ the (mixture)
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density, E the (mixture) total energy E = ρe+1/2ρ(u ·u), where e is the (mixture) specific internal energy. Moreover,
ρk, αk and ck with k ∈ {1, 2} are density, volume fraction and speed of sound of the two components. It holds that
α1 + α2 = 1 as well as ρ = α1ρ1 + α2ρ2 and ρe = α1ρ1e1 + α2ρ2e2 for the mixture quantities. The source term on
the right-hand side of the transport equation for α2 was originally derived in [35] and is non-zero within the diffuse
interface only. It allows for treating the interface zone as a compressible, homogeneous mixture of gas and liquid by
capturing the reduction of the gas volume fraction when a compression wave travels across the mixing region and the
increase for an expansion wave. As shown in [27, 31], the inclusion of this term notably increases the accuracy and
lowers the resolution requirements. Moreover, it allows for a smooth transition to a homogeneous mixture model, if
the resolution limit is reached by a collapsed bubble.

The system of Eqs. (1)-(5) is closed by the stiffened equation of state [36]:

p = (γk − 1) ρkek − γkpc,k, (7)

where isobaric closure is assumed [34]. The speed of sound is then given by

ρkc
2
k = γk (p+ pc,k) . (8)

The material parameters γk and pc,k are assumed constant. Here, the values of [18, 25] are used, which are given by
γ1 = 4.4 and pc,1 = 6.0 · 102 MPa for water and γ2 = 1.4 and pc,2 = 0.0 MPa for air.

B. Numerical method

The system of governing equations (1)-(5) is expressed in a quasi-conservative form as

∂Q

∂t
+∇ · F = R, (9)

where Q = (α1ρ1, α2ρ2, ρu, E, α2)T. The vector F = (F(x),F(y),F(z))T combines the fluxes F(x) = (α1ρ1ux, α2ρ2ux, ρu
2
x+

p, ρuyux, ρuzux, (E + p)ux, α2ux)T, F(y) = (α1ρ1uy, α2ρ2uy, ρuxuy, ρu
2
y + p, ρuzuy, (E + p)uy, α2uy)T and

F(z) = (α1ρ1uz, α2ρ2uz, ρuxuz, ρuyuz, ρu
2
z +p, (E+p)uz, α2uz)

T. The right-hand-side vector R = (0, 0, 0, 0, 0, 0, (K+
α2)∇ · u)T is zero except for the last component which comprises the source term of Eq. (5) and a contribution
obtained from reformulating its convective term.

We solve Eq. (9) using a Godunov-type finite volume method on a uniform Cartesian grid. The choice of a uniform
Cartesian grid enables the exploitation of High Performance Computing (HPC) architectures [28]. The numerical
fluxes at the cell faces are computed by an HLLC approximate Riemann solver, originally introduced for single-phase
flow in [37] and more recently extended to multicomponent flows in [27, 38, 39]. The fluxes are based on the primitive
variables u, p, α1ρ1, α2ρ2 and α2 at the cell faces, which are reconstructed from the cell average values using a
shock-capturing third-order WENO scheme [40]. Primitive variables are used for reconstruction to prevent numerical
instabilities at the interface [38, 41]. The approach suggested in [38] is adopted for the application of the HLLC
Riemann solver to the evolution of α2. In summary, the resulting semi-discrete system reads as

dV(t)

dt
= L(V(t)), (10)

where V denotes the vector of cell average values and L(·) the spatially-discrete forms of divergence and source term
in Eq. (9). Eq. (10) is discretized in time by a Total Variation Diminishing (TVD), low-storage, explicit third-order
Runge-Kutta scheme [42] with a time step dictated by the Courant-Friedrichs-Lewy (CFL) condition.

C. Cloud setup

We investigate an initially spherical cloud of radius RC = 45 mm, composed of nB = 12′500 spherical bubbles of
radius RBi

with i ∈ 1, ..., nB. The cloud is generated by randomly positioning bubbles within a sphere of radius
RC using a uniform distribution and subject to the constraint that the minimum distance between the surfaces of
any two bubbles is greater than dG = 0.4 mm. The radius of the bubbles is chosen in the range [RB,min, RB,max]
using a log-normal probability distribution. The minimum and maximum bubble radii values, RB,min = 0.5 mm and
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FIG. 1: Sketch of spherical cloud with radius RC composed of bubbles with radius RB in close-up of two bubbles
separated by distance dG.

RB,max = 1.25 mm, are based on the respective values suggested in [17, 18]. The mean bubble radius is given by

R̄B =
2eµ+ 1

2σ
2 − 1

4
(RB,max −RB,min) +RB,min = 0.7 mm, (11)

where µ = 0 and σ = 0.3 are the mean and standard deviation of the log-normal distribution, respectively. A two-
dimensional sketch of the cloud setup is shown in Fig. 1. The bubble cloud is characterized by the gas volume fraction
αC and the cloud interaction parameter βC, defined as

αC =
1

R3
C

nB∑
i=1

R3
Bi
, (12)

βC = αC

(
RC

RB,avg

)2

, (13)

where

RB,avg =
1

nB

nB∑
i=1

RBi (14)

denotes the average bubble radius. Higher βC values indicate stronger interactions among the bubbles [13, 43]. For
the present cloud, αC = 4.9%, βC = 208, and RB,avg = 0.69 mm. Fig. 2 shows a histogram of the distribution of the
bubble radius and a visualization of the generated cloud.

The cloud is centered in a cubic computational domain of size 6RC×6RC×6RC. The domain is uniformly discretized
using 6144×6144×6144 cells, leading to RB,min/h = 11.38 for the minimum bubble resolution and RB,max/h = 28.44
for the maximum bubble resolution, where the cell length is denoted by h. Initially, a zero velocity field is assumed.
The density of water is set to ρ1(x, t = 0) = ρ1(0) = 1000.0 kg/m3 and of air to ρ2(0) = 1.0 kg/m3. Moreover, a
smoothed initial pressure field [18] is used which is essential in order to attenuate the emission of spurious pressure
waves caused by the initial conditions. The bubble and liquid pressure in the sphere defining the cloud is set to
pC = 0.1 MPa and the ambient pressure to p∞ = 1.0 MPa. Following [18], the initial pressure field in the liquid
outside of the cloud is then approximated via

p(x, t = 0) =

{
pC if ‖x− xC‖ ≤ RC,

pC + tanh
(
‖x−xC‖−RC

λ

)
(p∞ − pC) otherwise,

(15)

where xC denotes the center of the cloud. Parameter λ defines how fast the pressure increases from the cloud surface to
the ambient and is set to 50 mm. In App. B, we show that the approximation described in [18] is sufficiently accurate
compared to an initial condition that satisfies the Laplace equation ∇2p = 0 for the pressure field. Non-reflecting,
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FIG. 2: (a) Distribution of bubble radius and (b) rendering of the initial cloud.

characteristic-based conditions [44–46] are applied at the boundaries of the computational domain. Additionally, we
impose the ambient pressure p∞ in the far-field by adding the term Cbc(p−p∞) to the incoming wave [47]. Coefficient
Cbc = σ(1 −Ma2)c1/` ≈ σc1/` depends on a characteristic length ` = 3RC, the speed of sound c1 in the liquid at
the boundary, the Mach number Ma at the boundary, which is assumed negligible, and a user-defined parameter
σ = 0.75 s. Moreover, the CFL number is set to 0.3.

III. CLOUD COLLAPSE DYNAMICS

In this section, the cloud collapse is examined from a macroscopic point of view without considering the dynamics of
the individual bubbles. The temporal evolution of characteristic quantities is provided together with visualizations of
the collapsing cloud. Subsequently, the propagation of the collapse wave through the cloud is analyzed and compared
to predictions by Mørch’s ordinary differential equation and a homogeneous mixture approach.

A. Temporal evolution and visualizations

We quantify the cloud collapse process through the temporal evolution of a number of local and global quantities.
Fig. 3 shows the development of the gas volume V2/V2(0), the point-wise maximum pressure pmax/ppeak within the
computational domain, the average pressure pC/pC,peak within the cloud, the average pressure pS/pS,peak within a
sensor at the center of the cloud, further described below, and the total kinetic energy Ekin,C/Ekin,C,peak within the
cloud. All quantities are normalized by their peak (i.e., maximum) values. The symbols on top of the curve for the
gas volume coincide with the time instants for which three-dimensional visualizations of the cloud together with the
pressure iso-surface at piso = 0.15MPa are shown in Fig. 4 and numerical schlieren of the pressure field in the xy-plane
at z = 0 in Fig. 5. The last two symbols correspond to the time of peak pressure pS,peak within the sensor and the
time of minimum gas volume, respectively. The remaining symbols are spaced evenly between t = 0 and the time of
occurrence of pS,peak.

The minimum gas volume is reached at time tC = 343.9 µs, which is referred to as the cloud collapse time in the
following. At this time, the gas volume is reduced by 88% compared to its initial value. The point-wise maximum
pressure pmax is a highly fluctuating quantity. Its peak ppeak = 3.41 GPa is detected at time t/tC = 0.898 and occurs
before the minimum gas volume is encountered. A similar observation was made in [11]. To capture the behavior
in the core of the cloud, we center a spherical pressure sensor of radius RS = 1 mm at the center of the cloud. The
sensor measures the average pressure pS over its domain. The maximum value of pS amounts to pS,peak = 89.5 MPa
and is observed at time t/tC = 0.901. The pressure curve of the sensor reveals the shielding effect [48, 49] of the outer
bubbles in the cloud. Although a broad time interval of high pressures is observed for pmax, merely the major peak
and one smaller peak are detected by the sensor. Strong pressure waves emitted away from the immediate surrounding
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FIG. 3: Temporal evolution of (a) gas volume V2/V2(0) together with point-wise maximum pressure pmax/ppeak

within domain and average kinetic energy Ekin,C/Ekin,C,peak within cloud as well as (b) V2/V2(0) together with
average pressure pC/pC,peak within cloud and average pressure pS/pS,peak within sensor at cloud center. All

quantities are normalized by their peak values. Symbols mark time instants for three-dimensional visualizations (see
Fig. 4) and numerical schlieren (see Fig. 5). The gray shaded area indicates the time interval used for data

extraction in the microjet analysis in Sec. IV B.

of the sensor are absorbed by bubbles between the source of the pressure wave and the sensor by contributing to the
compression of these bubbles. The maximum value of the average pressure within the cloud is pC,peak = 3.69 MPa
and significantly smaller than pS,peak. Furthermore, it is encountered at a later time t/tC = 1.021, which is almost
exactly the time of minimum gas volume. The kinetic energy of the mixture in the cloud region increases until it
reaches its peak value of Ekin,C,peak = 3.69 J at t/tC = 0.800, which is before the occurrence of ppeak. At time tC, the
kinetic energy is already reduced by 72%.

Fig. 4 illustrates the deformation of the bubbles, which is caused by the formation of microjets. As the collapse
of the cloud progresses, the extracted pressure iso-surface is moving inward. Accordingly, an evolving circular front
is detected by the numerical schlieren of the pressure field shown in Fig. 5. Figs. 4 and 5 thus reveal an inward-
propagating spherical collapse wave and the aforementioned shielding effect. While the bubbles behind the front are
subject to a collapse process, bubbles ahead of the front remain at their initial state. From the fourth to the fifth
frame, a break-down of the shielding effect is observed. Furthermore, strong spherical pressure waves emitted from
individual bubble collapses are clearly visible in the fifth numerical schlieren frame.

B. Collapse wave propagation

The large number of bubbles in the cloud renders the macroscopic flow spherically symmetric and allows for
analyzing the collapse wave observed in the previous section. Therefore, spherical averages ᾱ2(r, t), p̄(r, t) and ū(r, t)
of the gas volume fraction, the pressure and the velocity magnitude are computed over spheres with radius r centered
at the cloud center. The radial position of the collapse wave front is defined by the location of the maximum average
velocity magnitude as

RF(t) = arg max
r

ū(r, t). (16)

Fig. 6 shows the front trajectory in the r-t-space on top of a contour plot of ᾱ2(r, t) as well as the evolution of the

front speed ṘF, i.e., the propagation speed of the bubbly shock in the mixture [49, 51, 52]. Apart from these curves,
labeled “bubbles”, predictions by Mørch’s ordinary differential equation and a homogeneous mixture approach which
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FIG. 4: Temporal evolution of collapsing cloud with pressure iso-surface at piso = 0.15 MPa. Symbols in top left
corner correspond to time instants marked in Fig. 3.

are further addressed below are also included. The propagation of the front starts immediately. The front gradually
accelerates so that the front speed reaches 100 m/s at t = 150 µs and 200 m/s at t = 240 µs. These velocities are
lower than the speed of sound in both pure fluids which amounts to 1625 m/s for water and to 374 m/s for air under
pressure pC = 0.1 MPa. Eventually, the front reaches the speed of sound of air at approximately t = 270µs. At about
the same time, the kinetic energy of the mixture in the cloud starts to decrease and pressure disturbances penetrate
the front despite the shielding effect; see Fig. 3.

Profiles of the spherical averages at various time instants t = 139, 183, 218, 245, 267, 285 and 297 µs corresponding
to RF = 40, 35, 30, 25, 20, 15 and 10 mm are shown in Fig. 7. The profiles are normalized and plotted in the frame
of reference of the front, i.e., depending on the relative radial location r − RF(t). The normalized gas volume
fraction, pressure and velocity are defined as ᾱ2/αC, (p̄ − pC)/(p̄F − pC) and ū/ūF, where p̄F(t) = p̄(RF(t), t) and
ūF(t) = ū(RF(t), t) are pressure and velocity at the front. The gas volume fraction shows some oscillations which
decay towards the cloud surface as more bubbles contribute to the averages with increasing r. The normalization of
the radial profiles reveals their self-similarity in the vicinity of the front. The collapse wave, or bubbly shock, does not
exhibit a sharp front, but has a finite thickness which is related to the dynamics of the individual collapsing bubbles
(see [50, 51] and references therein). Consistent with the observations of the aforementioned studies, the thickness of
the front is of the size of a few bubble length scales. From the velocity profiles in Fig. 7, we obtain a front thickness of
approximately 10 mm, which is about seven bubble diameters. Owing to the shielding effect by the outer bubbles, all
fields remain at their initial values ahead of the front, i.e., for r−RF < −10 mm. Closer to the front, the gas volume
fraction gradually decreases to α2/αC ≈ 0.2 at the front, while the pressure and the velocity grow towards their peak
values. Behind the front, the gas volume fraction rebounds and reaches a value of α2/αC ≈ 0.4 at a distance of
r − RF ≈ 3 mm. The gas volume fraction rebound behind the front [49] is accompanied by a drop in the pressure
and velocity. Farther outward from the cloud center, all profiles keep declining. At the cloud surface, the gas volume
fraction drops to zero in a sharp fashion whereas pressure and velocity decrease smoothly to their prescribed far field
values.

The values of the pressure and velocity at the front increase as seen from their temporal evolution shown in Fig. 8.
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FIG. 5: Temporal evolution of collapsing cloud visualized using numerical schlieren images of the pressure field in
the xy-plane at z = 0. Symbols in top left corner correspond to time instants marked in Fig. 3.

As derived from mass and momentum balance [50, 52], pF and uF are related to the front speed. Approximate relations
for these quantities near the front are given by

pF − pC ∼ ρ1(1− αC)αCṘ
2
F, (17)

uF ∼ αCṘF. (18)

up to a scaling factor which depends on the definition of the front location. Fitting these relations to the simulation
data results in

pF − pC = 6.20 ρ1(1− αC)αCṘ
2
F, (19)

uF = 0.75αCṘF (20)

and provides a good approximation to the present results; see Fig. 8.

A model proposed by Mørch in [52] describes the collapse of a spherical cloud of vapor bubbles in the form of a
Rayleigh-Plesset-like equation:

RFR̈F +

(
3

2
− 1

2
(1− ψ)(1− αC)

)
Ṙ2

F = −p∞ − pv
αCρ1

, (21)

where pv denotes the vapor pressure of the liquid and ψ an energy conservation factor. The energy conservation
factor accounts for energy losses due to the radiation of acoustic waves and dissipation. A larger value leads to a
higher front speed. According to [52], the energy conservation factor should be in the range 0 ≤ ψ ≤ 0.5. The model
assumes that the bubbles are small compared to the cloud radius and that the vapor volume fraction is sufficiently
high. In contrast to the present simulation of a cloud of gas bubbles, the Mørch model is derived for vapor bubbles
which means that the pressure inside the bubbles remains constant during the collapse and that the bubbles collapse
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Ṙ
F
[m
/s
]

bubbles Mørch mixture

(b)

FIG. 6: (a) Front trajectory of collapse wave on ᾱ2 contour plot and (b) front speed. Results obtained with the
Mørch model and a homogeneous mixture approach are included for comparison.

completely without any rebound stage. When setting pv = pC, the Mørch model also provides a reasonable prediction
for the front trajectory and speed of the present case, as can be seen from Fig. 6 where the respective curves are
labeled “Mørch”. For the curves shown in Fig. 6, the energy conservation factor, which is only of minor influence, is
set to ψ = 0.5.

Furthermore, results obtained by a homogeneous mixture approach are included for comparison. Homogeneous
mixture (or single fluid) models, such as the ones proposed and/or used in [53–58], do not consider individual bubbles,
but treat the cloud region as a mixture of water and gas (or vapor), for instance, based on a cell-averaged void-fraction
distribution. Homogeneous mixture models may be used in situation where none of the void structures are resolved
on the computational grid. These situations exhibit a ratio R̄B/h � 1 of the characteristic size of the bubbles to
the grid cell length. In this case, homogeneous mixture models allow the simulation of large scale flow dynamics,
i.e., dynamics that are resolvable on the chosen computational grid. By increasing the grid resolution, homogeneous
mixture models are able to capture the flow dynamics of decreasingly smaller scales. The mathematical description
introduced in Sec. II A may also be used to describe a homogeneous mixture of gas and liquid owing to the right-
hand-side term of Eq. (5). Here, we simply set a uniform gas volume fraction α2 = αC for all cells within the sphere
of radius RC, instead of initially computing the cell-averaged gas-volume-fraction field from the distribution of the
12′500 bubbles in the cloud by some kind of filtering procedure. The initial conditions for the velocity and the
pressure as well as the applied boundary conditions remain unchanged compared to the case with resolved bubbles. A
similar approach was used in [18]. For the homogeneous mixture approach, the computational domain is discretized by
1024 cells per spatial direction. Spherically averaged profiles for RF = 40, 35, 30, 25, 20, 15 and 10 mm corresponding
to t = 94, 154, 203, 242, 271, 293 and 309 µs, are shown in Fig. 7. In contrast to the case with resolved bubbles, the
radial profiles are discontinuous at the front and do not demonstrate features such as the gas volume fraction rebound
behind the front or the gradual transition of the profiles ahead of the front. Therefore, the location of the collapse
wave front for the homogeneous mixture case is determined from the gas volume fraction via

RF(t) = arg max
r

∣∣∣∣∂ᾱ2

∂t
(r, t)

∣∣∣∣ , (22)

which detects the discontinuity in ᾱ2. The front trajectory and speed, shown in Fig. 6 by the curves labeled “mixture”,
are qualitatively similar to the ones of the resolved simulation. However, the front speed is underestimated starting
from t = 150 µs, and the deviation grows in time reaching about 50 m/s at t = 250 µs. The temporal evolution of
the pressure and the velocity at the front are included in Fig. 8. The values observed with the homogeneous mixture
approach are about 30% lower compared to the resolved simulation.

In summary, our results indicate that the front trajectory and speed observed in the simulation with large numbers
of bubbles are well captured by Mørch’s ordinary differential equation and the present homogeneous mixture approach.
The evolution of the pressure and the velocity near the front matches the theoretical relations and in turn validates
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FIG. 7: Normalized profiles of spherical averages of the gas volume fraction, pressure and velocity magnitude
corresponding to RF = 40, 35, 30, 25, 20, 15 and 10 mm. Simulation with (a) resolved bubbles and (b) homogeneous

mixture approach are shown. Arrows indicate increasing time.
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FIG. 8: (a) Temporal evolution of average pressure and (b) average velocity magnitude at the front.

the present numerical results.

IV. BUBBLE DYNAMICS

Next, the evolution of the bubbles in the cloud is examined. Their collapse behavior as well as the microjets leading
to their deformation are investigated.

A. Bubble collapses

The shape of the bubbles is implicitly described by the gas-volume-fraction field α2, which is sampled at a frequency
of 0.63 MHz. The center xBi

(t) and the equivalent radius RBi
(t) of bubble i are calculated as

xBi
(t) =

1

VBi(t)

∫
ΩBi

α2x dV, (23)

RBi
(t) =

(
3

4π
VBi

(t)

)1/3

, (24)

where

VBi
(t) =

∫
ΩBi

α2 dV (25)

is the bubble volume. The integration is performed over a spherical domain ΩBi
concentric with the bubble center

of the previous time sample and with a radius equal to the initial bubble radius RBi
(0). In order to improve the

accuracy of peak detection, the function RBi
(t) is interpolated in time with a cubic spline.

Fig. 9 shows the evolution of the equivalent bubble radius for a few bubbles selected at various radial locations.
All curves are normalized by the initial bubble radius. A bubble starts to collapse once it is overtaken by the inward-
propagating wave. Fig. 9 illustrates that the strength of the collapses, expressed, e.g., in terms of smaller collapse
times and stronger bubble compression, increases with decreasing distance to the cloud center. In the vicinity of the
center of the cloud, bubbles collapse in a highly non-linear fashion (see right column of Fig. 9), whereas they rather
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FIG. 9: Temporal evolution of equivalent radius of selected bubbles at various radial locations
r = 40.0, 33.0, 26.0, 19.0, 12.0 and 5.0 mm. All curves are normalized by the corresponding initial bubble radius.

oscillate in the periphery of the cloud (see left column of Fig. 9).

B. Microjet formation

The evolving pressure gradient along the bubble surface leads to the formation of a localized liquid jet of high
velocity which notably deforms the bubble and eventually pierces though it. Following [59], the tip xtipi

of the
microjet associated with bubble i is identified as the location of minimum curvature on the bubble surface. Here, the
interface is represented by the iso-surface α2 = 0.5 of the gas-volume-fraction field. The curvature of any iso-contour
of α2 can be calculated from the gas-volume-fraction field via κ = −∇ · ∇α2

|∇α2| .

Fig. 10 illustrates the evolution of the microjet for three bubbles. The relative location of the tip, xtip,i − xBi
, as

well as the bubble radius RBi
are displayed as a function of time. Additionally, bubble shapes are shown for selected

time instants. At the beginning of the collapse process, the bubble surface is largely spherical and possesses a positive
curvature. Therefore, the distance between the location of minimum curvature and the bubble center is approximately
equal to the equivalent radius, but the location itself is not well-defined and thus bounces from one point to another.
Once the microjet starts to form, the curvature changes its sign. The location of minimum curvature then identifies
the tip of the microjet. The microjet deforms the bubble into a cap-like shape until it pierces through the bubble
on the opposite surface; see Fig. 10. At this time, the distance between the location of minimum curvature and the
bubble center again approximately equals the equivalent radius. Hence, the characteristic quantities of the microjets
are evaluated during the time interval [ttip,i, timp,i] for which

|xBi
− xtip,i| < 0.75RBi

(26)

holds. As observed in Fig. 10, the relative trajectory xtip,i−xBi
of the tip of the microjet travels with approximately

a constant velocity within this interval. The microjet velocity utip,i is defined by the time derivative of a linear fit
of xtip,i − xBi

in the time interval [ttip,i, timp,i]. In order to obtain reliable statistics, the fitting range is required
to comprise at least six samples in time (i.e., has duration of at least 10 µs) and the root-mean-square error of the
fitting has to be below 0.1RBi

(0). Due to the limited data sampling frequency and the complexity of the microjet
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FIG. 10: Temporal evolution of microjets for three selected bubbles. Trajectory of microjet tip relative to the bubble
center (solid lines), linear fit (dashed lines) and equivalent radius (black solid line). All quantities are normalized by

the corresponding initial radius. Fitting range [ttip,i, timp,i] (vertical solid lines), collapse wave arrival tF (vertical
dashed line) and intervals of 10 µs with corresponding iso-lines of α2 = 0.5 at the bottom (vertical dotted lines).

tip trajectories, not all bubbles satisfy these requirements. Such bubbles are excluded from the subsequent analysis
of the microjets, leaving about 7500 bubbles (i.e., 60% of the bubbles) for further evaluation. The time interval that
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FIG. 11: Bubble surface with microjet velocity utip,i, bulk velocity indicator ûbulk,i as well as their projections u⊥tip,i
and û⊥bulk,i onto a plane perpendicular to the radial direction.

contains the microjet analyses for all bubbles is described by the interval [tM,s, tM,e], where

tM,s = min
i

(ttip,i), (27)

tM,e = max
i

(timp,i), (28)

are the start and end times, respectively. The microjet interval is highlighted in Fig. 3 with a gray shaded region.
We note that the end time tM,e is before the time of minimum cloud volume tC. Furthermore, App. A shows that
the bubbles are sufficiently resolved during that time interval to guarantee at most 10.0± 5.2% error in the microjet
velocity magnitudes relative to a grid with twice the resolution.

As reported in preceding studies on cloud collapse dynamics ([9, 18]), the microjets point towards the core of the
cloud. As shown in the present work, the axes of these microjets are not perfectly aligned with the radial direction
xC − xBi

(0) from the initial bubble center to the cloud center. The inclination angle θi denotes the angle between
the radial direction and the direction of the microjet velocity corresponding to bubble i as illustrated in Fig. 11. A
microjet with θi = 0◦ is directed towards the cloud center. Values of the inclination angle for bubbles shown in Fig. 10
are given in Table I where the microjet of bubble “2” is distinguished by stronger inclination. Fig. 12 depicts a scatter
plot of the inclination angle θi versus the radial distance r. All scatter plots shown in this subsection also contain
the moving average and the standard deviation computed with a window length equal to 10% of the corresponding
horizontal axis range. The bubbles selected in Fig. 10 are also marked. Furthermore, Fig. 12 depicts the Probability
Density Function (PDF) of the inclination angle. The average inclination angle for the present cloud collapse process
is 13.2◦. Furthermore, 90% of the bubbles exhibit an inclination angle smaller than 24◦. Local mean values of the
inclination angle range from 10◦ at r = 45 mm to 18◦ at r = 26 mm. As a result, the microjet inclination angle
increases slightly towards the cloud center indicating a weak dependence on the collapse wave speed, which strongly
depends on r. Very large inclination angles in the range of 35◦ to 61◦ are observed for 1% of the bubbles. Closer
examination of these microjets reveals that the microjet inclination is affected by the surrounding bubbles. Fig. 13
shows the neighborhood of a bubble with an inclination angle of 50◦. The microjet is inclined towards one specific
neighboring bubble that has a significantly larger size than the considered bubble as well as all the other bubbles in
its vicinity. This observation suggests that the microjet inclination mainly depends on the geometrical arrangement
of the bubbles. Larger bubbles have a stronger influence on the liquid flow. Assuming potential flow away from the
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FIG. 12: (a) Microjet inclination angle θi depending on radial location. Moving average of the data (dashed line) is
shown. Color shades indicate the standard deviation. (b) PDF of the inclination angle.

FIG. 13: Neighborhood of a small bubble (red) with a
large inclination angle of 50◦ that is attracted towards

a significantly larger bubble nearby (brown).

bubbles, the velocity in the surrounding liquid is given by [60]:

u(x, t) =

nB∑
j=1

R2
Bj
ṘBj

|x− xBj
|3 (x− xBj ). (29)

Furthermore, the bubble compression rate ṘBj
in Eq. (29) is taken to be constant and negative leading to a non-

dimensional bulk velocity

ûbulk,i =

nB∑
j=1
j 6=i

−R2
Bj

(0)

|xBi
(0)− xBj

(0)|3 (xBi
(0)− xBj

(0)) (30)
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FIG. 15: (a) Angle ϕi between u⊥tip,i and û⊥bulk,i depending on inclination angle θi and (b) inclination angle

depending on the magnitude |û⊥bulk,i|. Moving average of the data (dashed line) is shown. Color shades indicate the
standard deviation.

at the center xBi of bubble i. Eq. (30) provides an estimation for the bulk flow direction and its strength which is

purely based on the initial geometrical arrangement. The assumption of constant ṘBj
does not exactly hold for cloud

collapses since the bubbles behind the collapse front compress but remain at rest ahead of it. Therefore, Eq. (30)
characterizes only the flow velocity perpendicular to the radial direction which is governed by the arrangement of
bubbles along the collapse front. To examine the influence of the bulk flow induced by the collapse of the surrounding
bubbles on the microjet direction, utip,i and ûbulk,i are projected onto a plane perpendicular to the radial direction.
The resulting velocity components are marked by the additional superscript (·)⊥ and are also schematically represented
in Fig. 11. The angle between u⊥tip,i and û⊥bulk,i is denoted ϕi. The PDF of ϕi as well as scatter plots of ϕi versus θi
and θi versus the magnitude |û⊥bulk,i| of the projected bulk velocity are shown in Figs. 14 and 15, respectively. For

68% of the bubbles, ϕi is smaller than 45◦, which demonstrates that the microjets are inclined towards the direction
of the bulk liquid flow around the bubble. This angle reduces with increasing inclination. The mean value of ϕi is 45◦

for θi = 10◦ and 25◦ for θi = 40◦. Moreover, a positive correlation between the inclination angle θi and the magnitude
of the projected component of the bulk flow indicator |û⊥bulk,i| is observed.

Fig. 16 displays scatter plots of the microjet velocity magnitude depending on various quantities. The velocity
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FIG. 16: Microjet tip velocity depending on (a) microjet initiation time ttip,i, (b) bubble compression rate −ṘBi,min,
(c) bubble initial radius RBi

(0) and (d) inclination angle θi. Moving average of the data (dashed line) is shown.
Color shades indicate the standard deviation.

magnitude of the microjets increases with their time of initiation. For instance, the mean value amounts to 10m/s for
ttip = 80µs and to 50 m/s for ttip = 250µs. This behavior is consistent with the acceleration of the collapse wave and
the growth of the pressure at the front. One of the fastest microjets is observed for bubble “3” included in Fig. 10
and Table I. The scatter plot of the microjet velocity magnitude versus the initial bubble radius RB(0) shows that
larger bubbles exhibit faster microjets. The mean value rises from 20 to 40 m/s for bubbles with an initial radius
between 0.5 and 1.2 mm. Another quantity relevant to the collapse strength of a bubble is the peak compression
rate −ṘBi,min which is evaluated within the time interval [ttip,i, timp,i]. A positive correlation of the compression rate
with the magnitude of the microjet velocity is observed in Fig. 16. In contrast, the inclination angle θi does not
affect the magnitude of the microjet velocity. The analyzed relations reveal that the microjet velocity is influenced
by both parameters of individual bubbles (e.g., the initial bubble radius) and macroscopic parameters of the cloud
collapse (e.g., the collapse front speed). However, the overall large dispersion of these relations indicates the influence
of further factors such as the spatial configuration of the surrounding bubbles.



18

TABLE I: Microjet parameters of selected bubbles.

bubble r [mm] θ [deg] utip [m/s] RB(0) [mm] −ṘB,min [m/s] ϕ [deg] |û⊥bulk|

1 41.9 9.8 13.4 0.58 3.9 50.6 0.005
2 41.4 49.4 14.6 0.66 3.3 22.9 0.293
3 34.1 12.6 64.1 1.14 14.7 92.5 0.148

V. CONCLUSIONS

We have presented the results from state-of-the-art simulations of the collapse of a spherical cloud of 12′500 gas-
filled bubbles, corresponding to a gas volume fraction of 4.9%. This cloud composed by many small bubbles allows
for proper averaging over the global system and enables a large sample count for reliable statistics on the scale of the
bubbles. To capture the dynamics of the bubbles, i.e., their interactions and deformations, a diffuse interface finite
volume method that represents the bubbles on the computational grid has been applied.

Starting from a macroscopic point of view, we have examined the collapse process which starts at the surface of
the cloud and then propagates inward focusing in the core of the cloud. We have calculated spherical averages of the
gas-volume-fraction, pressure and velocity-magnitude fields and have identified the collapse wave front. The collapse
wave front advances in accordance with Mørch’s ordinary differential equation and a homogeneous mixture approach.
In contrast to these models, the detailed simulation discloses the thickness of the collapse wave front which is of the
order of a few bubble diameters. Furthermore, we have examined the bubbles individually. We have analyzed their
collapse behavior and have used their deformation to recover the microjets. Our investigations have revealed that
the microjets do in general not exactly point towards the cloud center. For the present cloud configuration, they
are inclined to an angle up to 50◦ with respect to the radial direction. Closer examinations have demonstrated the
correlation between this inclination and the bubble distribution in the vicinity of the microjets. For the velocity at
the tip of the microjet, we have observed correlations with the radial location and the size of the bubble from which
the microjet has been extracted.

Appendix A: Grid resolution assessment

In this appendix, we show convergence results for the macroscopic and microscopic scales that are involved in the
collapse process of a cloud of gas bubbles. We start with a scaling argument for the variables that determine the
dynamics of the problem in order to arrive at expressions which allow us to select a proper cloud configuration to
perform the study with a reduced computational budget. The following variables are included in the scaling argument:

• Liquid and gas densities ρk with k ∈ {1, 2}

• Liquid and gas sound speeds ck with k ∈ {1, 2}

• Initial bubble and liquid pressure pC in the sphere defining the cloud (refer to Sec. II C)

• Initial gas volume fraction of the cloud αC

• Initial cloud and mean bubble radii RC and R̄B, respectively

The mean bubble radius R̄B is defined in Eq. (11).
We non-dimensionalize the variables following the approach presented in [61], where a physically significant quantity

q is written as q = q∗q̃ with q∗ its characteristic dimensional value and q̃ its non-dimensional value. The problem is
further simplified by the following two assumptions:

1. The inertia of the gas is neglected (ρ2 � ρ1)

2. The liquid is treated as incompressible (c1 →∞)
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TABLE II: Overview of altered simulation parameter for the resolution assessment study.

Case nB RC [mm] RB,avg [mm] αC [%] t∗C/t
∗
B

Production run 12′500 45 0.69 4.9 13.9
Grid refinement 400 9 0.64 15.2 4.6

We set ρ̃1 = 1.0, c̃2 = 1.0, R̃B = 1.0 and obtain the characteristic values

ρ∗ =
ρ1

ρ̃1
= 1000.0 kg/m3, c∗ =

c2
c̃2

=

√
γ2pC

ρ2
= 374.2 m/s, R∗ =

R̄B

R̃B

= 0.7 · 10−3 m. (A1)

The remaining non-dimensional numbers for the cloud radius, pressure and gas volume fraction are then obtained by

R̃C =
RC

R∗
, p̃ =

p

p∗
, αC, (A2)

respectively, where the characteristic pressure p∗ = pC is obtained from c∗ =
√
γ2p∗/ρ2 and p is a reference pressure.

We estimate the characteristic time-scale of the bubble dynamics with t∗B ∼ 1/fB, where the bubble oscillation
frequency fB is given by

fB =
1

2πR̄B

√
3γ2p

ρ1
; (A3)

see [62]. By substituting scaled variables we obtain

t∗B ∼
1

fB
∼ R̄B

√
ρ1

ρ2

ρ2

p
∼ R∗

c∗
R̃B

√
1

p̃
[s]. (A4)

For the macroscopic time-scale of the cloud collapse, t∗C, we estimate the front speed ṘF ∼
√
p/[ρ1(1− αC)αC] based

on Eq. (17) and proceed similar as above

t∗C ∼
RC

ṘF

∼ RC

√
ρ1

ρ2

ρ2

p
(1− αC)αC ∼

R∗

c∗
R̃C

√
(1− αC)αC

p̃
[s]. (A5)

The ratio of the two time-scales yields

t∗C
t∗B
∼ R̃C

R̃B

√
(1− αC)αC ∼

√
βC, (A6)

which is identical to the result shown in [13]. Estimates for the characteristic microjet tip velocity and front speed
are obtained from Eqs. (A4) and (A5), respectively,

u∗tip ∼
R∗

t∗B
∼ c∗ 1

R̃B

√
p̃ [m/s], (A7)

Ṙ∗F ∼
R∗

t∗C
∼ c∗ 1

R̃C

√
p̃

(1− αC)αC
[m/s]. (A8)

We choose a simulation setup for the resolution assessment based on Eqs. (A7) and (A8). Velocity micro-scales
are retained by configuring a bubble cloud with an identical log-normal distribution for the bubble radii as well as
preserving the pressure ratio p̃ based on a reference pressure p = p∞; refer to Sec. II C. Taking into account a
reduced computational budget, the cloud radius RC and gas volume fraction αC cannot be preserved. Changing these
parameters will only affect the macroscopic scales for which convergence is achieved faster, even on coarse grids. For
these reasons, we use a bubble cloud with radius RC = 9mm and nB = 400 bubbles which yields a gas volume fraction
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FIG. 17: Temporal evolution of (a) gas volume V2/V2(0) and (b) average kinetic energy Ekin,C/Ekin,C,peak within the
cloud. Full cloud simulation (black dashed lines) and reduced domain approximation with symmetry boundaries

(red solid lines).

of αC = 15.2%. All other parameters remain unchanged and correspond to their definitions in Sec. II A and II C.
Table II shows the simulation parameters that are changed for the resolution assessment. The computational cost
is further reduced by a symmetry approximation such that only one octant of the full computational domain is
simulated. Symmetry boundary conditions are used for boundaries that intersect the cloud, where the remaining
boundary conditions are identical to Sec. II C. The center of bubbles that initially intersect one of the symmetry
planes has been shifted onto the intersecting plane such that the bubble is initially symmetric with respect to that
plane. The cloud in the octant is then extracted from the full cloud. Fig. 17 shows the temporal evolution of the
gas volume V2/V2(0) and the average kinetic energy Ekin,C/Ekin,C,peak within the cloud corresponding to the grid
refinement parameter shown in Table II. The cloud collapse time for this configuration is tC = 115.9 µs; a 2.97 times
faster collapse compared to the time reported in Sec. III A. In contrast, Eq. (A5) estimates a 3.01 times faster
cloud collapse time. Furthermore, Fig. 17 shows the result for the simulation using the aforementioned symmetry
approximation, which results in a slightly faster cloud collapse time. The difference stems from the mirroring of
the random cloud in the octant on the symmetry planes, which does not exactly match the full random cloud in
the remaining octants. The resulting relative error in the cloud collapse time is 3.8% and does not affect the order
of magnitude of the macroscopic time scale. The reduction in computational cost clearly outweighs the small error
incurred by this approximation. Microscopic scales, described by Eq. (A4), remain in the same order of magnitude
for all clouds presented in the manuscript.

Three grid resolutions G−, G0 and G+ are used, where G0 corresponds to the initial bubble resolution described
in Sec. II C. The resolution on the coarse grid G− is half of G0 and the resolution on the fine grid G+ is twice
the resolution of G0. Table III shows the three grids used for the resolution assessment including the number of
cells N along each edge of the octant and the initial number of cells per radius for the smallest and largest bubbles
in the cloud. Due to the symmetry assumption, the cloud is centered at the domain origin with domain extents
3RC × 3RC × 3RC for the x, y and z coordinates, respectively. Fig. 18 compares the temporal evolution of the gas
volume V2/V2(0) and the average kinetic energy Ekin,C/Ekin,C,peak within the cloud for the three different resolutions.
Geometric quantities such as the gas volume already converge on the coarse grid G−. Only a weak grid dependence
is identified during the post collapse of the cloud where small length scales are dominant. Stronger grid dependence
is observed for velocity and quantities that depend on it. This dependence is mainly restricted to the region after the
minimum cloud volume has been reached due to its sensitivity on numerical diffusion at smaller scales. The analyses
presented in this manuscript do not depend on data after tC and, therefore, is not critical. During the cloud collapse
we observe convergence for the integral of kinetic energy on grid G0. The reduced cloud used for this grid refinement
study consists of 62 bubbles where 49 bubbles (79%) satisfy the quality criteria for the micro-jet evaluation on all three
grids; see Sec. IV B. The characteristic quantities are evaluated within the time interval [ttip,i, timp,i] for bubble i.
The start and end time that covers the microjet analyses for all bubbles, tM,s and tM,e, respectively, are furthermore
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TABLE III: Grid resolutions used for the refinement study.

Grid N RB,min/h RB,max/h tM,s [µs] tM,e [µs]

G− (coarse) 448 8 14 42.3 103.6
G0 (production) 896 16 28 40.3 98.4
G+ (fine) 1792 33 57 39.9 98.8
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FIG. 18: Temporal evolution of (a) gas volume V2/V2(0) and (b) average kinetic energy Ekin,C/Ekin,C,peak within the
cloud for the three resolutions shown in Table III. The gray shaded area corresponds to the time interval of the data

displayed in Fig. 19.

shown in Table III for each grid; refer to Eqs. (27) and (28).

Characteristic microjet quantities

Fig. 19 shows the microjet velocity magnitudes and the inclination angles computed on the three different resolu-
tions. The data for G+ is sorted in increasing order while the data for G0 and G− are shown relative to that sort
order. The gray shaded region in Fig. 18 highlights the interval [tM,s, tM,e] which corresponds to the time range of
the displayed data in Fig. 19. Table IV shows absolute errors relative to the fine grid G+ for the microjet velocity
magnitude utip,i, inclination angle θi and the fit range [ttip,i, timp,i] averaged over all bubbles. The microjet velocity
magnitudes on the production grid G0 are within a 10.0 ± 5.2% error margin relative to the fine grid G+. The
errors reported in Table IV suggest that only a marginal accuracy improvement can be achieved when doubling the

TABLE IV: Absolute errors averaged over all bubbles relative to the fine grid G+.

Grid utip,i [m/s] θi [deg] ttip,i [µs] timp,i [µs] TB,i [µs]

G− (coarse) 13.0± 8.6 6.4± 4.1 1.7± 0.9 11.1± 6.4 0.41± 0.46
G0 (production) 3.2± 1.6 2.4± 2.0 1.0± 1.1 2.7± 1.8 0.24± 0.21
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FIG. 19: (a) Microjet velocity magnitude utip,i and (b) microjet inclination angle θi of individual bubbles i for the
three resolutions shown in Table III. Both quantities clearly indicate convergence towards the finest grid G+.
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FIG. 20: Collapse of a single air bubble in water at different resolution. (a) Evolution of bubble radius RB and (b)
evolution of interface thickness dI. Extracted from reference [31].

resolution of the production run and does not justify the 16-fold increase in computational cost that is associated with
it in regard to the scope of our analyses. Moreover, microjet velocity magnitudes are between 10 m/s and 60 m/s,
see Figs. 16 and 19. These characteristic velocities relate to the length scale imposed by the mean bubble radius R̄B

defined in Eq. (11). Based on these quantities, as well as the kinematic viscosity ν = 1.0 · 10−6 m2/s for water, we
expect Reynolds numbers in the range of 7000–42000. Similarly, the Weber number is in the range of 972–35000 based
on a surface tension coefficient of 0.072 N/m for air-water systems. Both of these ranges justify the neglect of viscous
and surface tension forces, respectively.

Fig. 20 shows the temporal evolution of the normalized bubble radius RB/RB(0) as well as the normalized interface
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TABLE V: L2 error measures for RBi
and pBi

averaged over all bubbles. The values correspond to the time intervals
[0, tM,e] and [tM,e, tC], respectively, expressed in percentage error relative to the fine grid G+.

Grid L2(RBi
; 0, tM,e) L2(RBi

; tM,e, tC) L2(pBi
; 0, tM,e) L2(pBi

; tM,e, tC)

G− (coarse) 1.1± 0.4 3.3± 1.6 4.9± 1.6 15.7± 10.0
G0 (production) 0.6± 0.09 2.8± 0.9 2.4± 0.5 13.2± 5.8

thickness [dI − dI(0)]/dI(0) for the collapse of a single air bubble in water [31]. The interface thickness is defined by

dI = Rθ=0.1 −Rθ=0.9 (A9)

based on two equivalent bubble radii. These radii are associated with the 0.1- and 0.9-iso-contours of the gas-volume-
fraction field α2. The equivalent bubble radius is defined by Rθ = h 3

√
3/(4π)

∑nc

l=1 χθ and uses a shifted phase
indicator function χθ with threshold value θ, which is given by χθ = 1 if α2 > θ and χθ = 0 otherwise. In the
definition of Rθ, h denotes the cell size and nc the number of grid cells. We use the Keller-Miksis [63] solution as
a reference for the validation of our numerical results in Fig. 20(a). Numerical solutions based on Eqs (1)–(5) are
obtained on two grid resolutions that correspond to the resolution of the smallest and largest bubbles in our present
12′500 bubble cloud. We further emphasize the influence of the “K-div” term which corresponds to the source term
K∇ ·u in Eq. (5). Including the K-div term in the model improves the accuracy of the numerical result considerably,
even at rather low resolutions. A similar trend is observed in the evolution of the interface thickness in Fig. 20(b).
The thickness of the interface increases strongly when the bubble reaches its minimum radius for simulations that do
not include the K-div term in the model, while an approximate linear increase of the interface thickness is observed
for the case including the K-div term. This linear increase can be attributed almost exclusively to numerical diffusion.
A recent study [64] further extends this analysis by including a pressure-disequilibrium model applied to spherical
single bubble collapse.

Collapse period and bubble pressure

Fig. 21 shows the temporal evolution the equivalent bubble radius, Eq. (24), and average bubble pressure for three
selected bubbles. The computation of the average bubble pressure follows the same approach used for the bubble
center xBi

in Eq. (23). It is defined by

pBi
(t) =

1

VBi(t)

∫
ΩBi

α2p dV, (A10)

where the bubble volume VBi
(t) is defined in Eq. (25). Data for the three resolutions described in Table III is included

in each plot. The location of the first and second minimum of the equivalent bubble radius is not sensitive to the
grid resolution. This observation is in correspondence with the previous statement regarding geometric quantities.
The bubble collapse period TB is derived from the equivalent bubble radius and is associated with a 1.8± 1.7% error
margin on grid G0 relative to the fine grid G+. Absolute error values averaged over all bubbles are shown in Table IV.
The fluctuating error of the evolving quantities RBi(t) and pBi(t) is measured by

L2(y; ts, te) =

√√√√√ 1

te − ts

te∫
ts

∣∣∣∣y − y+

y+

∣∣∣∣2 dt, (A11)

where y(t) is the subject function and y+(t) a reference associated with the fine grid G+. We use a cubic spline
interpolant to obtain a representation for y and approximate the integral in Eq. (A11) with a fourth-order Simpson
quadrature. The data for the cubic spline interpolant is sampled at 2.53 MHz. Table V shows error measures based
on Eq. (A11) evaluated for two time intervals [0, tM,e] and [tM,e, tC] which correspond to the interval of microjet
analyses and region of peak pressure in the cloud, respectively. Values for tM,e are shown in Table III. The interval
of the microjet evluation [tM,s, tM,e] and tC are further highlighted in Fig. 21. The equivalent bubble radius RBi

has
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FIG. 21: Temporal evolution of (a) equivalent radius RB/RB(0) and (b) average bubble pressure pBi of selected
bubbles at radial locations r = 8.0, 6.0 and 4.0 mm for the three resolutions shown in Table III. The vertical lines

indicate the end of the microjet evaluation interval tM,e (vertical dash-dotted line) and the time of minimum cloud
volume tC (vertical dotted line), respectively. First and second minimum locations of the equivalent radius are

indicated for G− (circles), G0 (diamonds) and G+ (squares).

converged in both regions of interest with a relative error of 2.8 ± 0.9% in the peak pressure region of the cloud,
averaged over all bubbles. This is consistent with the error associated to the collapse period TB reported above. The
average bubble pressure pBi

has similarly converged during the microjet evaluation interval with a relative error of
2.4 ± 0.5% averaged over all bubbles, while during the interval of peak pressure in the cloud the measured relative
error is 13.2 ± 5.8%. We note that the pressure averages discussed in Sec. III B propagate through both of these
regions of interest and are associated with at most 13.2 ± 5.8% relative error during the final stage of the cloud
collapse. This peak error is in the same order as the error measured for the microjet velocity magnitudes but occurs
during the second interval of interest, while the error associated with the microjets occurs in the first interval. For
the magnitude of the point-wise maximum pressure ppeak, reported in Sec. III A, we evaluate the local maximum
measure L∞(pBi ; tM,e, tC) = 38.1± 22.6% on grid G0, averaged over all bubbles. The large local error is mainly due
to deviation in local pressure magnitude, not dislocation in time; see also Fig. 21(b). We report on the point-wise
maximum pressure to orient the reader about its appearance in time, we do not elaborate on it thereafter.

Appendix B: Pressure initial condition

This appendix demonstrates the validity of the simplified pressure initial condition introduced in Sec. II C; see
also [18]. For this assessment, we consider a small cloud with ten bubbles at similar resolution as the production
cloud presented in this manuscript. Fig. 22 shows the initial pressure distribution on a slice through the cloud
center for the simplified approach and an initial pressure field that satisfies the Laplace equation ∇2p = 0 with
Dirichlet boundary conditions at the bubble walls and domain boundaries. The initial pressure is 0.1 MPa inside
the bubbles and 1.0 MPa in the far-field. The problem is evolved using non-reflecting, characteristic-based boundary
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FIG. 22: Initial pressure field on a slice through the cloud center. (a) Simplification used in the manuscript at
t = 0 µs, (b) solution of ∇2p = 0 at t = 0 µs, (c) evolved pressure field at t = 14 µs with initial condition (a), and (d)

evolved pressure field at t = 14 µs with initial condition (b). Blue corresponds to 0.1 MPa and red to 1.0 MPa.

conditions [44–46] at the domain boundaries for both cases; see Sec. II C. Fig. 22 further compares the pressure field
after 14 µs corresponding to 2400 iterations. At this point, the simplified initial pressure has relaxed towards the
Laplace reference with a relative error of 0.6± 0.8%.

Fig. 23 shows the evolution of the equivalent bubble radius RBi
and the average bubble pressure pBi

, see Eqs. (24)
and (A10), respectively, for each of the ten bubbles in the cloud. A slight delay in time is observed for the case of
the simplified initial condition due to the initial pressure relaxation around the bubbles in the cloud. This process
does not introduce artificial pressure oscillations. The most important characteristics, such as time of minimum gas
volume in the cloud, the individual time of minimum bubble volumes as well as time and magnitude of peak pressures
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FIG. 23: Temporal evolution of individual bubbles. (a) Equivalent bubble radius RBi
and (b) average bubble

pressure pBi
for bubble i. Solid lines correspond to the reference that initially satisfies ∇2p = 0; symbols correspond

to the solution obtained using the simplified initial pressure condition described in Sec. II C.

are all preserved. This shows that the average and local features are not affected by the choice of a simplified initial
pressure field, as its relaxation towards the pressure obtained for a field that initially satisfies the Laplacian takes
place well before the fast scales of the cloud collapse appear. However, the induced relaxation time for the simplified
case causes a very slight delay in the overall cloud collapse, but local bubble dynamics are not altered as shown by
the temporal evolution of the bubble volume and average bubble pressure in Fig. 23. This confirms the validity of the
simplified initial condition for the pressure field, originally introduced in reference [18]. A similar approximation has
been verified for a single bubble collapse in [31].
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