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Abstract
A two-phase flow model is developed to study the small-deformation of a poroelastic drop under

linear flows. Inside the drop a deformable porous network characterized by an elastic modulus

is fully immersed in a viscous fluid. When the viscous dissipation of the interior fluid phase is

negligible (compared to the friction between the fluid and the skeleton), the two-phase flow is

reduced to a poroelastic Darcy flow with a deformable porous network. At the interface between

the poroelastic drop and the exterior viscous Stokes flow, a novel set of boundary conditions are

derived by the free energy dissipation principle. Both interfacial slip and permeability are taken

into account and the permeating flow induces dissipation that depends on the elastic stress of the

interior solid. Assuming that the porous network has a large elastic modulus a small-deformation

analysis is conducted. A steady equilibrium is computed for two linear applied flows: a uniaxial

extensional flow and a planar shear flow. By exploring the interfacial slip, permeability and network

elasticity various flow patterns are found at equilibrium of these slightly deformed poroelastic drops.

Linear dynamics of the small-amplitude deviation of the poroelastic drop from the spherical shape

is governed by a nonlinear eigenvalue problem, and the eigenvalues are determined.

PACS numbers: Valid PACS appear here
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I. INTRODUCTION

Flow in porous media is of significant relevance to many research areas, ranging from

turbulent transport through porous media in geophysics, filtration in hydrology, to cell and

tissue mechanics in bio-mechanical engineering. A great deal of effort has been devoted to

the modeling of pressure-driven fluid flow, thermal convection and propagation of sound

waves in porous media, and the fluid pressure in water-filled connective tissues such as the

cornea. Depending on the specific applications, the porous structures may be treated either

as rigid and non-deformable (as in hydrology of filtration), or they may deform as their

dynamics is coupled to the fluid flow around them (as in tissue mechanics). Here we focus

on the latter case.

In many applications, the porous flow is in the Stokes regime where the inertia is negli-

gible. For a Stokes flow going through a non-deformable porous medium, homogenization

analysis shows that on macroscopic scales (much larger than the average pore size) such a

porous flow is simplified to a Darcy’s flow[1]. The viscous stress in the fluid is negligible

after homogenization, and the dominant force balance is between the pressure gradient and a

frictional force between the viscous fluid and the rigid porous frame. In solid mechanics this

frictional force is derived from a dissipative potential assumed for the solid-fluid interaction

(see Carcione [2] and references therein). A similar homogenization analysis also predicts a

Brinkmann flow (viscous stress is comparable with both pressure gradient and the frictional

force) when the solid volume fraction is less than 5% (porosity is greater than 95%).

When the porous structure (skeleton phase) is deformable and the pore space is com-

pletely filled with a viscous fluid, the mechanics of the skeleton is inevitably intertwined

with the hydrodynamics of the viscous fluid. For example, the pore space increases when

fluid is injected to expand the skeleton while compressing the skeleton will drive fluid out as

the pore space shrinks. In the presence of an external pressure jump, MacMinn et al. focused

on the coupling between the interior fluid flow and the deformation of a nonlinear elastic

porous structure. They reported both small and large deformations of the poro-elastic struc-

tures using various elastic models. In particular they studied the one-dimensional dynamic

evolution from an initial configuration towards a steady equilibrium.

While in geophysics the pressure-driven Darcy flow inside a poroelastic skeleton is of

great relevance, in biophysics the poroelastic flows inside the cell are either driven by or

coupled with the exterior viscous fluid flow [3–6]. Two-phase flow models have been derived

to capture the coupled dynamics between a poroelastic flow and the external viscous fluid

flow [7–10]. In these models, the viscous dissipation in the fluid phase may be comparable

to the pressure gradient, and this coupling can be further complicated by ion transport in

the porous medium flow [8].

Cogan and Keener developed a two-phase flow model for the cellular cytosol dominated

by viscous dissipation of the deformable skeleton (that depends on the rate of strain) and

independent of the elastic energy (that depends on the strain) [7]. A similar two-phase flow

model is constructed for the cellular cytosolic flow [9, 10], where the immersed boundary

method is used to calculate the extra stress in the skeleton and no explicit boundary condi-

tions for the velocity field are provided. Mori et al. constructed a two-phase flow model to
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incorporate the electrochemical mechanics of a polyelectrolytic fluids such as the cytosol [8].

Focusing on the variational analysis of the governing equations in the mean-field framework,

their dynamical model consists of an interfacial slip and an interfacial permeability that

characterize the transport of fluid in the transition region around the interface between the

porous flow and the viscous flow.

One of the salient features of these two-phase flow models is that both phases share a

pressure field that amounts to the averaged spherical (isotropic) part of the microscopic

stresses [11]. In each phase the extra (or additional) stress beyond the pressure may consist

of shear or elastic stresses depending on the constitutive laws for each phase.

Theoretical analyses on the behavior and properties of a fully saturated (pore space

completely filled with fluid) poro-elastic or poro-visco-elastic network have been conducted

for either the Biot system (where the inertia of the poro-elastic and/or poro-visco-elastic

skeleton may be important [2, 12]) or a similar Darcy poroelastic flow [13–17]. Modeled as a

two-phase flow, the existence of an equilibrium solution (essential for mathematical analysis

but often assumed without justification [2]) in the poroelastic flow can be guaranteed using

the free energy minimization principle [8]. Mori et al. illustrated that boundary conditions

at the interface between a poroelastic fluid and a viscous Newtonian fluid can be obtained

from minimizing the elastic free energy of the porous frame. In this work we will utilize the

same minimization principle to derive velocity boundary conditions that behave consistently

as the fluid volume fraction (porosity) goes to zero.

Without resorting to the free energy dissipation principle, it is tedious to find effective

boundary conditions near the surface of such heterogeneous materials. This is because at

the interface between a porous Darcy medium and a viscous Stokes flow, there is a transient

region of Brinkman flow where the viscous dissipation is in balance with pressure gradient

and friction forces [18]. As a result, the standard techniques of homogenization break down

in this region, and careful asymptotics [18–21] is required to derive (from first principle)

the boundary condition that encompasses the well-known Navier slip boundary condition

[22–24] and many other similar boundary conditions in previous works [3, 25–40].

Motivated by the physical complexity and mathematical richness of a poroelastic fluid

when it’s driven by or strongly coupled with viscous fluid flow as in the cellular cytosol, in

this work we use a two-phase flow model to investigate the small-deformation of a poroelastic

drop under linear flows (i.e., flows where the fluid velocity depends linearly on the spatial

coordinates.) The hydrodynamics of a viscous drop in linear flows has been well studied

as a classic paradigm in fluid mechanics, where the drop shape dynamics is characterized

by the viscosity contrast and the capillary number, which is the ratio of flow strength to

surface tension [41, 42]. Under a linear flow a viscous drop with a large surface tension

deforms slightly from the spherical shape, and the small-deformation theory [42] predicts a

steady equilibrium that has been validated by comparison with experiments and numerical

simulations [41].

The motion of a spherical non-deformable porous drop freely suspended in a Stokes

flow has been investigated [43–46]. The surface tension, essential for a spherical (or nearly

spherical) viscous drop under linear flows, is replaced by the rigidity of the interior skeleton

that is sufficiently strong to maintain a spherical shape with permeability on the interface.
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Thus the boundary conditions for a non-deformable porous drop are continuity of velocity

(both tangential and normal components) and normal stress, different from those of a non-

deformable viscous drop where the normal velocity of the drop surface has to vanish in

equilibrium [42]. With the rigid skeleton fully saturated (pore space completely filled with

fluid) the drag coefficient and total force are computed as a function of the interior porosity

in various flowing conditions such as a streaming flow, uniaxial extensional flow, and a planar

shear flow. In addition the migration of a spherical porous drop in a planar shear flow or

near a flat fluid interface has also been investigated [45].

To our knowledge no theoretical study has been conducted on the hydrodynamics of a

deformable porous drop under linear flows. This may be partly due to the lack of boundary

conditions on the interface between a poroelastic flow and a Stokes flow. The nonlinear

coupling between the skeleton and the viscous fluid also adds another layer of difficulty to

such theoretical study. Both factors contribute to the numerical design of an immersed

boundary treatment of the skeleton-fluid interactions [9, 10].

In this work we focus on the hydrodynamics of a deformable poroelastic drop suspended in

a viscous Stokes flow under two flowing conditions: a uniaxial extension flow and a planar

shear flow. We focus on these two special linear flows here but our formulation is valid

for any extensional viscous flow. By a “poroelastic drop” we refer to a finite volume that

contains an elastic skeleton fully saturated with a viscous fluid. Specifically we assume that

the skeleton pore space is filled with the same viscous fluid as the exterior fluid, thus exterior

and interior fluid viscosities are the same and there is no surface tension on the interface.

In § II we formulate the two-phase flow model for a poroelastic flow coupled to a Stokes

flow through the boundary defined by the edge of the skeleton phase. In the most general

formulation the governing equations for the interior fluid phase are the Brinkmann equations

where the viscous stress in the fluid is kept together with the pressure gradient and a

frictional force between the fluid and the skeleton. After discussing the scalings for our

problem we will specialize the general model to the Darcy flow case where the viscous fluid

stress is small and negligible (compared to the pressure gradient and the frictional force) in

the poroelastic drop. In § II B we derive the boundary conditions on the drop by free energy

dissipation principle. Our boundary conditions differ from those in Mori et al. [8] in that

the tangential component of the velocity boundary conditions are the generalized Navier slip

boundary conditions. Using these boundary conditions and focusing on a poroelastic Darcy

drop, in § III we investigate how a poroelastic Darcy drop undergoes small deformation

when it is immersed in a uniaxial extensional flow and a planar shear flow. In particular

we calculate the flow pattern and examine how the boundary conditions and poroelasticity

affects the flow in and around the drop.

II. FORMULATION

Our problem is to study the dynamics of a poroelastic drop immersed in a Stokesian fluid

acted upon by an applied flow. Let ΩI represent the region of the drop, ΩE the region of the

exterior Stokes fluid, and Γt the interface between the poroelastic drop and the Stokesian

fluid that evolves with time t, see Figure 1. Inside the poroelastic drop there are two phases:
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FIG. 1. Left: Sketch of a poroelastic drop (in ΩI) immersed in a Stokesian fluid (in ΩE). Inside the

drop there is a fluid phase (subscript ‘f ’) and a skeleton phase (subscript ‘s’) which is bounded by

the deformable interface Γt. n̂ is the outward normal, β is the interfacial slip coefficient, and η is

the interfacial permeability. Right: A uniaxial extensional flow in the far-field (top) and a planar

shear flow in the far-field (bottom).

a skeleton phase (subscript ‘s’) and a fluid phase (subscript ‘f ’). The skeleton phase is

confined within ΩI , while the fluid may permeate in or out of the boundary Γt. Cartesian

coordinates centered at the initial drop center will be denoted by (x, y, z), and spherical

coordinates by (r, θ, φ), where θ ∈ [0, π] is the polar angle and φ ∈ [0, 2π] is the azimuthal

angle.

A. Two-phase flow model

We start by assuming that a soft poro-elastic drop is freely suspended in a Newtonian

viscous fluid with the velocity V and pressure P satisfying the incompressible Stokes equa-

tions

µ∇2V −∇P ≡ ∇ · (2µE)−∇P = 0, (1)

∇ ·V = 0, (2)

where µ is the viscosity of the exterior fluid and E ≡
(
∇V + (∇V)T

)
/2 is the strain rate

tensor of the exterior fluid.

Inside the drop a deformable elastic skeleton is assumed to be fully hydrated, filled with

the same viscous fluid of viscosity µ as the outside. The mixture of the elastic skeleton and

the interior viscous fluid is coarse-grained into a two-phase flow, with the skeleton phase

of volume fraction φs the fluid phase of volume fraction (porosity or void fraction) φf , and

φf + φs = 1.

5



Conservation of the interior fluid and skeleton phases gives

∂φf
∂t

+∇ · (φfvf ) = 0, (3)

∂φs
∂t

+∇ · (φsvs) = 0, (4)

with vf the fluid velocity and vs = dus/dt the skeleton velocity, computed from taking

the time derivative of the skeleton displacement us. We note that in general the flow field

in each phase is not necessarily incompressible (∇ · vf 6= 0 and ∇ · vs 6= 0) when the

fluid volume fraction (porosity or void fraction) φf has its own dynamics and may vary in

space [11]. However, adding Equations (3) and (4) we identify an average local velocity

q ≡ φfvf + (1− φf ) vs that is incompressible:

∇ · q = ∇ · (φfvf + (1− φf ) vs) = 0. (5)

Denoting the extra stress [11] in the skeleton phase as σs and the strain rate tensor of the

interior fluid phase as ef ≡ (1/2)
(
∇vf + (∇vf )

T
)
, the governing equations for the mixture

of viscous fluid and poroelastic skeleton within the drop are [7, 8, 11, 47]

∇ · (φf (2µef ))− φf∇p+ F s→f = 0, (6)

∇ · (φsσs)− φs∇p+ Ff→s = 0, (7)

where F s→f is the force from the skeleton to the fluid and Ff→s = −F s→f is the anti-force

from the fluid to the skeleton. Homogenization theory of a non-deformable porous medium

filled with a viscous Stokes flow (zero Reynolds number) [1] shows that these forces are

simplify the friction between the interior fluid and the skeleton (when there is no mechano-

chemical process involved). In this work we assume that it is appropriate to generalize this

drag force in a non-deformable porous medium to a frictional force in deformable porous

medium as

F s→f = −ξφfφs (vf − vs) = −Ff→s, (8)

where ξ is the drag coefficient assumed to be constant.

In general the extra stress σs (beyond the pressure in the skeleton phase) consists of both

a viscous stress σv (that depends on the gradient of the rate of strain vs) and an elastic stress

σe (that depends on the gradient of the displacement us of the elastic skeleton) [7, 8, 48]:

σs = σv(∇vs) + σe(∇us). In this work we ignore the viscous stress of the skeleton (σv = 0).

For the elastic stress σe we adopt linear elasticity

σe = Λtr(ε)I + (M−Λ)ε, (9)

where the strain

ε =
1

2

[
∇us + (∇us)

T
]

(10)

is assumed to be of small magnitude, suitable for the small-deformation analysis. In equa-

tion (9) M is the p-wave modulus and Λ is the Lamé’s first parameter. In general M > Λ
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and the Poisson ratio of the elastic skeleton is ν ≡ Λ/ (M+ Λ). A consequence of the

small-strain assumption is that the deformation gradient tensor (in Eulerian frame)

F ≡ (I−∇us)
−1 ≈ I +∇us. (11)

The corresponding fluid volume fraction (porosity) φf can be expressed as

φf − φ0

1− φ0

≈ ∇ · us ∼ ε� 1, (12)

where φ0 is the uniform fluid volume fraction distribution prior to the perturbation.

In this work we focus on cases where the viscous fluid outside the poroelastic drop is the

same as the interior viscous fluid that fills up the space in the deformable elastic skeleton,

thus there is no surface tension on Γt.

In this two-phase flow formulation the interior pressure p is determined by enforcing the

incompressibility constraint in equation (5). As a result the pressure gradient is weighted to

give the force in equations (6) and (7). Such formulation is consistent with previous work

[7, 8, 11] where the volume fractions are outside (instead of inside) the gradient operator. As

will be shown in § II B, the boundary conditions consistent with the free energy dissipation

principle can be derived if the pressure gradient is weighted. No such consistent boundary

conditions can be found if the volume fractions are inside the gradient operator.

B. Boundary Conditions

The boundary conditions at the interface between two homogeneous phases are usually

derived by enforcing the conservation of mass and continuity of stress across the interface.

This will be done here but these conditions are not sufficient for our multiphase drop. The

difficulty is because we are connecting a single phase region with a two-phase region and

we are considering only the macroscopic scale of the drop, i.e., the pore scale dynamics is

coare-grained in the biphasic model. The free energy dissipation principle will be used to

derive the additional boundary conditions.

Ignoring the surface tension the “interface” Γt here is the boundary that encloses all the

elastic skeleton in ΩI . Defined as such, the boundary Γt moves with velocity vΓt determined

only by the skeleton phase of the interior since the fluid phase is permeable to the boundary.

Thus, instead of the usual kinematic boundary condition where the time derivative of Γt
is equal to the normal component of the fluid velocity evaluated on Γt, our first boundary

condition is the kinematic condition for a permeable interface with a skeleton inside:

vs

∣∣∣∣
Γt

· n̂ = vΓt . (13)

Conservation of fluid mass at the interface Γt demands that the mass of fluid leaving

the poroelastic drop in the normal direction from ΩI balance the mass of fluid entering the

region ΩE. Since the fluids are incompressible and the same in both regions we find that,

(V − vs)

∣∣∣∣
Γt

· n̂ = φf (vf − vs)

∣∣∣∣
Γt

· n̂. (14)
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Continuity of stress at the interface requires the total stress balance:

(−2µE + P I + φf (2µef ) + φsσs − pI)

∣∣∣∣
Γt

· n̂ = 0. (15)

Hou et al. [32] derived a similar boundary condition when the flow Reynolds number is

sufficiently large for the momentum flux term to be important in the stress balance. This

term can be ignored in the low Reynolds number (Stokes flow) limit we are working in.

Equations (14)-(15) are not sufficient to find a unique solution to the problem.

In order to find the additional boundary conditions we begin by integrating the product

of V, vf and vs = dus/dt with equations (1), (6), and (7), respectively, over the whole

region Ω = ΩE + ΩI . Use (2), (3), (4) and apply the divergence theorem to find:

0 =

∫
ΩE

V · [∇(2µE)−∇P ] d3x (16)

+

∫
ΩI

vf · [∇(φf (2µef ))− φf∇p− ξφfφs(vf − vs)] d
3x

+

∫
ΩI

vs · [∇ · (φsσs)− φs∇p+ ξφfφs(vf − vs)] d
3x

=

∫
Γt

−V · (2µE− P I) · n̂ds+

∫
Γt

uf · (φf (2µef )− φfpI)n̂ds (17)

+

∫
Γt

vs · (φsσs − φspI)n̂ds− IΩE
− IΩI

− IE,

where

IΩE
=

∫
ΩE

2µE : ∇Vd3x (18)

IΩI
=

∫
ΩI

φf (2µef ) : ∇vf + ξφfφs ‖vf − vs‖2 d3x, (19)

IE =

∫
ΩI

φsσe (∇us) : ∇vsd
3x. (20)

Here we have assumed that the surface integrals along the outer boundary of ΩE are zero.

This would be true for an applied flow where at this outer boundary the pressure balances the

applied strain or for a flow where V tends to zero. After integration by parts, equation (17)

shows that the sum of the three surface integrals on Γt and the two volume integrals IΩE

and IΩI
must equal to the volume integral IE, which has been shown to be equal to the rate

of change of an elastic free energy Eelas [8]:

IE =
dEelas
dt

=

∫
Γt

−V · (2µE− P I) · n̂ds+

∫
Γt

vf · (φf (2µef )− φfpI)n̂ds

+

∫
Γt

vs · (φsσs − φspI)n̂ds− IΩE
− IΩI

, (21)

where

Eelas =

∫
ΩI

φsWelas(F)d3x, with σe(us) =
∂Welas(F)

∂F
FT , (22)
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where φsWelas is elastic energy per unit volume and F is the gradient of deformation tensor

defined in Equation (11). Derivation of the identity IE = dEelas/dt can be found in Mori

et al. [8], Antman [49] and Gurtin et al. [50]. It is straightforward to show that the volume

integrals are positive definite, thus one way to ensure dEelas/dt < 0 is to choose boundary

conditions such that the righthand side of Equation (21) is negative. The minimal free energy

principle [49, 50] and this observation can then be used to derive the boundary conditions.

We note that if the volume fractions are inside the gradient operator in Equations (6-7)

(∇(φfp) instead of φf∇p), then after integration by parts there will be a volume integral

that is not positive definite, and no boundary conditions can be chosen to satisfy the free

energy dissipation principle.

Focusing on the surface integrals, denote the velocities relative to the skeleton velocity

vs with a bar as

V = V − vs, vf = φf (vf − vs), (23)

the surface integrals in Equation (21) are thus recast as∫
Γt

−(V + vs)(2µE− P I)n̂ +

(
vf
φf

+ vs

)
(φf (2µef )− φfpI)n̂ + vs (φsσs − φspI) n̂ds

=

∫
Γt

vs · (−2µE + P I + φf (2µef ) + φsσs − pI)n̂ds+ (24a)∫
Γt

−V · (2µE− P I)n̂ + vf · (2µef − pI)n̂ds. (24b)

Using the stress boundary condition Equation (15) we find that Equation (24a) is zero. We

note that when the drop interior is a single fluid phase (φf = 1 and φs = 0), the integral in

Equation (24b) vanishes because of velocity continuity V = vf . In the more general cases

φf ∈ (0, 1) and the drop interior consists of two phases, more boundary conditions need to

be derived from the integral in Equation (24b).

To proceed further, we decompose V and vf into the parallel (subscript ‘‖’) and perpen-

dicular (subscript ‘⊥’) to the interface Γt as

V = V⊥ + V‖, vf = vf⊥ + vf‖. (25)

Conservation of fluid mass from Equation (14) gives V⊥ = vf⊥. To make the normal velocity

component of (24b) negative definite, a simple choice is to choose η > 0 such that

V⊥ = η

{
n̂ · (2µE− P I− 2µef + pI)

∣∣∣∣
Γt

· n̂
}

n̂. (26)

For the tangential component, choices for V‖ and vf‖ must be made based on the condi-

tion that the integral in Equation (24b) must be semi-negative definite. One way to achieve

that is the following generalized Navier slip (which is found at the boundary between a
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Stokes flow and a permeable Darcy medium [22, 24]):

V‖ = β

(
µE

∣∣∣∣
Γt

· n̂
)
‖
, (27)

vf‖ = −β
(
µef

∣∣∣∣
Γt

· n̂
)
‖
. (28)

Note that in Darcy flow limit of small viscous stress, equation (28) will naturally disappear

as the last term in the surface integral in equation (24b) vanishes.

In summary, the boundary conditions for V, vf and vs are given by (14), (15), (26), and

(27). For future reference these can be collected here as:

[(V − vs)− φf (vf − vs)] |Γt · n̂ = 0, (29)

(V − vs) |Γt · n̂ = ηn̂ · [(2µE− P I)− (2µef − pI)] |Γt · n̂, (30)

(V − vs) |Γt · t̂ = βn̂ · µE|Γt · t̂, (31)

φf (vf − vs) |Γt · t̂ = −βn̂ · µef |Γt · t̂, (32)

n̂ · [(2µE− P I)− (φsσs + φf (2µef )− pI)] |Γt · n̂ = 0, (33)

t̂ · [2µE− (φsσs + φf (2µef ))] |Γt · n̂ = 0, (34)

where σs = σe is the linear elastic stress given in equation (9). η > 0 is an interfacial perme-

ability, and β > 0 is an interfacial slip coefficient. Equations (31)-(32) are consistent with

the slip boundary condition derived by Angot et al. [18], and it is shown to be compatible

with models previously derived for different configurations [18]. For a permeable moving

boundary, the normal component of the total stress is from the fluid pressure and the shear

component must vanish; this implies that both the normal and shear components of the

effective stress must vanish. Equations (33)-(34) are for the stress balance at the boundary

(more general than either permeable or impermeable boundaries) between a two-phase flow

and a viscous Stokes flow. These are similar to the stress balance at the boundary between

a polyelectrolyte gel and a Stokes flow in Mori et al. [8].

C. External linear flow field

For later reference it will be helpful to recall that for axi-symmetric incompressible flows

around a fluid drop there exists a stream function ψe for the exterior fluid flow

Vr = − 1

r2 sin θ

∂ψe
∂θ

, Vθ =
1

r sin θ

∂ψe
∂r

, Vφ = 0. (35)

Here we will compare the flow around a viscous drop and a Darcy drop in both a planar

shear flow and a uniaxial extensional flow. For a uniaxial extensional flow the far-field fluid

velocity is

V→ −E (x, y,−2z) = −Ex̂i− Eyĵ + 2Ezk̂ as r →∞, (36)
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where E is the extension rate. î, ĵ and k̂ are the unit vectors in the Cartesian coordinates.

For a planar shear flow the far-field fluid velocity is

V→ γ̇(y, 0, 0) = γ̇yî as r →∞, (37)

where γ̇ is the shear rate of the background planar shear flow. We will apply the two-phase

model to a slightly deformable porous drop.

D. Scaling and Non-dimensionalization

Here we will discuss the scaling of some of our parameters and introduce dimensionless

variables into the equations (1)-(8) and boundary conditions in equations (29)-(34). The

characteristic length scale is given by the drop radius l0. The characteristic time scale is given

by te ≡ ξl20/M (based on the elastic modulus and friction coefficient), and the characteristic

pressure is M. Note that this allows us to define a characteristic velocity ve ≡ M/(ξl0).

It should be remembered that a basic assumption to justify the use of the two-phase flow

model as used here is that the average pore size a0 is much smaller than l0, i.e. a0/l0 � 1.

In the scaling below we will assume a0 = 0.1 ∼ 1µm and 10µm ≤ l0 ≤ 1mm, which is

consistent with the two-phase flow modeling.

The effective media theory[1] provides a simple estimate for the drag coefficient as ξ ∼
µ/a2

0. The range for ξ can be computed as 109 kg
m3s
≤ ξ ≤ 1015 kg

m3s
, where the lower bound

corresponds to a porous medium (with average pore size a0 = 0.1 ∼ 1 µm) filled with water

(µ = 10−3Pas). The upper bound corresponds to the articular cartilage in normal human

knee [51–54]. Neglecting the re-arrangement of solid phase due to the flow near the boundary,

we may estimate the interfacial permeability as η ∼ 1/(l0ξ) and obtain the range of η as:

10−10m2s
kg
≤ η ≤ 10−4m2s

kg
. We note that the water permeability constant for a biological

cellular membrane is of the order 10−10m2s
kg

(see Li et al. [55] and references therein). The

Lamé coefficients are often between KPa (for hydrogels) and MPa (for articular cartilage)

with a Poisson ratio around 0.2. The interfacial slip β is proportional to the average pore

size for hydrophilic surfaces [22]: β ∼ a0/l0 � 1. For hydrophobic surfaces (or surfaces

treated with hydrophobic agents) the slip length can be much larger than the pore size

[56–58]. In this work we will explore a wide range of β and η and examine their effects on

the flow around a deformable poroelastic drop. Finally note that for a poroelastic drop of

radius l0 = 10 µm is filled with articulate cartilage, te ∼ 0.1s and ve ∼ 100 µm/s.

The dimensionless parameters for the poroelastic drop are Λ̄ = Λ/M, ᾱe = µve/Ml0 =

µ/(ξl20), slip coefficient β̄ = βµ/l0 = ᾱeβM/ve, and permeability η̄ = ηM/ve. For the

extension flow the dimensionless extension rate is Ē = Eξl20/M, and for the simple shear

flow the dimensionless shear rate is ¯̇γ = γ̇ξl20/M. These are just the ratios fo the time

scales of the applied flow (1/γ̇ and 1/E) to te. Our analysis assumes a small deformation

of the elastic skeleton. This assumption is valid for small applied flow where our analysis

is applicable, but it is also valid for a poroelastic drop with strong bending moduli under

large applied flow. Thus without loss of generality we will set Ē = 1 and ¯̇γ = 1.

As noted earlier, our plan is to focus on the Darcy flow limit within the drop. This

means that the viscous fluid stress is small in the poroelastic drop and will be neglected in
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equations (1)-(8). The resultant dimensionless equations (after dropping the bar) for the

Darcy-Stokes system are

αe∇2V −∇P = 0, (38)

∇ ·V = 0, (39)

−φf∇p− φfφs (vf − vs) = 0, (40)

∇ · (φsσe)− φs∇p+ φsφf (vf − vs) = 0, (41)

∂φf
∂t

+∇ · (φfvf ) = 0, (42)

φf + φs = 1, ∇ · (φfvf + φsvs) = 0. (43)

The corresponding dimensionless boundary conditions on the interface Γt are

[(V − vs)− φf (vf − vs)] |Γt · n̂ = 0, (44)

(V − vs) |Γt · n̂ = ηn̂ · [(2αeE− P I)− (−pI)] |Γt · n̂, (45)

(V − vs) |Γt · t̂ = βn̂ · E|Γt · t̂, (46)

n̂ · [(2αeE− P I)− (φsσe − pI)] |Γt · n̂ = 0, (47)

t̂ · [2αeE− φsσe] |Γt · n̂ = 0. (48)

In this work we focus on the Darcy regime where the viscous dissipation in equation (6)

is negligible compared to the pressure gradient and the friction force. As stated in § I the

fluid flow through and around a Darcy medium has been previously investigated without

considering the effects of both the external viscous stress and the deformation of the porous

network in the medium, which is the focus of the present work.

When the viscous dissipation is retained the governing equations are for the flow through

a deformable Brinkmann medium, which is more appropriate for low solid volume fraction

[1] φs ≤∼ 5%. We are now conducting active investigation on this system and results will

be summarized in a subsequent paper.

In this work we neglect the surface tension and focus on the Darcy regime, where a

deformable Darcy drop is freely suspended in (1) a uniaxial extensional flow and (2) a planar

shear flow. We focus on the physical regime where the elastic skeleton deforms slightly to

contribute to the shape deviation of the drop from a sphere.

In such small-deformation limit the volume fraction of the elastic skeleton deviates very

little from the original distribution. To elucidate the salient features of slip and permeability

effects on the hydrodynamics of a soft poroelastic drop, we conduct a small-deformation

analysis on a poroelastic drop of (nearly) an initially uniform porosity φ0, and the nearly

spherical drop shape is supported by a skeleton of large elastic modulus. The effects of non-

uniform volume fraction (porosity) on the dynamics of an elastic poroelastic skeleton in one-

dimension is the main focus of the work by MacMinn et al. [47]. It is a non-trivial extension

to incorporate the non-uniform porosity into the small-deformation analysis. Based on

results from MacMinn et al. [47] we expect to rely on numerical computations as analytical

solutions may not be readily available for a system of boundary value problems with variable

coefficients.

12



Finally we remark that in the limit of infinitely large network elastic moduli, the network

becomes rigid (non-deformable) and both the displacement and the rate of strain vanish.

Consequently less boundary conditions are needed in this non-deformable limit, and early

works have focused on the balance of normal stress and continuity of the normal component

of the fluid velocity [33, 46, 59].

III. SMALL-DEFORMATION OF A POROELASTIC DARCY DROP

In this section we investigate the flow around a poroelastic drop with large bending moduli

such that the elastic skeleton (and hence the drop interface) undergoes small deformation

from the initial spherical shape. On the interface Γt

r = 1 + δr(t, θ, φ) = 1 + us · r̂, |δr| = |us · r̂| � 1. (49)

For a viscous drop in a flow, strong surface tension (small capillary number) ensures the small

deformation in Equation (49) is possible, and the drop responds linearly under a general

linear flow [42]. For a poro-elastic drop, however, the nonlinear relationship between the

solid phase flow field vs and the deformation us requires us to assume further that the flow

strength is small such that

vs =
dus
dt

=
∂us
∂t

+ (vs · ∇) us ≈
∂us
∂t

. (50)

In the literature many researchers adopted the above approximation in their modeling of a

biphasic poroelastic fluid [48, 51, 60, 61]. Here we will assume that such approximation is

sufficient to capture the small-deformation of a poroelastic drop under a linear flow. In our

small-deformation analysis, the volume fractions φf and φs are assumed to be initially ho-

mogeneous with φf ≈ φ0. The deviation from the initial homogeneous distribution is related

to the divergence of the displacement field in Equation (12). Outside the poroelastic drop

the linear Stokes flow is coupled to the interior poroelastic flow via the boundary conditions

evaluated at the unperturbed spherical interface in the small-deformation framework. This

way the governing equations are a linear system that can still be solved using separation of

variables.

From equations (40)-(43), the linearized Darcy equations and the governing equations for

stress balance in the solid phase are

−φ0∇p− φ0(1− φ0)

(
vf −

∂us
∂t

)
= 0, (51)

∇ · ((1− φ0)σe(us))−∇p = 0, (52)

∇ · (φ0vf + (1− φ0)vs) = 0. (53)

The general solution for the above linear equations take the following form vf
vs
p

 =

 v̂f
v̂s
p̂

+ eωt

 vf,1
vs,1
p1

 , (54)
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where the hat symbol ·̂ denotes the steady equilibrium solution, and the subscripts “1”

denotes the exponential components that vary with time at an exponential rate ω. In the

following we will solve for both the steady equilibrium and the eigenvalue ω. Note that since

in the small-deformation limit vs = v̂s+ eωtvs,1 ∼ ∂us/∂t, we can write us = ûc(t) + eωtus,1,

where now ûc(t) can depend linearly on t.

A. Steady Equilibrium

Within the small-deformation regime, a viscous drop with a large surface tension (small

capillary number) reaches a steady shape under linear flows. Similarly for a nearly spherical

poroelastic drop with a large network rigidity, we assume that it reaches a steady shape

under linear flows. At steady equilibrium the normal component of the skeleton velocity vs
evaluated at the steady drop interface is zero.

The tangential components of the network velocity, on the other hand, depends on the

exterior flow condition: Under a uniaxial extensional flow the tangential network velocity is

zero at steady equilibrium, while under a planar shear flow the tangential network velocity

is a rigid-body rotation due to the rotational component of the far-field shear flow. For the

linear shear flow, the network rotates due to the vorticity in the shear flow. This network

rotation is a rigid-body rotation that does not cause any viscous dissipation. However, as

we will shown in § III C, there is a non-trivial elastic stress in the skeleton phase in balance

with the pressure gradient due to such rotation.

B. Uniaxial extension flow

First we identify the steady equilibrium solution for a Darcy drop under a uniaxial ex-

tensional flow specified by Equation (36). At steady equilibrium, the general solutions for

the drop interior take the form

p̂ = − 7

10
(1− φ0)(1− Λ)d1r

2 (1 + 3 cos(2θ)) , (55)

ûs · r̂ =

(
−3(5− 2Λ)

25
d1r

3 − d2r −
2Λ

7 + 3Λ
d3r

3

)
(1 + 3 cos(2θ)) , (56)

ûs · θ̂ =

(
3(6− Λ)

25
d1r

3 + d2r +
1

3
d3r

3

)
sin(2θ), (57)

and v̂s = 0 in the case of a uniaxial extensional flow. Here r̂ and θ̂ are unit vectors in the r

and θ directions. The solution for the exterior Stokes flow is

ψ̂e =

(
r3 − A1

2
− A2

2r2

)
cos θ sin2 θ, (58)

P̂e = − αe
2r3

A1 (1 + 3 cos(2θ)) , (59)

where ψe is the stream function and Pe is the pressure for the external fluid. Altogether there

are five coefficients (A1, A2, d1, d2, d3) to be determined by the five boundary conditions

14



in Equations (44)-(48). We focus on parameter combinations that pertain to the small-

deformation assumption. The expression for the five coefficients are given in Appendix B.

FIG. 2. Left: Illustration of a slightly deformed poroelastic drop under a uniaxial extensional flow.

φ0 = 0.5, Λ = 1/3, and αe = 0.005. Dashed line is the original spherical drop shape. Thick solid

line is the equilibrium drop shape. (β, η) = (0, 0). Right: Stream lines in the first quadrant for two

sets of (β, η) as labeled.

Figure 2 is a two-dimensional cross section (x − z plane) of the equilibrium drop shape

from the steady linear solutions in Equations (56)-(57) with Λ = 1/3, αe = 5 × 10−3 and

φ0 = 0.5. On the x− z plane, the uniaxial extensional flow (equation (36)) converges along

the vertical (x) axis and diverges along horizontal (z) axis, as indicated by the arrows outside

the drop. Starting from a spherical shape (dashed curve), the drop is compressed in the

x-axis and stretched in the z-axis to the equilibrium shape (thick curve). The magnitude of

radial displacement is defined as the maximum of deformation as illustrated.

Despite the similarity in the deformed shape between a poroelastic drop and a viscous

drop (see figure 14 in Appendix A), the flow inside the drop is very different: For a viscous

drop the exterior extension flow goes around the drop and an interior flow of four vortices is

induced. The strength of the interior flow is inversely proportional to the viscosity contrast.

The larger the interior viscosity the smaller the flow strength, as shown in figure 14. For

a poroelastic drop the interior flow depends on the interfacial permeability η. When the

interfacial permeability η = 0, there is no flow inside the drop and the extension flow goes

around the drop as shown in the left of figure 2. This is similar to the large viscosity ratio

limit case of figure 14(c). For non-zero interfacial permeability the flow can go into the

drop around the pole and an interior flow develops as shown in the right panels, where the

gradient of the stream function is discontinuous on the boundary because η 6= 0.
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FIG. 3. Radial displacement (ûs · r̂) of a poroelastic drop in a uniaxial extensional flow. Λ = 1/3,

φ0 = 0.5 and αe = 0.005. (a) radial displacement versus β for three values of η as labeled. (b)

radial displacement versus η for three valeus of β as labeled.

The streamlines in the right panels of figure 14 (calculated from a matlab subroutine

streamslice) show that the flow penetrates the drop around x = 1 (pole) and leaves the

drop around z = 1 (equator). We note that, in the small-deformation framework, the

velocity boundary conditions are evaluated at the unperturbed shape (r = 1, dashed curve

in figure 2). The deformed shape is a consequence of such solution, which does not satisfy

the boundary conditions on the deformed drop shape (thick curves in figure 2). Following

the arrows of streamlines inside the drop from the pole to the equator, we observe that the

flow turns more along the tangent along the drop boundary as it exits the drop. We also

observe that, as η increases from 0.1 to 100, there is more flow going through the drop while

a slightly smaller radial displacement is found.

Figure 3 shows the magnitude of equilibrium radial displacement plotted against β (panel

(a)) and η (panel (b)) with Λ = 1/3, αe = 0.005 and φ0 = 0.5. For these parameter

values, the radial displacement appears to depend only weakly on β as shown in figure 3(a).

Note how the displacement asymptotes to an equilibrium value with increasing β and η.

Note also how increasing the permeability η decreases the displacement. The slip effect on

the equilibrium drop deformation under an extension flow has been investigated in various

contexts: For a viscous drop the interfacial slip is found to always reduce the equilibrium

drop deformation [62]. For a viscoelastic drop in a viscoelastic medium, the interfacial slip

is found to increase the drop deformation [63]. Here we observe that the poroelastic drop

behaves more like a viscoelastic drop when it comes to slip effect on the drop deformation.

Figure 4 shows the inflow in the first quadrant defined as

inflow in first quadrant =
1

2

∫ 2π

0

∫ π/2

0

|V|Γt · r̂| sin θdθdφ, (60)

where the integral without the absolute sign would vanish due to symmetry of the pertur-

bation, and hence the combination of factor 1/2 and the absolute value sign gives the net

inflow, which is exactly equal to the out-flow in the first quadrant. We observe that the net
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FIG. 4. Inflow into a poroelastic drop in a uniaxial extensional flow as a function of η (panel (a))

and β (panel (b)). Λ = 1/3, αe = 0.005 and φ0 = 0.5.

FIG. 5. Variation of radial displacement (panel (a)) and inflow (panel (b)) with respect to porosity

φ0. Λ = 1/3, and αe = 0.005. The interfacial slip β = 0 for results in panel (b).

inflow increases with both interfacial slip and permeability.

Figure 5 illustrates the effects of φ0 on the radial displacement (panel (a)) and the inflow

(panel (b)) at equilibrium. As φ0 → 0 the drop interior becomes an elastic network (of large

bending moduli) that deforms slightly in response to the exterior flow. When φ0 → 1 the

drop interior is nearly filled with fluid and will undergo very large deformation as there is

no surface tension to resist deformation due to the exterior flow. As a result we focus on the

range of φ0 ∈ [0, 0.5] where the equilibrium radial displacement is in the small-deformation

regime. Figure 5(b) shows the φ0-variation of inflow for three values of η with β = 0.

Consistent with results in figure 4, we observe that the inflow increases significantly with η

from curve 3 (η = 1) to curve 2 (η = 5), and eventually plateaus to curve 1 for very large

value of η. Similar behavior with η is observed for non-zero β.
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FIG. 6. Left: Illustration of a poroelastic drop in a planar shear flow V = (γ̇y, 0, 0). Right:

Decomposition of a planar shear flow into a straining component and a rotational component.

C. Planar shear flow

Figure 6 is an illustration of a drop in a planar shear flow with polar angle θ and azimuthal

angle φ defined as labeled. A planar shear flow consists of a straining (compression and

elongation) and a (rigid body) rotation. For a poroelastic drop in a planar shear flow the

interior equilibrium solution takes the form

p̂ =
1

2
d1r

2 sin2 θ sin(2φ), (61)

ûs · r̂ =

(
1

7(1− Λ)(1− φ0)
d1r

3 + d3r +
2Λ

7 + 3Λ
d4r

3

)
sin2 θ sin (2φ) , (62)

ûs · θ̂ =

(
5

21(1− Λ)(1− φ0)
d1r

3 + d3r +
1

3
d4r

3

)
sin θ cos θ sin (2φ) , (63)

ûs · φ̂ =

(
−r

2
t+

(
5

21(1− Λ)(1− φ0)
d1r

3 + d3r +
1

3
d4r

3

)
cos (2φ)

)
sin θ. (64)

r̂, θ̂ and φ̂ are the unit vectors in the r, θ, and φ directions, respectively. Note that now

Equation (64) has a linear term −r
2
t. This linear term represents a rotation of the deformable

elastic network induced by the external planar shear flow under the small-deformation frame-

work. Within the small-deformation framework, such linear temporal variation of ûs · φ̂
should be understood as a rotation along φ̂ on the unperturbed shape (a unit sphere.) The

corresponding network rotation velocity at equilibrium is v̂s = −r/2 sin θφ̂, which is a rigid

body rotation and does not cause any viscous dissipation. Such rotation is also present in

a viscous drop under a planar shear flow. We note that in the steady equilibrium solution

(p̂ and ûs in the above equations) the components with a di dependence contribute to the

elastic stress that is in balance with the pressure gradient.
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The general solution for the exterior Stokes flow takes the form

V̂ · r̂ =
1

20r4

(
6C3 + 5C1r

2 + 10r5
)

sin2 θ sin(2φ), (65)

V̂ · θ̂ =
1

20r4

(
−2C3 + 5r5

)
sin(2θ) sin(2φ), (66)

V̂ · φ̂ = − 1

10r4

(
5(2C4r

2 + r5) + (2C3 − 5r5) cos(2φ)
)

sin θ, (67)

P̂ =
αe
2r3

C1 sin2 θ sin(2φ). (68)

The coefficient C4 is zero, as expected from the small deformation analysis of a viscous

drop in a planar shear flow. Altogether there are five coefficients (d1, d3, d4, C1, C3) to be

determined from seven boundary conditions (Equations (44)-(48) in three dimensions), from

which there are only five linearly independent equations (similar to the small-deformation

analysis of a viscous drop). The coefficients are listed in Appendix C.

FIG. 7. Flow around a slightly deformable poroelastic drop under a simple shear flow with φ0 = 0.5,

Λ = 1/3, αe = 0.01 and (β, η) = (0, 0). (a): Cross section on the x− y plane where the shear flow

lies. Dashed curve is the initial spherical drop shape, and thick curve is the equilibrium deformation.

The diagonal dash-dotted curve is the elongation axis in the shear flow (see figure (6)). (b): Three-

dimensional rendition of ûs · r̂. The color bar represents the magnitude of the radial displacement.

Figure (7)(a) visualizes the flow around a poroelastic drop under a shear flow with no

interfacial slip β = 0 and interfacial permeability η = 0. In this case the displacement field

is independent of the z-coordinate and we illustrate the flow and deformation on the x− y
plane. As in § III B, the small-deformation velocity field satisfies the boundary conditions on

the unperturbed spherical drop surface. For β = 0 and η = 0, we expect the streamlines to

circle around the unperturbed spherical drop (thick dashed curve in figure (7)(a)). The thick

solid curve is the x − y cross section of the equilibrium drop shape. The thin dash-dotted

line is the elongation axis of a simple shear flow (see figure (6)).

In comparison with the flow around/in a viscous drop under a simple shear flow shown

in figure (15) of Appendix A, we observe that the rotation of the network enhances the
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FIG. 8. Flow around a slightly deformable poroelastic drop under a simple shear flow with φ0 = 0.5,

Λ = 1/3, αe = 0.01 and (β, η) = (0, 0). (a): Three-dimensional rendition of ûs · θ̂. (b): Three-

dimensional rendition of ûs · φ̂. The color bar represents the magnitude of the displacement.

vorticity inside a poroelastic drop, and the interior flow is more similar to a viscous drop

with high interior viscosity. Figure (7)(b) is the contour plot of the radial displacement on the

deformed poroelastic drop, and the color bar is for the magnitude of the radial displacement.

Figure (8) shows the other two components of the displacement field (θ component in panel

(a) and φ component in panel (b)). Note that for the φ component we only plot the time-

independent component of the displacement. We observe that both ûs · r̂ and ûs · θ̂ reach

maxima along the elongation axis.

FIG. 9. Illustration of a slightly deformed poroelastic drop under a uniaxial extensional flow. Thin

dashed line is the original spherical drop shape. Thick solid line is the equilibrium drop shape.

Arrows between the two shapes indicate the equilibrium displacement field ûs evaluated at r = 1.

(a): (β, η) = (102, 0). (b): (β, η) = (103, 10).

As we increase the interfacial slip from β = 0 in figure 7 to β = 102 with η = 0, we

find no significant difference in the flow pattern in figure (9)(a). However, a different flow
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FIG. 10. Radial displacement (ûs · r̂) evaluated at r = 1 with Λ = 1/3, αe = 0.005 and φ0 = 0.5.

(a) radial displacement versus β for three values of η as labeled. (b) radial displacement versus η

for three values of β as labeled.

FIG. 11. Inflow into the first quarter of a poroelastic drop in a planar shear flow plotted against

interfacial permeability η (panel (a)) and interfacial slip β (panel (b)). Λ = 1/3, φ0 = 0.5, and

αe = 0.005.

pattern is observed when the interfacial permeability is increased to η = 10 in panel (b).

When the interfacial permeability η 6= 0 fluid flow (streamlines) can go through the drop

(the unperturbed shape denoted by thick dashed curves in figure (9)(b)). As a result of the

permeating fluid flow the vorticity inside the drop takes an ellipsoidal shape. In addition,

we observe a recirculation zone around the x-axis separating the up-streaming flow from

down-streaming flow.

Figure 10 shows the radial displacement evaluated at the unperturbed drop surface (r =

1) as a function of interfacial slip (panel (a)) or interfacial permeability (panel (b)) with

φ0 = 0.5, Λ = 1/3 and αe = 0.005. As in the previous extensional flow case, the displacement

asymptotes to a constant value with increasing β and decreases with increasing η. Figure (11)

shows the inflow in the first quadrant defined in Equation (60) for the planar shear flow case.
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FIG. 12. Variation of radial displacement (panel (a)) and inflow (panel (b)) with respect to porosity

φ0. Λ = 1/3, and αe = 0.005. The interfacial slip β = 0 for results in panel (b).

We observe that the net inflow increases with both slip and permeability, similar to the case

of uniaxial extensional flow. For the same values of the dimensionless parameters (αe, Λ, β

and η) the extension flow gives rise to larger inflow than the simple shear flow.

Figure 12 illustrates the effects of φ0 on the equilibrium radial displacement (panel (a))

and the inflow (panel (b)) for a poroelastic drop in a simple shear flow. Comparing with

results for the extension flow, we find that the radial displacement magnitude is smaller for

the simple shear flow case with a similar trend in their dependence on both β and η.

D. Linear Dynamics

Similar to the case of a slightly deformable viscous drop in linear flows, the steady equi-

librium solution for a slightly deformed poroelastic drop is obtained from solving a non-

homogeneous equation. For a viscous drop in linear flows, the kinematic boundary condi-

tion gives rise to a first-order differential equation for the deformation amplitude that decays

exponentially to the steady equilibrium. There is only one decay rate for a viscous drop,

and it depends only on the viscosity ratio between internal and external viscous fluids. This

is not the case for a poroelastic drop where the kinematic boundary condition is not suffi-

cient for determining the linear dynamics characterized by a linear growth rate ω. Instead

the homogeneous component of the general solution in Equation (54) produces a nonlinear

eigenvalue problem for ω.

The time dependent linear solutions for a poroelastic drop in a uniaxial extensional flow

and a planar shear flow are given in Appendix D and Appendix E, respectively. The two

functions g1 and g2 satisfy differential equations with variable coefficients. See Supplemental

Material at [URL will be inserted by publisher] [64] for these differential equations. Assuming

Frobenius series, we obtain the following series solutions for g1 and g2 with coefficients that
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FIG. 13. Eigenvalue ω as a function of φ0 with Λ = 1/3 and αe = 10−2. (a) (β, η) = (0, 0), (b)

(β, η) = (102, 0), and (c) (β, η) = (0, 10).

depend on the eigenvalue ω:

g1(r) = r5 +
2ω̄

99
r7 +

5ω̄2

20592
r9 +

ω̄3

514800
r11 + · · · , (69)

g2(r) =
28

ω̄
r3 − 1

3
r5 − ω̄

198
r7 − ω̄2

20592
r9 − ω̄3

3088800
r11 + · · · , (70)

where ω̄ ≡ ω/φ0. For the uniaxial extensional flow case, the coefficients (a1, a2) in Equations

(D6)-(D7) can be expressed in terms of (α1, α3, α5). For the planar shear flow case, the

coefficients (c1, c3) in Equations (E8)-(E11) can be eliminated as well. For both uniaxial and

shear flow, the the resultant system of linear equations for (α1, α3, α5) are thus a nonlinear

eigenvalue problem for ω:

A

 α1

α3

α5

 = ωB(ω)

 α1

α3

α5

 . (71)

Solutions of Equation (71) for ω describe the linear dynamics of a poroelastic drop in

the small-deformation limit. Identical matrixes A and B are obtained for both the uniaxial

extensional flow and the planar shear flow: This is consistent with the small-deformation

dynamics of a viscous drop in linear flows. This means that the same eigenvalues are expected

for both the uniaxial extensional flow and the planar shear flow. See Supplemental Material

at [URL will be inserted by publisher] [64] for the characteristic equations in matrix form.

Figures (13) show the first three eigenvalues from solving the nonlinear eigenvalue problem

in Equation (71) for three cases with different combination of β and η. For all these results,

sufficient terms in the power series for g1 and g2 are used to guarantee convergence in

finding the eigenvalue ω. For all three combinations of (β, η), we calculate the eigenvalues

for φ0 ∈ (0, 0.5) where the small deformation assumption is valid. Our computation also

shows that all eigenvalues of Equation (71) are negative, implying that the steady equilibrium

solutions that we found are stable. This is similar to the case of a slightly deformable viscous

drop stabilized by a strong surface tension.
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IV. CONCLUSIONS AND ONGOING RESEARCH

In this work we develop a two-phase flow model for a poroelastic fluid that consists

of an elastic network fully immersed in a viscous fluid. This model is equivalent to the

incompressible Brinkmann equations when the network is rigid and does not move in the

reference frame. If the viscous dissipation in the poroelastic fluid is sub-dominated by the

pressure gradient force and the friction force, our two-phase flow model is reduced to Darcy

flow with a deformable network phase. Appropriate boundary conditions at the boundary

between the biphasic poroelastic fluid and a viscous Stokes flow are derived by the free

energy dissipation principle.

Applying this model to the small-deformation dynamics of a poroelastic drop under linear

flows, we are able to find steady equilibrium solutions and examine the effects of interfacial

slip and permeability on the radial displacement and the flow around the drop. Under a

uniaxial extensional flow, non-zero interfacial permeability gives rise to an interior flow,

coming into the drop along the compression axis and leaving the drop along the extension

axis. Under a planar shear flow, the network rotates with the vorticity in the shear flow. Such

a rigid-body rotation is the dominant interior flow at a steady equilibrium in the absence of

permeability. Different flow patterns develop around the drop more due to the interfacial slip

than permeability. In general we find that the radial displacement decreases with increasing

interfacial permeability, while interfacial slip enhances the radial displacement.

The kinematic boundary condition for a poroelastic drop governs the interface moving

with the normal component of the network velocity at the interface. This renders the

eigenvalue problem nonlinear and we are able to compute the first three eigenvalues. We

find that the eigenvalues are the same for both extensional and shear flow, and all the

eigenvalues are real and negative. These are similar to the small-deformation dynamics of a

viscous drop in linear flows.

In the small-deformation limit we assume that the unperturbed volume fraction for the

fluid phase is homogeneous. This simplification avoids the complication of having to solve a

linear system of variable-coefficient boundary value equations. In addition this simplification

greatly reduces the porosity dependence on the volume fraction. Based on results from

MacMinn et al. [47] a nonhomogeneous initial volume fraction and a more complicated

porosity may not alter the linear dynamics and steady equilibria significantly.

Although our two-phase flow model does not capture the complexity of many biologi-

cal poroelastic fluids of interest, one expectation is that this approach can be generalized

to consider more complex situations such as the swelling and drying due to chemical re-

action, polyelectrolytic properties of the solvents in gel-like solutions, and the nonlinear

elastohydrodynamics when the displacement amplitude is large. These are all promising di-

rections that we plan to apply our model to after we validate our small-deformation results

by comparing against direct numerical simulation results. Currently we are conducting the

small-deformation analysis on a soft Brinkman drop (that may be more appropriate for low

volume fraction φs < 5%, see the derivations in Caflisch and Rubinstein [1]) in linear flows.
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FIG. 14. Cross section (x = 0 plane) of a viscous drop in a uniaxial extension flow. The dashed

curve is the original spherical shape, and the thick curve is the equilibrium drop shape with

Ca = 0.1. The viscosity ratio (interior to exterior) is 10−2, 1 and 103 from left to right.
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Appendix A: A viscous drop in linear flow

For comparison here we show the equilibrium solution of a viscous drop in both a uniaxial

extension flow and a simple shear flow. The strong surface tension (small capillary number

Ca� 1) balances the viscous stress under a fluid flow. The equilibrium small-deformation

solutions are available in the literature and here we used the equilibrium solution from [42]

for the following figures.

Under a uniaxial extension flow U∞ = E(x, y,−2z), the small-deformation solution is

symmetric around the z axis and we show the equilibrium drop shape and flow in the y− z
plane in figure (14). The interior flow pattern consists a pair of dipole vortices of strength

that decreases with the increasing viscosity ratio.

For a viscous drop under a simple shear flow U∞ = γ̇(y, 0, 0) the drop shape depends on

both θ and φ. Here we show the small-deformation solution in the z = 0 plane in figure (15).

We observe that the strength of flow around the y = 0 axis increases as the interior fluid

viscosity increases.
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FIG. 15. Cross section (z = 0 plane) of a viscous drop in a simple shear flow. The dashed curve

is the original spherical shape, and the thick curve is the equilibrium drop shape with Ca = 0.1.

The viscosity ratio (interior to exterior) is 10−2, 1 and 103 from left to right.

Appendix B: Steady Equilibrium under a Uniaxial Extensional Flow

For a poroelastic drop at the steady equilibrium under a uniaxial extensional flow, the

coefficients are

d1 =− 50(4β + 1)η

7(1− Λ)(5βηφ0 − 5βη − 48βηφ0 − 10βφ0 + 2ηφ0 − 2η − 24ηφ0 − 4φ0)
, (B1)

d2 =
Nd2

Dd2

, (B2)

Nd2 =15(40βηΛφ0 − 40βηΛ + 24βηφ0 − 24βη − 72βΛφ0 − 56βφ0+

13ηΛφ0 − 13ηΛ− 48ηΛφ0 + 6ηφ0 − 6η − 24Λφ0 − 14φ0),

Dd2 =(1− Λ)(12Λ + 7)(φ0 − 1)(5βηφ0 − 5βη − 48βηφ0 − 10βφ0+

2ηφ0 − 2η − 24ηφ0 − 4φ0),

d3 =
Nd3

Dd3

, (B3)

Nd3 =9(3Λ + 7)(−32βηΛφ0 + 32βηΛ− 32βηφ0 + 32βη + 280βφ0−
8ηΛφ0 + 8ηΛ + 27ηφ0 − 27η − 560ηφ0),

Dd3 =7Dd2 ,

A1 =
10(βηφ0 − βη + 16βηφ0 − 2βφ0 + ηφ0 − η − 8ηφ0 − 2φ0)

5βηφ0 − 5βη − 48βηφ0 − 10βφ0 + 2ηφ0 − 2η − 24ηφ0 − 4φ0

, (B4)

A2 =− 6(16βηφ0 + ηφ0 − η − 12ηφ0 − 2φ0)

5βηφ0 − 5βη − 48βηφ0 − 10βφ0 + 2ηφ0 − 2η − 24ηφ0 − 4φ0

. (B5)
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Appendix C: Steady Equilibrium under a Planar Shear Flow

For a poroelastic drop at the steady equilibrium under a planar shear flow, the coefficients

are

C1 =− 10(βη(φ0 − 1) + 16βηφ0 − 2φ0(β + 4η) + η(φ0 − 1)− 2φ0)

5βη(φ0 − 1)− 48βηφ0 − 2φ0(5β + 12η) + 2η(φ0 − 1)− 4φ0

, (C1)

C3 =
5(16βηφ0 + η(φ0 − 1)− 12ηφ0 − 2φ0)

5βη(φ0 − 1)− 48βηφ0 − 2φ0(5β + 12η) + 2η(φ0 − 1)− 4φ0

, (C2)

d1 =
10(4β + 1)η(φ0 − 1)

−5βη(φ0 − 1) + 48βηφ0 + 2φ0(5β + 12η)− 2η(φ0 − 1) + 4φ0

, (C3)

d3 =
Nd3

Dd3

, (C4)

Nd3 =− 5(2(20βηΛ(φ0 − 1) + 12βη(φ0 − 1)− 12Λφ0 − 7φ0)−
8φ0(9βΛ + 7β + 6ηΛ) + η(13Λ + 6)(φ0 − 1)),

Dd3 =(1− Λ)(12Λ + 7)(φ0 − 1)(5βη(φ0 − 1)− 48βηφ0 − 2φ0(5β + 12η) + 2η(φ0 − 1)− 4φ0),

d4 =
3(3Λ + 7)(32βη(Λ + 1)(φ0 − 1)− 280φ0(β − 2η)− η(27− 8Λ)(φ0 − 1))

7Dd3

. (C5)

Appendix D: Linear solutions under a Uniaxial Extensional Flow

The displacement field is given by

us,1 · r̂ =
h0(r)

3
(1 + 3 cos(2θ)) eωt, (D1)

us,1 · θ̂ = h1(r) sin(2θ)eωt, (D2)

and the flow field is given by

p1 =
(1− φ0)

12r
[(8(1 + ωµs)h0 + 2(1 + Λ + ωµs)rh

′
0) + (D3)(

12(1 + ωµs)h1 − 2(1− Λ + ωµs)rh
′
1 − 2(1− Λ + ωµs)r

2h′′1
)]

(1 + 3 cos(2θ)) eωt,

h0 = α1r + α3r
3 + α5g1(r), (D4)

h1 = −α1r −
5

3
α3r

3 + α5g2(r), (D5)

ψe,1 =
(a1

2
− a2

2r2

)
cos θ sin2 θeωt, (D6)

P1 = − αe
2r3

a1 (1 + 3 cos(2θ)) eωt. (D7)
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Appendix E: Linear solutions under a Planar Shear Flow

The displacement field is given by

us,1 · r̂ = f0(r) sin2 θ sin(2φ)eωt, (E1)

us,1 · θ̂ =
f1(r)

2
cos(2θ) sin(2φ)eωt, (E2)

us,1 · φ̂ = f1(r) sin θ cos(2φ)eωt, (E3)

(E4)

and the flow field is given by

p1 =
(1− φ0)

4r
[(8(1 + ωµs)f0 + 2(1 + Λ + ωµs)rf

′
0)− (E5)(

12(1 + ωµs)f1 − 2(1− Λ + ωµs)rf
′
1 − 2(1− Λ + ωµs)r

2f ′′1
)]

(1 + 3 cos(2θ)) eωt,

f0 = α1r + α3r
3 + α5g1(r), (E6)

f1 = α1r +
5

3
α3r

3 − α5g2(r), (E7)

V1 · r̂ =
1

20r4

(
c3 + 5c1r

2
)

sin2 θ sin(2φ)eωt, (E8)

V1 · θ̂ = − 1

10r4
c3 sin(2θ) sin(2φ)eωt, (E9)

V1 · φ̂ = − 1

10r4

(
10c4r

2 + 2c3 cos(2φ)
)

sin θeωt, (E10)

P1 =
αe
2r3

c1 sin2 θ sin(2φ)eωt. (E11)
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