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Dense particulate suspensions can not only increase their viscosity and shear thicken under exter-
nal forcing, but also jam into a solid-like state that is fully reversible when the force is removed. An
impact on the surface of a dense suspension can trigger this jamming process by generating a shear
front that propagates into the bulk of the system. Tracking and visualizing such a front is difficult
because suspensions are optically opaque and the front can propagate as fast as several meters per
second. Recently, high-speed ultrasound imaging has been used to overcome this problem and ex-
tract two-dimensional sections of the flow field associated with jamming front propagation. Here we
extend this method to reconstruct the three-dimensional flow field. This enables us to investigate
the evolution of jamming fronts for which axisymmetry cannot be assumed, such as impact at an-
gles tilted away from the normal to the free surface of the suspension. We find that sufficiently far
from solid boundaries the resulting flow field is approximately identical to that generated by normal
impact, but rotated and aligned with the angle of impact. However, once the front approaches the
solid boundary at the bottom of the container, it generates a squeeze flow that deforms the front
profile and causes jamming to proceed in a non-axisymmetric manner.

As non-Newtonian fluids, dense particulate suspensions show rich mechanical properties, including continuous
shear thickening (CST) [1–3] and discontinuous shear thickening (DST) [4–6], whereby their viscosities can
increase dramatically under shear. In extreme cases, they can even transform into a jammed solid [7–9] capable
of supporting large applied stress, which “melts” and reverts back to the fluid state after the stress has been
removed [10–14]. Because of this property, dense suspensions have been applied as protection devices against
impact or penetration, such as stabbing [15]. Another area of research where the stress response of dense
suspensions is of interest is locomotion on, or through, terrain comprising fully liquid-saturated sand or mud,
which is important for animals as well as wheeled or legged robots [16–19].
Currently, the transient stress response that determines the behavior during sudden application of mechanical

loads and the associated transformation into a jammed solid are still much less understood than the dynamics of
dense suspensions under steady-state forcing [20–23]. Previous experiments have shown that jamming proceeds
via fronts of localized, intense shear, which spread out from the point of forcing, rapidly propagate into the
suspension, and change the suspension from a fluid to a solid-like state. Different types of forcing, such as impact,
shear, and extension, were observed to generate similar dynamic jamming fronts [10, 11, 24–26]. However, in
all of these cases it was sufficient to perform two-dimensional (2D) imaging of the evolution of the associated
flow field, given its axial or radial symmetry. When such symmetry is no longer assumed, such as during angled
intrusions, the ability to track the flow field in all three dimensions becomes important. This is challenging for
dense suspensions, because typically they are optically opaque while a high frame rate is required to resolve the
flow due to the fast front propagation speed. Last but not least, the front propagates deep into the bulk, so the
scope of view needs to be large enough to capture the whole flow field.
Here we show how high-speed ultrasound imaging can be used to acquire three-dimensional (3D) flow fields

in dense suspensions. For example, diffusion acoustic wave spectroscopy (DAWS) was developed to measure
relative velocity and strain rate in suspensions [27]. Combined with standard rheology, ultrasound speckle
velocimetry has been used to measure steady flows in suspensions [28, 29]. Furthermore, recent experiments
demonstrated that ultrasound is capable of imaging fast transient flows in dense suspensions [24, 26]. These
former experiments imaged 2D slices through the interior of a 3D suspension. Here we extend this approach
to extract the 3D flow field by stitching together spatially offset slices, each with a frame rate up to 10,000
s−1. We apply this method to image the transient flows inside dense suspensions that result from impact at
different incident angles. This allows us to address the question to what extent these flows, and the associated
jamming fronts, retain axisymmetry along the propagating direction and how they deform when approaching a
solid boundary.
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FIG. 1: Experimental setup. (a) The suspension sample is placed in a cylindrical container. An impactor motivated
by an actuator is placed above the suspension. An ultrasound transducer is placed under the container, held by an
optical stage. (b) Examples of the B-mode images obtained at different y positions by moving the ultrasound transducer.
Relevant dimensions of the setup are labeled in the figure.

I. EXPERIMENTAL METHODS

Our experiment studies impact at a suspension-air interface through ultrasound imaging and reconstruction
of the resulting flow in three dimensions. The experimental setup is schematically illustrated in Fig. 1. The
suspension was contained in a cylindrical vessel with an inner diameter of 10 cm. The impactor was driven by
a linear actuator (SCN5, Dyadic Systems) mounted above the container. The incident angle θI

1, defined as the
angle from the negative z axis to the incident direction, and the impact speed Up were both adjustable. The
plane in which the impactor rotated and moved was aligned with the center of the container, and we define
this plane as the y = 0 plane. The head of the impactor was a hemisphere, so that it contacted the suspension
surface in the same manner regardless of θI. An ultrasound transducer (Philips L7-4) was placed underneath
the bottom of the container and coupled to it acoustically through a layer of ultrasound gel. The transducer
was a linear array of 128 piezoelectric elements aligned along the x direction. Mounted on a translation stage,
it could be moved to different y positions with a resolution of 25 µm).
The suspensions were prepared by dispersing dry cornstarch particles in an aqueous solvent. The solvent

was made by mixing 398.0 ± 0.1 g cesium chloride (CsCl), 250.0 ± 0.1 g water and 250 ± 0.1 g glycerol. The
density of the solvent was adjusted to match the density of the granules, which is 1.63 g/cm3. The mass ratio
φm = mcs/(mcs +msol) was 0.43, where mcs and msol are the mass of cornstarch and the solvent, respectively.
Air bubbles trapped in the suspension are strong scatterers of sound waves, which can significantly limit the
penetration depth of the acoustic signal. Therefore, we de-bubbled the suspensions before imaging by placing
them in a sealed container and shaking them at 3 Hz for two hours.
In the experiments reported here, the impactor pushed into the surface of the suspensions with a constant

speed set at Up = 200 mm/s. The impact angle θI was varied from 0◦ to 40◦. The ultrasound system was
triggered and started to acquire 500 consecutive images at a frame rate of 4,000 s−1 when the impactor reached
a position 5 mm above the suspension surface (the Verasonics ultrasound system we used is capable of imaging
up to 10,000 frames per second). Each acquisition generated a two-dimensional (2D) slice in the x-z plane.
For vertical impact, 2D images at y = 0 mm (directly below the impactor) are sufficient to reconstruct the 3D
flow field because of its rotational symmetry [24]. In order to visualize non-axisymmetric 3D flow under tilted
impact, we moved the transducer along the y axis as shown in Fig. 1 (b), and combined the 2D slices obtained
from different y-positions. At each θI, the transducer was moved from y = 0 mm to y = 20 mm, in increments
of 5 mm. At each y, the impact experiment was repeated 3 to 9 times. After every impact, the suspension was
fully relaxed by gently shaking and rotating the container. The accumulated data were used to reconstruct an
averaged 3D flow field for each θI.

1 In cylindrical coordinates, this incident angle corresponds to a polar angle, which is normally represented by ϕ, and the notation
θ normally represents the azimuthal angle. Since in literature ϕ or φ usually represent the packing fraction of suspensions, in
this paper we use θ to represent the polar angle.
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FIG. 2: Velocity isosurfaces under impact from θI = 10◦. The orange, green, blue, and red surfaces are the isosurfaces
of vL = 0.4Up at four consecutive time steps. The time difference between adjacent isosurfaces is 3.7 ms. The surface of
suspension is at z = 0.03 m. Curves at the bottom outline the projections of these isosurfaces in the x-y plane.

II. IMPACT-ACTIVATED FRONTS

To obtain the flow field, we used reconstructed B-mode images with trackable speckle patterns, whose motions
represent the flow. A particle imaging velocimetry (PIV) algorithm was used to extract local velocities v =
(vx, vz) from successive 2D images. We then calculated the longitudinal and transverse components vL and vT
with respect to the incident direction as

vL = vxsinθI + vzcosθI,

vT = vxcosθI − vzsinθI.
(1)

Fig. 2 shows the velocity isosurfaces at vL = 0.4Up at four different times, obtained from the reconstructed 3D
flow [30]. The impactor moved in the y = 0 plane, hitting the suspension surface at z = 0.03 m, and in this
example, the incident angle was θI = 10◦. Because the suspension thickened dramatically, the impactor did not
penetrate significantly, but mainly caused a deformation of the suspension surface [10]. Under the impactor, a
transient flow developed in the form of a front, which propagated outward in all directions x, y, and z. It is
this front that transforms the suspension from a fluid (ahead of the front) to a highly viscous, solid-like state
(behind the front).
An impact event has two stages: The first stage is the free propagation regime, where the front is sufficiently

far away from any solid boundary (bottom and side walls of the container). In this regime the front propagates
much faster than the impactor speed [24]. In the example shown here it travels roughly 10 times as fast, i.e.,
it penetrates the whole depth of the suspension (3 cm) while the impactor pushes merely 3 mm down from
the original surface position. As the front approaches the bottom, the already highly viscous, slowly deforming
suspension behind the front is squeezed even more so that it turns into a jammed solid, ceases motion completely,
and causes a dramatic increase in the force applied on the impactor [10, 31]. We call this the interaction regime
between the front and the bottom2.
The reconstructed 3D flow field provides comprehensive visualization of this whole process, but most features

are captured by the x-z plane at y = 0 mm. The flow fields in the y = 0 mm plane at three different angles
θI = 0◦, 20◦, and 40◦ are presented in Fig. 3. Each row corresponds to a different θI, and contains three
succeeding time frames during the collision. In all these plots, the color map is based on the velocity component
in the longitudinal direction vL.
The top row in Fig. 3 corresponds to impact normal to the suspension surface (θI = 0◦). As mentioned

above, the transient flow propagates in both longitudinal and transverse directions in the form of a front. In

2 In our experiments, the side wall of the container is further away (5 cm) from the impactor than the bottom (3cm), so we only
consider the interaction with the bottom.
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FIG. 3: Velocity field in the x-z plane and isocontours for vL during impact at time t=6.25 ms (a,d,g), 9.5 ms (b,e,h), and
12.75 ms (c,f,i). The surface of the suspension and the bottom of the container are at z = 0.03 m and 0 m, respectively.
The green arrows label local velocities in the x-z plane. The colors show vL, with the upper limit (white) corresponding
to Up. The impactor hits the suspension at incident angles θI = 0◦ (a-c), θI = 20◦ (d-f), and θI = 40◦ (g-i). The hollowed
black arrows show directions of impact, with exaggerated penetration depths.

the bright region, the local velocities are almost all vertical, and their magnitudes are close to Up, with very
small gradients. In the dark region, the suspension flows at much slower velocities. This leads to a sharp
velocity gradient right on the edge of the bright region, which corresponds to both a large shear rate and a
quick acceleration of the suspension. For Newtonian fluids, a larger shear rate leads to larger stress. However,
shear thickening and shear jamming are controlled by stress instead of shear rate [11, 20]. Here, the suspension
in the bright region has been turned into a highly viscous fluid by the impact-induced stress, as well as by
reconfiguration of particles due to the accumulated strain [24], and as a result, it is able to bear large stress at a
small shear rate. According to experiments with a simpler geometry, in these bright regions the suspension not
only shear thickens dramatically, but also evolves towards a shear jammed solid as the front keeps propagating
[32]. This is why we label such flows as impact-activated shear jamming fronts.
For oblique impact shown in Fig. 3 (d)-(f) at θI = 20◦ and (g)-(i) at θI = 40◦, similar fronts are generated,

though they are now tilted, lining up with θI. In the rest of the paper, we will take a closer look at the
similarities and differences between flows generated at different θI. In Section III, we will show that when the
front is sufficiently far from the bottom, its shape is independent of θI. In Section IV, we will map out the
shear rate distribution in the flow, and use it to explain the anisotropy of the front. In Section V, we will focus
on the shear flow generated when the front approaches and finally interacts with the bottom, and discuss its
effect on the jamming transition. All of these results reveal the importance of shear throughout the process of
impact-activated solidification.
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FIG. 4: Contours of vL = 0.4Up for θI ranging from 0◦ to 40◦, each rotated clockwise by θI accordingly. Each contour
is obtained by averaging over three to nine experiments. The impactor hits the surface of the suspension at x = 0 m,
z = 0.03 m, which is labeled by the cross, for all contours here after rotation. The dashed green line shows the impact
direction.

III. INVARIANT FRONT SHAPE DURING FREE PROPAGATION

From Fig. 3, we can see that during free propagation the front is tilted along the incident direction of
the impactor, while keeping a shape similar to that generated by upright impact. To demonstrate this more
quantitatively, we rotate contours at vL = 0.4Up clockwise through the corresponding angle θI, and plot results
obtained from one exemplary frame in Fig. 4 [33]. In this rotated frame, the impactor contacts the suspension
surface at point (x, z) = (0, 0.03) m as labeled and pushes vertically down for every θI. Within our experimental
uncertainties, the contours are found to overlap well. As θI varies, the relative angle between the incident
direction and gravity g changes, and the suspension surface curves in a different way. Nevertheless, they have
very limited effect on the flow generated inside the suspension. This means that to describe the free propagation
of impact-activated fronts at different θI, we can take full advantage of what we know about upright impact
[24].
To start with, we measured how fast the fronts propagated along the longitudinal and transverse directions.

Here we define the position of the front as the locations where vL = 0.4Up. Based on the 2D flow fields in the
y = 0 mm plane (Fig. 3), in each frame we plot out the isocontour that represents the front location (Fig. 4).
With each contour, we then find its furthest reaching points in the longitudinal and transverse directions, and
define their positions as the longitudinal and transverse front positions RfL and RfT, respectively. Both RfL

and RfT are linear functions of time and thus we obtain well defined front speeds UfL and UfT. Lastly, we define
dimensionless front propagation speeds kL and kT as

kL = UfL/Up − 1,

kT = UfT/Up,
(2)

where the “-1” in kL is to subtract the impactor speed itself.
Previous impact experiments at normal incidence [24, 32] have shown that as Up increases, kL and kT each

approach an asymptotic plateau that is independent of Up. For the suspension we used here, Up = 0.2 m/s was
fast enough to be in this plateau regime. From the experimental measurements, neither kL nor kT show any
apparent dependence on θI , and their ratio kL/kT ≈ 1.7 is a constant regardless of θI, as shown in Fig. 5. The
origins of this anisotropic front propagation speeds are the finite accumulated strain required for shear jamming
and the different types of shear in different directions, which will be discussed in detail in the following section.

IV. SHEAR RATE DISTRIBUTION AND ANISOTROPY IN FRONT PROPAGATION

With the flow field mapped out, we calculated the shear rate distribution in the system during free propaga-
tion. Given the invariance of the flow at different θI, we can now focus on the case of the upright impact, where
the system has a rotational symmetry in the azimuthal direction. In a system with rotational symmetry, the
strain rate tensor ε̇ can be written as

ε̇ =





∂vr
∂r

0 1
2 (

∂vr
∂z

+ ∂vz
∂r

)
0 vr

r
0

1
2 (

∂vr
∂z

+ ∂vz
∂r

) 0 ∂vz
∂z



 . (3)
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FIG. 5: (a) The kL and kT values (b) the ratio kL/kT at different incident angles θI. Error bars show the standard
deviation from multiple measurements at each angle. The horizontal dot dash lines in (a) indicate the average values
of kL and kT, which are 8.3 and 4.9, respectively. The horizontal dashed line in (b) indicates

√
3. The overall standard

deviations, using the data from all impact angles θI, are 2.3 for kL, 1.2 for kT, and 0.42 for kL/kT.
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FIG. 6: Four components in the shear rate tensor (Eq. 3). (a) ∂vr/∂r, (b) ∂vz/∂z, (c) 1/2 · ∂vz/∂r, (d) 1/2 · ∂vr/∂z.
Black curves show contours from vz = 0.1Up to vz = 0.9Up, with increment of 0.1Up. The contour at 0.5Up is highlighted
by the thick curves.

Four of the components in this matrix are shown in Fig. 6 for an exemplary flow. Large shear rate focuses
in a zone close to the front position, and the dominant term in Eq. 3 varies in different regions of the flow
field. In the longitudinal direction, the dominant terms are the diagonal terms. The suspension is compressed
in the vertical direction, and expands in the radial direction while keeping the total volume invariant, which
is analogous to pure shear in 2D. In the transverse direction, the dominant terms are the non-diagonal terms,
especially ∂vz/∂r. In this case the local velocity changes along the r direction, which is perpendicular to the
direction of the velocities themselves (in the z direction). This is analogous to simple shear in 2D, which is a
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and 9.5 ms after the tip of the impactor reached the surface of the suspension. The contours are defined in the same
way as Fig. 6. Panel (c) and the flow shown in Fig. 6 are at the same time point.
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FIG. 8: Maximum strain rate Ėmax (a) at different polar angle θ with respect to the initial contact point of the impactor
head and the suspension surface. Front width ∆46 (b), which is the distance between the contours of vz = 0.4Up and
vz = 0.6Up.

combination of pure shear and a rotation.
To compare the shear rates in different regions, we introduce the strain rate scalar Ė defined by

Ė =
√

(λ2
1 + λ2

2 + λ2
3) /2, (4)

where λ1, λ2, and λ3 are the eigenvalues of ε̇ (Eq. 3) [34]. The spatial map of Ė at four different time points

are shown in Fig. 7. As discussed above, Ė peaks very close to the front position where vz is approximately half
of Up. More importantly, Ė is almost invariant along the profile of the front, and it does not change with time

as the front develops. In Fig. 8(a), we plot the maximum scalar shear rate Ėmax at different angles θ, where θ

is the polar angle defined in Fig. 11 (See Appendix B for details). The light blue data show the map of Ėmax

from 5.5 ms to 10.5 ms after the impact started, and they show no significant variation over time. The open
black circles are the average of all the blue data. We can see that Ėmax is a constant independent of the polar
angle θ.
The fact that Ėmax is angularly invariant leads to an interesting consequence, which is that the width of

the front must change accordingly. As discussed above, the high shear rate zone is concentrated. Its width
is a characteristic length scale of the flow, and we call it the front width ∆. For a simple estimation, the
suspension accelerates from vz = 0 m/s to vz ≈ Up as the front passes across. The characteristic shear rate
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ε̇ in the high shear rate zone is ε̇ ∼ Up/∆ in the longitudinal direction θ = 0◦, and ε̇ ∼ 1/2 · Up/∆ in the
transverse direction θ = 90◦ (Eq. 3). To compensate for the pre-factor 1/2 in the non-diagonal terms and
achieve an angle-independent shear-rate distribution, the front width ∆ should be a function of the polar angle
θ: ∆(θ = 0◦) ≈ 2∆(θ = 90◦). To prove this, in Fig. 8(b) we plot out the distance between the contours at
vz = 0.4Up and vz = 0.6Up, which we call ∆46 (see details in Appendix B). Moving along the front profile, as
θ changes from 0◦ to 50◦, ∆46 decreases from 2.4 to 1.4. Limited by the poor quality of the ultrasound signals
obtained close to the suspension surface, we could not achieve measurements at higher θ, but the trend is clear
in Fig. 8.
Now let us revisit the anisotropy in the dimensionless front propagation speed k. Similar to the case of

the front width, the ratio between kL and kT is roughly 2 as well. In previous work [24, 32], we have shown
that in the high stress regime (fast impact), the speed with which a dense suspension shear jams is limited by
having to build up the finite shear strain for rearranging the particles into a jammed configuration. We assume
that this threshold strain is a scalar: when the suspension approaches this strain scale locally, its viscosity
increases dramatically and develops towards a jammed solid. For a suspension that evolves towards jamming,
the accumulated strain asymptotically adds up to

EJ =

∣

∣

∣

∣

∫ +∞

−∞

Ėdt

∣

∣

∣

∣

. (5)

The scalar strain EJ,
3 the velocity vector v, and the shear rate tensor ε̇ are connected by Eq. 3, Eq. 4, and

Eq. 5.
As discussed above, the front propagation along the longitudinal (z axis) and transverse (radial direction, close

to the surface) directions are the two most special cases. They each can be treated as a quasi-one-dimensional
problem. Taking advantage of the invariant shape of the front during the propagation, we can write

vz(z, t) = fL(z + (kL + 1)Upt),

vz(r, t) = fT(r − kTUpt),
(6)

where fL and fT are smooth functions. In the longitudinal direction, the front propagates towards z → −∞,
and in the transverse direction, it propagates towards r → +∞. At a certain z or r, they both approach vz = 0
as t → −∞ and approach vz = −Up as t → +∞. Consequently, we get

Dvz(z, t)

Dt
=

∂vz
∂t

+ vz
∂vz
∂z

= [(kL + 1)Up + vz ]
∂vz
∂z

,

Dvz(r, t)

Dt
=

∂vz
∂t

= −kTUp
∂vz
∂r

,

(7)

for the longitudinal and transverse directions, respectively [24]. In the longitudinal direction,

ĖL =

√
3

2
· ∂vz
∂z

, (8)

and in the transverse direction,

ĖT =
1

2
· ∂vz
∂r

(9)

(see Appendix A). Plugging Eq. 8 and Eq. 9 into Eq. 5 and Eq. 7, we get

EJL =

∣

∣

∣

∣

∣

∫ −Up

0

√
3

2
· 1

(kL + 1)Up + vz
dvz

∣

∣

∣

∣

∣

=

√
3

2
ln
kL + 1

kL
≈

√
3

2kL
,

EJT =

∣

∣

∣

∣

∣

∫ −Up

0

1

2
· 1

kTUp
dvz

∣

∣

∣

∣

∣

=
1

2kT
.

(10)

3 For convenience, we only look at the absolute value of the integral.
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FIG. 9: Velocity directions for 30◦ impact at t=9.5 (a), 16.25 (b), 22(c), 29 (d) ms. Grids with a vL ≥ 0.02 m/s are
colored red, blue or white according to θv − θI , as shown in the color map. Grids with vL ≤ 0.02 m/s are colored gray,
which should be distinguished from the white region. The surface and bottom of the suspension are at z = 0.03 m and
0 m. Dashed green lines are extension lines of the impact rod. The flow field here is obtained by averaging nine repeated
experiments at the same θI.

This means that the threshold accumulated strain to jamming is directly related to the dimensionless front
propagation speed. Using our assumption that this threshold strain is the same, thus EJL = EJT = EJ, we have

kL
kT

≈
√
3 ≈ 1.73, (11)

which agrees very well with our experimental measurements shown in Fig. 5. We conclude that it is the difference
in the type of shear along the moving shear front that leads to the anisotropy in the flow.
Predicting a precise value for this anisotropy is, however, more complicated. First, it depends on identifying

the most appropriate parameter to measure the local shear strength in a 3D flow. In [24], we proposed to use the
scalar “strain intensity” D adapted from the Flinn diagram, which is often employed by geologists [35]. Using

D instead of E for the data discussed here, the predicted anisotropy ratio becomes kL/kT ≈ 3/
√
2 ≈ 2.12. This

value is closer to the experimental results in Ref.[24], but overestimates what we find in Fig. 5. A second aspect
to be taken into account is the shape of the impactor. Compared to flat-bottom impactors, for curved impactors
the simple ratio of longitudinal and transverse components due to pure and simple shear, respectively, is likely
to overestimate the anisotropy. Thus, while the shear front is still close to the impactor and for experiments
with relatively shallow samples as discussed here, we would expect a smaller anisotropy in the front propagation
than provided by the estimate based on either D or E. This may be the reason why we measure a 15% smaller
anisotropy with the hemispherical impactor.

V. INTERACTION BETWEEN FRONT AND SOLID BOUNDARY

After free propagation, the impact-activated front starts to interact with the bottom of the container. Under
upright impact, the jammed suspension forms a solid column that connects the impactor and the bottom, which
can sustain a large amount of stress [10, 31]. When it comes to tilted impact, does a similar column still extend
between the impactor and the bottom, just tilted along the incident direction? This turns out not to be the
case, due to more complicated flows generated while the front approaches the bottom. Furthermore, unlike
during the free propagation stage, now the shape of the flow and how suspensions jam become dependent on θI.
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FIG. 10: Schematic illustration of the flow when the front interacts with the solid boundary. (a)(b)(c) each corresponds
to Fig. 9 (b)(c)(d). The boundary between the solid-like (yellow) and fluid-like (gray) regions is the front. The green and
blue arrows represent their motion, respectively. The static region is colored orange, and its expansion is shown by the
dashed orange curve and arrows. The curved surfaces of the suspension are sketched based on the original ultrasound
images.

To analyze this front-boundary interaction, we present the data in a different way. We pay attention to the
velocity direction, and look at the angle θv between the velocity vector and negative z direction:

θv = −arctan(vx/vz). (12)

To be more precise, we look at the direction of the local velocities relative to the incident direction θv − θI.
This is shown in Fig. 9, using θI = 30◦ impact as an example [36]. Regions with positive θv − θI are colored in
blue, and negative values in red. The gray areas represent regions where the flow speed is below a threshold
|v| < 0.1Up.
As Fig. 9 (a) shows, when the front is far from the boundary, the red and blue regions are symmetric with

respect to an axis through the impactor. This is consistent with the axisymmetric jamming front discussed above
(e.g., in Fig. 4). Effects due to the solid boundary start to be observed when the distance between the front and
the boundary becomes comparable to the front width ∆, which is around 5 mm to 10 mm, as shown in Fig. 7.
What happens subsequently is that the suspension near the bottom is squeezed by the front approaching from
above and flows out to the sides. In upright impact experiments, we observed similar results, but symmetric
horizontal flows are instead close to z = 0 m, with θv = ±90◦. Tilted impact generates asymmetric squeeze
flows, as shown in Fig. 9. From left to right, the direction of the horizontal flow changes from θv = −90◦ to
θv = +90◦, but this transition is not symmetric with respect to the dashed green line, i.e., the region where
θv = θI is no longer on the axis through the impactor. In Fig. 9 (a) to (b) to (c), the boundary between red
and blue keeps shifting to the left as the squeeze flow develops.
At later times, as shown in Fig. 9 (c), almost all velocities within the field of view have shifted to θv > θI.

Comparatively, the suspension on the left side of the dashed green line flows slower, especially when it is close
to the bottom. As the impactor pushes deeper, the bottom left part of the flow decelerates even more, and an
almost static region with extremely small velocity (vL < 0.1Up) appears and develops. This is shown by the
gray region in Fig. 9 (d), while above it, the suspension is still moving at angles θv > θI. The static region
continues to grow both vertically and horizontally until finally most of the suspension on the left of the dashed
green line ceases to move. This is a general, robust phenomenon we find for all tilted impact, with larger tilt
angles leading to larger θv in the end.
Fig. 10 schematically depicts how the solid boundary at the bottom modifies the flow and affects the jamming

transition, based on the streamlines obtained from the flow field shown in Fig. 9. In this sketch, the highly
viscous, solid-like region is colored yellow, and the fluid region gray. Their boundary is the contour vL = 0.4Up

that represents the front position. In the solid-like region, the suspension moves along the green arrow that is
parallel to the impact direction, and the local velocity is (vx, vz) ≈ (UpsinθI,−UpcosθI). The blue arrows in
Fig. 10 (a) represent the squeeze flow between the front and the bottom. Because of this squeeze flow, the shear
rates on the left and right of the front are no longer the same within 10 mm above the bottom. In the vertical
direction (z), the velocity of the flow changes from −Up · cosθI to 0 while approaching the boundary, which
applies for both sides. However, in the horizontal direction, the velocity difference on the left (dark red region
in Fig. 9 (b)) is larger than that on the right (blue region in Fig. 9 (b)), because the direction of vx reverses
on the left. Consequently, the left and right lobes of the front now accumulate strain at different rates. Since
shear jamming of transient flow not only depends on the applied stress, but also the accumulated shear strain
[24, 32], higher shear rate results in a shorter time to jam. We suspect that this is the reason why in Fig. 9 the
white boundary between red and blue keeps shifting to the left from the dashed green line, and also why the
suspension ceases motion on the left, but keeps moving to the right as sketched in Fig. 10 (b). In the final stage
of the process shown in Fig. 10 (c), the expansion of the static region (orange) forces the flow to circumvent
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this region, which leads to θv > θI.
Coming back to the question we posed at the beginning of this section: unlike for upright impact, when θI > 0◦

the jammed (orange colored) region does not develop symmetrically with respect to the impact direction. It
is not initiated at point P in Fig. 10 (c), which is where the dashed black line along the incident direction
intersects with the bottom boundary. Instead, the formation of the solid-like region is initiated on the side of
the line that is closer to the impactor. Its specific position on the z = 0 plane will depend on the size of the
system, because when such a jamming front propagates, its dimension grows linearly with time, but its width
∆ remains invariant [32]. As discussed above, the effect of a solid boundary starts to appear when its distance
to the front becomes comparable to ∆. Thus, for a small system, the boundaries start to manipulate the flow
immediately after the impact. For a larger system, however, the boundaries affect the flow only when the front
has almost propagated across the whole system, and we expect the orange region in Fig. 10 (c) to be initiated
closer to point P.

VI. CONCLUSIONS

We demonstrated ultrasound as a facile high-speed 3D imaging technique to study dynamic shear jamming
in dense suspensions under impact from different incident angles θI. From the extracted flow fields, we find that
the flow evolution can be separated into two stages: free propagation and boundary interaction. By visualizing
jamming fronts generated at incident angles from 0◦ to 40◦, we obtained their propagation speeds and shapes.
For a hemispherical impactor head, we find that the dimensionless front propagation speed in the longitudinal
direction kL is approximately 1.7 times the transverse propagation speed kT, independent of the incident angle.
This anisotropy can be explained quantitatively by considering the different types of shear in different regions
of the flow. During the free propagation stage, fronts generated at different angles were shown to exhibit similar
shapes. This implies that flow fields generated by impact at θI can be predicted by rotating the fields measured
for upright impact. In the second stage, the front starts to interact with the solid boundary of the container.
A squeeze flow is generated between the front and the boundary, which, for θI not equal to zero, produces
an asymmetric shear rate on the sides of the curved front. Consequently, the jammed solid that grows from
the bottom to the surface of the suspension does not grow along the axis of impact. These observations agree
with a scenario that explains impact-activated solidification as a dynamic shear jamming process, as previously
applied to upright impact [24] as well as Couette shear [11] and quantitatively tested for simple shear in a quasi-
1D configuration [32]. However, still missing are more comprehensive 3D models that consider the tensorial
forms of strain and stress and that can address more complex boundary conditions where the front interacts
with obstacles and where the free surface is deformed by the impactor. Tilted impact into 3D suspensions as
discussed here can provide an experimental system to validate such models.
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Appendix A: Representing strain rate with a scalar

For simplicity, here we write Eq. 3 as

ε̇ =





a 0 d
0 b 0
d 0 c



 , (A1)

where a+ b+ c = 0 because the suspension is incompressible. We write the eigenvalues of the matrix in Eq. A1
as λ1, λ2, and λ3, and sort them so that |λ1| ≥ |λ2| ≥ |λ3|. Their values are

λ1 = b

λ2,3 = − b

2
± 1

2

√

(a− c)2 + 4d2.
(A2)
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In this case, they each represent the strain rate along the corresponding principal axis. We can write the
diagonal matrix diag(λ1, λ2, λ3) into the form

ε̇ ∼ 2Ė√
3 + 4α2





1 0 0
0 −(12 + α) 0
0 0 −(12 − α)



 , (A3)

where α =

√
(a−c)2+4d2

2|b| ∈ [0, 1/2], and Ė =
√

(λ2
1 + λ2

2 + λ2
3)/2. For uni-axial compression in z with isotropic

flow in the x-y plane,

ε̇ =





− 1
2
∂vz
∂z

0 0
0 − 1

2
∂vz
∂z

0
0 0 ∂vz

∂z



 . (A4)

Thus α = 0 and Ė =
√
3/2 · ∂vz/∂z. For simple shear in the x-z plane, we have

ε̇ =





0 0 1
2
∂vz
∂r

0 0 0
1
2
∂vz
∂r

0 0



 . (A5)

In this case α = 1/2 and Ė = 1/2 · ∂vz/∂r. Here we have ignored ∂vr/∂z in the non-diagonal terms because it
is much smaller than ∂vz/∂r as shown in Fig. 3.

Appendix B: Front width and strain rate intensity

Here we demonstrate how we obtain Ėmax and ∆46 in Fig. 11. The green dashed line represents an arbitrary
direction originates from the impact point at x = 0 m and z = 0.03 m. The corresponding polar angle θ is
labeled. For each point in the flow, we can calculate its angle θ, and obtain a distribution of local shear rate
Ė as a function of θ, ranging from small Ė close to zero (white areas) to values close to Ėmax (dark red areas).

Then in each frame, we calculated the upper envelope of Ė(θ), which gives us curves shown in Fig. 8(a). We
define the front width ∆46 as the distance between the contour at vz = 0.4Up and vz = 0.6Up along the direction
perpendicular to the contour vz = 0.5Up. The corresponding line segment is shown by the solid green line in
Fig. 11. It is perpendicular to the thick black curve, which represents vz = 0.5Up at their intersection point.
∆46 at angle θ is the length of this solid green line.
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FIG. 11: Demonstration of obtaining Ėmax and ∆46 at angle θ. The color map shows Ė. The dashed green line labels
the direction at angle θ. The length of the solid green line represents ∆46 at angle θ.
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Appendix C: Interactions between the ultrasound and the suspension

Prompted by a comment by one of the reviewers, we briefly address whether the ultrasound itself might
induce any jamming dynamics in the suspensions.
Firstly, could the sound wave cause jamming by compressing the material locally? The “dense” suspension we

used (0.43 mass ratio) was concentrated enough so that it could be jammed by shear, but it was still significantly
below the isotropic jamming packing fraction (about 0.5 mass ratio). The bulk modulus of the liquid was about
4 GPa, and the bulk modulus of the saturated cornstarch particles was about 7 GPa [37]. So under pressure,
the liquid phase was compressed more than the solid phase, but not much.
Now we estimate the upper limit of the acoustic pressure generated by the sound wave. The absolute maximum

instantaneous power that can be generated by our ultrasound system is 100 W per transducer element. While
imaging, the power we used was much lower than this. The maximum average power output per element of
our machine was 8 W, and there were reflections at the interfaces, energy loss during propagation in the media,
and a very low duty cycle that we used, all of which further decreased the power. Still, for a rough estimate we
can calculate the pressure using 100 W per element. In a medium, the sound power P along the propagation
direction is

P =
Ap2

ρc
, (C1)

where A is the area of the surface, ρ ≈ 1600 kgm−3 is the density of our medium, p is the pressure, and
c ≈ 2000 m/s is the speed of sound. The upper limit of the input power is P = 100 W/element × 128 elements
= 12800 W. Even if we assume that there is no energy loss and use the smallest area (the area of the transducer
head, 35× 1 mm2), we would get p ≈ 3× 107 Pa.
When such a pressure is applied on GPa materials, the strain will be under 1%, and the relative change in

volume will be less than 3%. This change will lead to an increase in packing fraction smaller than 0.01. The
actual change in our experiments should be orders of magnitude smaller than this. In comparison, to bring
the system to jamming by compression, we would need to increase the packing fraction by about 0.07 or more.
Therefore, the sound wave will not cause jamming by compression in our experiments.
Secondly, does the ultrasound wave drives migration of the particles? We can think of two ways to generate

relative motion between particles and the suspending liquid: one is due to scattering, the other is due to the
inertia of the particles under high frequency oscillation (like shaking a cup of bubble tea). In our system
the scattering is very weak. The wavelength of the ultrasound signal that we used was about λ = 3 mm.
In comparison, the diameter of the cornstarch particles is approximately d = 15 µm, which is two orders of
magnitude smaller than the wavelength. The cross section of a particle σ is

σ ∝
(

d

λ

)4

· d2, (C2)

which means that σ is more than 109 smaller than the particle’s actual area. As a result, the scattering is
very weak, and the suspension behaves as a continuous medium when interacting with the ultrasound. The
relative motion due to inertia is also highly limited. We carefully matched the density of the particles and
the suspending solvent, so they should move the same way under the same acceleration. Combining these two
factors, we think the relative motion between the particles and the liquid is negligible.
Lastly, how about jamming by shear? Our earlier work [32] showed that to create a dynamic jamming front

by shear, a local strain needs to be applied to shear the suspension out of the uniform, isotropic initial state, and
bring the particles into contact networks. This requires a strain of order one that is applied along a particular
direction. If instead of sustained unidirectional shear a brief oscillatory shear pulse is applied, as with the
ultrasound, a stable contact network of particles cannot form, and thus no jammed state can be generated.
Indeed, strong ultrasound can be used to manipulate grain structures [38], fluidize jammed granular bed [39],

or apply a force that generates a shear wave inside soft elastic material (Acoustic Radiation Force Impulse
(ARFI) elastography, for instance). For our system, we normally worried more about the signal being too weak
instead of too strong. We never observed signs of ultrasound driven flow in dense suspensions with our setup.
However, there are high power ultrasound systems, which could provide much stronger signals, and those might
be powerful enough to manipulate the suspensions.
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