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In this work, we study the effect of sphere rotation on the drag coefficient experienced by a sphere
sedimenting through a nearly constant viscosity and elastic Boger fluid, using experiments, numerical
simulations, and an asymptotic theory. For the purely sedimenting (non-rotating) sphere, we find
that the drag coefficient is larger in the Boger fluid than in the Newtonian case, in accordance with
previous studies. In the Boger fluid, rotation of the sphere (around the axis aligned with translation)
causes a reduction in the drag coefficient compared to the purely sedimenting case; this trend is
observed in the experiments, numerical simulations, and theory. The numerical results indicate
that the decrease in the drag due to sphere rotation results from modifications in the pressure
contribution to the drag.
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I. INTRODUCTION

The sedimentation of a single sphere in a viscous fluid is a classical problem in fluid mechanics. Due
to its fundamental importance and practical relevance, it has been vastly studied, both for Newtonian and
non-Newtonian liquids. For a rigid sphere settling in an unbounded Newtonian fluid in the creeping flow
regime, the sedimentation velocity is related to the applied force on the sphere as Fi = 6πηaUi, where Fi

is the applied force, η is the viscosity, a is the particle radius, and Ui is the terminal settling velocity. This
linear relationship, the well known Stokes law, forms the basis for falling ball viscometry in viscous fluids.
For sedimentation studies, the fluid-sphere interaction gives rise to a characteristic deformation rate over

the sphere, given by U/a, where U = |Ui|. In non-Newtonian fluids with viscoelasticity, one can define a
dimensionless sedimentation Deborah number, De, which relates a characteristic fluid relaxation time, λ, to
the characteristic deformation rate as De = λU/a. To test the effect of non-Newtonian properties on the
sedimentation behavior involves the use of spheres of different size and density to cover a significant range
of deformation rate, or Deborah number. Many studies have been conducted to evaluate how the drag on a
sphere changes as the flow strength increases (i.e., at increasing De), as has been reviewed by McKinley [1],
Caswell et al. [2], and Chhabra [3].
Despite many studies, the case in which the sphere simply sediments in a viscoelastic fluid is still not

fully understood. The more recent reviews by D’Avino and Maffettone [4] and Zenit and Feng [5] provide
good summaries of the current state of the subject. As discussed by McKinley [1], significant work has
gone towards understanding whether the drag coefficient should increase or decrease (with respect to the
Newtonian case) at a given Deborah number. Part of the difficulty arises because the flow kinematics for flow
past the sphere are a complex mixture of both shear- and extensional-dominated flow, which can contribute
differently to the drag depending on the fluid properties, sphere confinement, and flow strength [1].
An experimental investigation that further exemplifies these complexities is that by Jones et al. [6].

They studied the sedimentation of solid spheres in two Boger-type fluids [7, 8], named Type-I (maltose
syrup/water-based) and Type-II (polybutene-based). The rheological properties show that both viscoelastic
fluids exhibited nearly constant shear viscosity over a reasonable range of shear rates, followed by slight
shear-thinning at high shear rates. The results showed a significant drag enhancement for fluid Type-I but a
slight reduction for fluid Type-II for small Deborah numbers (less than unity), followed by a drag increase in
both fluids at higher Deborah number. Interestingly, other studies have described opposite trends at small
Deborah number for seemingly similar fluids, with results showing a slight drag reduction for Type-I fluids
and a drag increase for Type-II fluids for De < 1 [9], which the authors suggested could be attributable
to solvent quality differences. More recent work has confirmed the importance of solvent quality, polymer
molecular weight, and polymer extensibility on the drag experienced by a sedimenting sphere, as elucidated
by Solomon and Muller [10]. For larger Deborah number (greater than unity), where significant extension
of the polymer can occur in the wake of the sphere, it has been shown that the drag on the sphere generally
increases in Boger fluids [6, 10–13], as summarized by Chhabra [3].
Alternatively, a non-translating, rotating sphere has been investigated by a number of authors as a tool to

evaluate rheological properties of viscoelastic fluids, as reviewed by Walters [14] and Chhabra [15]. From the
measured torque on the rotating sphere and the observed flow streamlines around the sphere, the viscosity and
other viscoelastic model parameters (e.g., material parameters for a second-order fluid) can be calculated [16–
26]. Analysis of the secondary flow patterns can be used to calculate a combination of the normal stress
differences [27, 28]. The secondary flows, which result as a competition between elastic and inertial effects,
were originally predicted by Thomas and Walters [18] and observed experimentally by Walters and Savins [27]
and Giesekus [19, 29]. These secondary flows were recently reproduced computationally and interpreted by
Garduño et al. [30–32]. Other authors have studied how the presence of these secondary flows due to rotation
in viscoelastic fluids can result in net motion (or propulsion) for two spheres with different radii [33].
This study focuses on the coupling of these two flows, i.e., for a rotating and sedimenting sphere in

a viscoelastic fluid. This problem was first addressed by Giesekus, who solved for the drag and torque
experienced by a rotating and translating sphere in a viscoelastic fluid modeled as a third-order fluid [34].
From the sphere’s angular rotation speed, ω, a second characteristic deformation rate arises, and one can
define a dimensionless rotational Weissenberg number, Wi = λω. Giesekus [34] predicted that in the absence
of fluid inertia and in the limit of small Deborah and Weissenberg number, a rotation imposed around the
axis of translation would reduce the drag on the sphere at O(Wi2). Bhatnagar [35] investigated how the
streamlines for uniform flow past a rotating sphere would change in a viscoelastic fluid, showing that a region
of flow reversal could form at high enough rotation rates, but did not study the effect of rotation on the
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drag.
Recently, Godinez et al. [36] proposed this idea – a combination of sphere rotation and translation – to

study the sedimentation of spheres in shear-thinning power law fluids. They studied spheres that were rotated
using a magnetic field while sedimenting due to gravity (with the rotation axis aligned with gravity). In
doing so, the flow around the sphere became dominated by the rotation of the sphere, reducing the local fluid
viscosity, and the sedimentation velocity increased. From the experimental measurements of the sphere’s
terminal velocity, the properties of the fluid, such as the flow consistency and power index parameters, could
be deduced. Hence, for a shear-thinning power-law fluid, this system could be used as a viscometer, as
predicted by Bourne [37]. The present paper is a natural continuation to the work of Godinez et al. [36],
using instead a viscoelastic fluid that exhibits nearly constant viscosity over a wide range of shear rates (the
so-called Boger fluid [7, 8]). The goal of this study is to understand how the sphere rotation in a viscoelastic
fluid affects the sphere’s settling rate.
A similar problem, where an external shear flow was imposed in the plane perpendicular to gravity while

a particle settled through the fluid, has been studied experimentally [38], theoretically [39, 40], and numeri-
cally [41–43]. In this coupled flow field, the sedimentation flow around the sphere was modified by the action
of an externally imposed shear in the viscoelastic fluid, resulting in a change in the drag. The experiments,
theory, and simulations showed that a sphere settling in a cross sheared Boger fluid experiences a significant
increase in the drag. In viscoelastic fluids that exhibit both fluid elasticity and a shear thinning viscosity,
the fluid elasticity and shear-thinning viscosity can compete in a cross shearing flow to dictate whether the
total drag on the sphere (when calculated based on the zero-shear viscosity) is overall increased or decreased
as the cross shear rate increases [42]. In this study, rather than a sphere freely-rotating in an external flow, a
torque is imposed on the sphere in an otherwise quiescent fluid, and we investigate how this imposed rotation
of the sphere affects the flow past the sphere.
The present investigation aims to examine the impact of rotation on the terminal velocity and therefore

on the drag coefficient. We conduct both experiments and numerical simulations. The simulations are
complemented and compared with a theory valid for weakly elastic fluids. The experimental fluids and
apparatus are discussed in Sec. II A and II B and the numerical simulations and theory are described in
Sec. III. Results from experiments are discussed in Sec. IV and results from the theory and simulations are
presented in Sec. V. Conclusions and future work are discussed in Sec. VI.

II. TEST FLUIDS AND EXPERIMENTAL SETUP

A. Test fluids

The Boger fluid (BF) was chosen as a model fluid because it has a nearly constant viscosity combined with
high elasticity over a range of relevant shear rates. In this manner, changes in the sedimenting speed can be
attributed solely to the viscoelastic nature of the fluid. It was fabricated by dissolving polyacrylamide (PAA,
molecular weight 5×106 g/mol) in non-ionic water with slow mixing for 24 hours. Afterwards, the polymeric
solution was added to a glucose solution and it was slowly mixed over four days. The mass proportions were
84.96% glucose, 15% water and 0.04% PAA. The solution was left standing for two weeks previous to testing,
and residual bubbles were extracted before the test. On the other hand, a Newtonian reference fluid (NF)
was fabricated by adding water to glucose until the fluid had similar viscosity to that of the viscoelastic
fluid. It was used for testing 24 hours after preparation. All fluids were stored and used in closed containers
to avoid free surface crystallization.

1. Fluid characterization

The rheological characterization was performed using an Anton Paar shear rate and shear stress-controlled
rheometer with a cone-plate geometry, which was used to obtain the viscosity and first normal stress difference
flow curves, within the shear rate range of 1 to 100 s-1 at 23◦C.
Results of steady shear measurements are plotted on Fig. 1. The range of shear rates corresponding to

sedimenting experiments are within the rheological measurements, as shown by the vertical dashed lines.
The Boger fluid showed a nearly constant viscosity for shear rates of up to 18.1 s-1 followed by slight shear-
thickening. The viscosity of the Boger fluid was fit to a power law model, leading to a value of the power
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law index n = 0.963. Therefore, we consider the viscosity to be effectively constant. On the other hand, the
Newtonian fluid showed a constant viscosity with a value very close to that of the Boger fluid. The physical
properties of the two fluids are summarized in Table I. The determination of the fluid relaxation time, λN1

,
is discussed in Sec. II A 2.

TABLE I: Characterization of the test fluids at 23◦C.

Solution ρf , kg/m
3 n η0, Pa s λN1

, s

Newtonian 1510 1 0.84 0

Boger 1508 0.963 0.8444 0.5102
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FIG. 1: Results of steady shear rheometry for the Boger fluid (empty circles) and the Newtonian fluid
(filled circles). The red line shows a fit to power-law viscosity model with m = 0.9106 Pa s and n = 0.963
for γ̇ < 20 s-1. Also, the first normal stress difference (N1) is shown as a function of shear rate (empty

squares). The Oldroyd-B (black solid line) and the FENE-P (black dashed-dotted line) models were used
to fit η0 and N1 of the viscoelastic fluid. The full range of shear rates present in the falling rotating sphere

experiments is shown with vertical dashed lines.

2. Fitting rheological data to a rheological model

The Oldroyd-B model has been used with some success to model the behavior of Boger fluids [44] as it
predicts a steady shear rate viscosity and a first normal stress coefficient that are independent of shear rate.
Physically, the Oldroyd-B model represents the polymeric solution as a dilute suspension of elastic dumbbells
in a Newtonian solvent.
Following the classical treatment of this model [45, 46], and considering a Newtonian solvent, in steady

shear flow the first and second normal stress differences can be written as,

N1 = 2η0(1− β)λγ̇2, (1)



5

and

N2 = 0. (2)

The zero-shear viscosity is η0 = ηp+ηs, where ηp and ηs are the polymer and solvent viscosities, respectively.
The ratio β = ηs/η0 is the solvent contribution to the viscosity, and λ is the relaxation time.
Therefore, from the rheological data shown in Fig. 1, the measurement of N1 as a function of γ̇ can be

fit to infer the relaxation time, λ = λN1
, for a known value of β. Table II shows the fitted results for the

Oldroyd-B model from the data on Fig. 1.

TABLE II: Parameters of the Oldroyd-B model.

η0, Pa s ηs, Pa s ηp, Pa s β λ, s

0.8444 0.1902 0.6542 0.2252 0.5102

Also shown in Fig. 1 is a fit to the shear rheology data using the FENE-P model. The FENE-P model
was used in our numerical simulations to compare with the experiments. The choice of the FENE-P model
is discussed in Sec. III A, and the fitting of the model, as well as the simulation results, are discussed in
Sec. VB.

B. Experimental setup

Experiments were performed in the device shown in Fig. 2. This setup comprises a rectangular container
of 120 mm height and 100 mm width which has the fluid used and wherein the spheres are released by a
special mechanism to avoid surface and inertial effects. Plastic spheres with one or more small rare Earth

(a) (b)

FIG. 2: (a) Experimental setup; (b) container and sphere.

rod magnets (Magcraft, model NSN0658) with horizontal orientation were used. Diameters were measured
by using a digital Vernier caliper. The physical properties of the spheres are shown in Table III.
Spheres were positioned below the free surface of the test fluid and left to descend by a mechanical device

made of two holders which places the sphere in the center of the container filled with the test fluid. The
container is placed in the middle of the device designed by [47], which produces a uniform rotating magnetic
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field. It is a Helmholtz coil (a pair of identical circular magnetic coils that are placed symmetrically along a
common axis) that is mechanically rotated by a DC motor. Due to its size and design (coil diameter of 280
mm, with 230 turns of wire), the device is capable of producing a magnetic field of constant strength (close
to 6 mT in a region of 12 cm3 in size.)
Once the sphere is released, the magnetic device is started at a previously set frequency of rotation, thus

rotating the sphere along an axis parallel to gravity (aligned with sedimentation). The experimental value
of the speed of sedimentation was obtained from the displacement of the sphere in consecutive frames in the
imaging system named Tracker c©.

TABLE III: Spheres dimensions and properties.

Diameter, mm Mass, mg Density, kg/m3

7.99 585 2190.37

8.72 760 2189.10

8.81 819 2287.48

9.57 1005 2189.94

III. NUMERICAL SIMULATIONS & THEORY

We complement the experimental study with numerical simulations and an asymptotic theory of the same
system. We consider the terminal velocity of a sphere freely sedimenting through a quiescent viscoelastic
fluid with an imposed rotation rate. In the experiments, this is achieved by imposing a strong rotating
magnetic field on a freely sedimenting sphere, thus imposing a torque on the sphere sufficient to rotate the
sphere at a specified rotation rate. In our simulations, we consider a nearly equivalent problem, but with a
directly imposed angular velocity on the sphere, and in a reference frame translating with the sphere. These
two setups allow for a direct comparison between the experiments and numerical simulations. The governing
equations of motion for the viscoelastic fluid flow are described, including the choice of a constitutive model
in our simulations, in Sec. III A. We discuss the boundary conditions, as well as the computational mesh
used, in Sec. III B. In Sec. III C, we describe an asymptotic theory valid for weak elastic flow past a rotating
sphere.

A. Governing equations

We solve the continuity and momentum equations for the flow of an incompressible fluid, including con-
tributions to the fluid stress from the viscoelastic or polymeric components of the fluid. The governing
equations can be written in dimensionless form for Cartesian coordinates, where xi = (x1, x2, x3) = (x, y, z),
as:

∂ui
∂xi

= 0, (3)

Rea

(

∂ui
∂t

+ uj
∂ui
∂xj

)

=
∂σij
∂xj

. (4)

σij = −pδij + β

(

∂ui
∂xj

+
∂uj
∂xi

)

+ σP
ij , (5)

In the above equations, ui is the fluid velocity, p is pressure, σij is the total fluid stress, and σP
ij is the

stress contribution due to the polymers. The variables have been nondimensionalized by a characteristic
length (a), characteristic velocity (U , the sphere terminal settling speed), characteristic time (a/U), and
characteristic stress (η0U/a). We define a Reynolds number, for Eq. 4 only, as Rea = ρfUa/η0. Later, in
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Sec. IV, Eq. 12, we will redefine the Reynolds number as Re = ρfU(2a)/η0, to be consistent with prior
settling sphere literature.

To model the polymeric stress, σP
ij , we use two constitutive models in this study: the Oldroyd-B model

and the FENE-P model (finitely-extensible nonlinear elastic model with Peterlin closure). Both models
represent the polymeric solution as a dilute suspension of elastic dumbbells: in the Oldroyd-B model, the
dumbbell is represented as a Hookean spring, whereas in the FENE-P model, the dumbbell is represented
as a finitely-extensible nonlinear spring. From kinetic theory, the equations that determine the polymeric
stress can be written as [45, 46, 48]:

σP
ij =

(1− β)

De

(

cij
ψ

− δij

)

, (6)

∂cij
∂t

+ uk
∂cij
∂xk

− cik
∂uj
∂xk

− ckj
∂ui
∂xk

= −
1

De

(

cij
ψ

− δij

)

, (7)

where cij is the polymer conformation tensor, ψ is a characteristic spring stiffening function, and the Deborah
number has been defined as De = λU/a. The polymer conformation tensor is defined as cij = 〈RiRj〉, where
Ri is the end-to-end vector of the polymer dumbbell, nondimensionalized by the equilibrium Hookean spring
length. For the Oldroyd-B model, ψ = 1. For the FENE-P model,

ψ =
(

1−
cii
L2

)

, (8)

where L is the maximum polymer extensibility parameter, also made dimensionless with the equilibrium
Hookean spring length. Note that in the limit as L2 → ∞, we recover the Oldroyd-B constitutive equation.

In this study, we use the Oldroyd-B model to describe the polymeric stress in the weak flow limit, e.g., for
the asymptotic theory (described in Sec. III C). For the simulation comparisons to the experiments, where
the flow strength is strong (i.e., De,Wi ∼ O(1)), we use the FENE-P model to describe the polymeric stress.
Numerically, the FENE-P constitutive model is useful in scenarios with high rates of deformation, as the
polymer conformation tensor and the polymer stress remain bounded [49, 50].

Although the FENE-P dumbbell model captures the qualitative behavior of polymer chains in steady mo-
tion, we do not expect this constitutive model to be able to quantitatively predict hydrodynamic quantities,
such as the drag on a sphere, for strong flows of polymeric fluids. In the case of flow past a sphere in a
polymeric viscoelastic fluid, significant work has been done to understand how the drag on a sphere changes
as a function of the flow strength past the sphere (i.e., as a function of De) [1–3], and dumbbell models have
had only limited success in quantitatively predicting the drag on a sphere when judged across a wide range of
geometric parameters, flow conditions, and fluid types. More recently, it has been shown that a multi-scale
approach [51] or the inclusion of dissipative stress contributions [52] can improve the quantitative description
of the drag. This is likely due to an improved description of the transient extensional viscosity of the fluids
at high extension rates, which can become important for strong viscoelastic flows past a sphere [1, 51]. This
level of quantitative prediction for the drag on a purely sedimenting sphere was not the focus of this study.
In this work, we aim to use our simulation method to qualitatively describe the effect of rotation on the drag
on a spherical particle in a viscoelastic fluid, and to look for insight into the physical mechanism for why the
drag may change due to an imposed rotation of the sphere.

The schematic of the simulation is shown in Fig. 3. Simulations were performed in a frame of reference
translating (but not rotating) with the sphere. The boundary conditions were set accordingly for flow past a
rotating sphere. Specifically, at the inlet boundary, the dimensionless velocity was set as ui = (ux, uy, uz) =
(0, 0, 1), and the conformation tensor was set as cij = δij . At the container walls, ui = (0, 0, 1), and
a no-flux condition was used for the conformation tensor, ∂cij/∂n = 0. A convective outlet boundary
condition was used for both ui and cij at the outflow boundary, i.e., ∂φ/∂t + ūz∂φ/∂z = 0, where φ is a
velocity or conformation tensor component and ūz is the space-averaged outflow velocity. On the sphere
surface, a no-slip, no-penetration velocity condition for a sphere rotating about the z-axis was imposed as
ui = (−αy, αx, 0), where α = Wi/De = ωa/U and ω is the angular rotation speed. At the sphere surface, a
no-flux condition was used for the conformation tensor.
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FIG. 3: Computational domain used for simulation.

B. Numerical setup

The simulations are performed using a parallelized three-dimensional code based on an unstructured finite
volume formulation for incompressible flow. The details of the solver, as well as extensive validation tests
and experimental comparisons, can be found in prior studies [41–43, 49, 53, 54]. The schematic of the
simulation is shown in Fig. 3. The domain mesh was a boundary-fitted mesh and did not move or stretch
during the simulation. An unstructured tetrahedral discretization of the domain shown in Fig. 3 was used
for all simulations. It should be noted that if we were to assume axisymmetry around the rotation axis, this
problem could be reformulated in two dimensions using either cylindrical or spherical coordinates. Since this
symmetry was not known a priori, we used a fully 3D code to numerically evaluate the equations described
in Sec. III A.

For the comparison with the experiments, we solve the mobility problem, where the external force acting
on the sphere (due to gravity) is specified and we determine the terminal settling speed (U) iteratively using
the force acting on the sphere in the z-direction, such that the hydrodynamic force balances the gravitational
force acting on the sphere at steady state. All simulations were run for times of at least 20λ and 50a/U . At
steady state, the calculated hydrodynamic force on the sphere was within 0.0002% of the gravitational body
force for all simulations.

For the comparison with the experiments, the computational domain was a tube of radius R = 12.5a
and length Lz = 40a, with a distance lz = 20a from the inlet to the sphere center. The mesh contained
approximately 6.2 million elements, with smaller elements near the surface of the sphere of resolution ∆x =
a/40 in order to resolve the stress gradients accurately. A constant time step was chosen such that the
bulk CFL (Courant–Friedrichs–Lewy) number in these simulations was U∆t/∆x < 0.015. A second, coarser
mesh was used to test for mesh convergence. This second mesh had approximately 2.3 million tetrahedral
elements, with the smallest elements near the sphere of resolution ∆x = a/20. We found that results for the
terminal settling velocity matched for the two meshes within 1.5% for all Wi.
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C. Asymptotic theory for weak elastic effects

As a complement to the numerical simulations, for small values of Wi and De we solve the governing
equations by a regular perturbation expansion. This perturbation theory is valid in the limit De ≪ 1 and
Wi ≪ 1, implying that the elastic part of the fluid relaxes quickly relative to the rate at which it is deformed
by the moving sphere and its rotation. The perturbation expansion is carried out in De and Wi, such
that the highest order terms considered in this expansion are O(De2), O(Wi2), and O(WiDe). There are
three important features of the asymptotic theory that should be mentioned. First, the theory is valid for
Re = 0, i.e., we neglect the effects of fluid inertia. Second, the theory is carried out for an unbounded
domain. Third, in the theory, we model the viscoelastic stress tensor, σp

ij , with the Oldroyd-B constitutive

equations [45, 46, 48]. These equations can be written by setting ψ = 1 in Eqs. (6) and (7).
In the theory, we solve the governing equations following the method of Einarsson and Mehlig [55], who

solved the related mobility and resistance problems of a sphere settling in a linear flow. We adopt their
Mathematica code [56], and the resulting notebook is available upon request.
The purpose of this asymptotic theory was twofold. First, we wanted to provide additional evidence that

an observed change in the drag due to sphere rotation in a viscoelastic fluid was an elastic effect that would
still be expected in weak elastic flows in the absence of fluid inertia. Additionally, by using the Oldroyd-B
equation, we wanted to examine whether this change in the drag was observed in a fluid with a constant shear
viscosity and a constant first normal stress coefficient in simple shear. Giesekus [34] theoretically predicted
that, for a third order fluid, a rotation imposed in the direction parallel to translation would reduce the drag
on the sphere at O(Wi2). The theory presented in this paper replicates that analysis using the Oldroyd-B
constitutive equations. Second, the theory presented in this paper is used as a validation of our numerical
solutions at small De and Wi.
Thus, to compare to the asymptotic theory, a set of numerical simulations were run using the methodology

described in Sec. III B. In order to compare directly with the theory, we use the Oldroyd-B constitutive model
to describe the polymer stress in this set of simulations. Additionally, in the momentum equation, we remove
the convective term such that the solver is an unsteady Stokes solver, as has been done previously [54]. The
computational domain used was a tube of radius R = 20a and length Lz = 40a, with a distance lz = 20a
from the inlet to the sphere center, as in Fig. 3. The mesh contained approximately 3.7 million tetrahedral
elements, with smaller elements near the surface of the sphere of size ∆x = a/40, and a bulk CFL number
less than 0.0002. Since this set of simulations was used to compare to a theory valid for an unbounded
domain, we verified that the change in the drag differs by less than 0.5% when the domain is increased by a
factor of two, i.e., R = 40a, Lz = 80a and lz = 40a.

IV. EXPERIMENTAL RESULTS

To calculate the terminal velocity experimentally, five tests of each sphere, fluid, and rotation frequency
combination were conducted to obtain a mean velocity. To calculate the experimental drag coefficient, we
used the well-known equation:

Cd =
8ag

3U2

(

ρs
ρf

− 1

)

(9)

where U , ρs, ρf , g, and a correspond to the terminal settling speed, sphere density, fluid density, gravity,
and sphere radius, respectively. Under creeping flow conditions, the Stokes settling speed is,

U =
2

9

(ρs − ρf )ga
2

η
(10)

where η is the fluid viscosity. For Newtonian experiments in creeping flow conditions, the drag coefficient
then takes the form:

Cd =
24

Re
(11)

Where the Reynolds number due to sedimentation is defined as:

Re =
ρfU(2a)

η
(12)
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Therefore, deviations with respect to the Newtonian case, for example due to elastic fluid behavior, can be
assessed by the normalized drag coefficient:

Xe =
CdRe

24
=

Fd

6πηaU
(13)

Where Fd is the scalar hydrodynamic drag force on the sphere. At steady state, the hydrodynamic drag
force is balanced by the external force on the sphere (Fext), which in the case of a settling sphere is Fext =
Fg = 4πa3(ρs − ρf )g/3.
Due to the rotation of the sphere, we can also define a Reynolds number due to sphere rotation as

Reω = ρfωa
2/η, where ω is the rotation speed.

TABLE IV: Typical values of Wi and De (values of De are reported from the smallest sphere radius trial).

Frequency
(Hz)

Wi
De

(D = 7.99 mm)
0 0 1.93

0.83 2.67 1.96

1.67 5.34 1.93

2.50 8.01 1.92

3.33 10.69 2.02

4.17 13.36 2.19

5.00 16.03 2.35

For our viscoelastic fluid flows, we can define a Deborah number and a Weissenberg number relating
the characteristic polymer relaxation timescale with a characteristic flow timescale due to the translational
and rotational motion, respectively. We can write the Deborah number, De, and a rotational Weissenberg
number, Wi, as previously discussed:

De =
λU

a
(14)

Wi = λω (15)

Where in this investigation, as discussed in Sec. II A, λ = λN1
for experimental comparison. We differentiate

between the Deborah and Weissenberg numbers in this study, unlike the previous study by Godinez et

al. [36], since in viscoelastic fluids the modes of deformation from sphere translation and sphere rotation are
characteristically different, particularly at finite values of the Deborah and Weissenberg numbers.
Values of the Deborah number were above one in the case without rotation and ranged from 1.93 <

DeWi=0 < 2.35. High values of Wi were reached due to the rotation, as this movement could lead to shear
rates over 30 s-1, resulting in rotating Weissenberg numbers that could exceed 10. For most of the rotation
rates studied here, the flow around the sphere was rotation-dominated, i.e., Wi > De. Typical values of De
and Wi in these experiments are shown in Table IV for one specific sphere diameter.
To compare the magnitude of the elastic and inertial effects, we can define an elasticity number, El =

2De/Re = Wi/Reω = λη0/(ρfa
2). For all experiments and all spheres, El > 12, suggesting these flows are

dominated by elastic effects. The elasticity number can help distinguish between flows dominated by inertia
or elasticity. For example, in the case of a purely rotating (non-translating) sphere, as introduced in Sec. I, a
secondary flow driven by inertial effects will move fluid towards the sphere near the poles at the axis of rotation
and out along the equatorial plane where the centrifugal force is highest. In a viscoelastic fluid, when elastic
effects dominate, the secondary flow is reversed and fluid moves towards the sphere along the equatorial plane
and away from the sphere at the poles [45]. According to the analyses of Thomas and Walters [18], Walters
and Savins [27], and Manero and Mena [28], a viscoelastic parameter m = (N1 − 2N2)/(2ρfa

2γ̇2) dictates
the transitions between inertially- and elastically-driven secondary flows, where for m > 1/4, the secondary
flow is predicted to be driven by elastic stresses. In our case, using Eqs. (1) and (2) for an Oldroyd-B fluid,
we can see this viscoelastic parameter is related to the elasticity number by the polymer contribution to the
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viscosity as m = El(1 − β), which is much greater than 1/4 for all experiments. The elastic Mach number,

defined as Ma =
√

1
2
DeRe [5, 57], is less than 1 for all experiments.

First, to assess the experimental technique, a series of measurements were conducted in a Newtonian fluid.
In Fig. 4a, the terminal velocity of the sedimenting spheres is shown as a function of the rotation frequency.
Clearly, the speed of sedimentation is unaffected by the rotation. The lines in the plot show the calculated
Stokes settling speed according to Eq. (10). The agreement in all cases is within the experimental error (all
error bars depict the standard deviation from the mean). The same data is presented in dimensionless terms
in Fig. 4b, where drag coefficient is shown as a function of the Reynolds number, and the drag coefficient
is calculated from Eq. (9). Along with the measurements, the prediction of the drag for spheres, according
to Eq. (11), is also shown. The agreement is remarkable and also shows that the rotation for a sphere
sedimenting in a Newtonian fluid does not appear to cause any changes in the drag at these values of the
Reynolds numbers.
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FIG. 4: (a) Terminal velocity u (mm/s) as a function of the frequency of rotation (Hz). Symbols refer to
experimental measurements of the spheres with different diameter: 7.99 mm (squares), 8.72 mm (circles),
8.81 mm (triangles) and 9.57 mm (diamonds), whereas solid lines represent Stokes settling speed. (b)

Comparison of drag coefficient data for the Newtonian fluid with Stokes law (solid line).
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FIG. 5: (a) Terminal velocity u (mm/s) as a function of the frequency of rotation (Hz). Symbols refer to
experimental measurements of the spheres with different diameter: 7.99 mm (squares), 8.72 mm (circles),
8.81 mm (triangles) and 9.57 mm (diamonds). (b) Comparison of drag coefficient data for the viscoelastic

fluid with Stokes law (solid line); crossed out markers represent measurements without rotation.
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The experimental measurements obtained for the Boger fluid are shown in Fig. 5, where the sedimentation
velocity for the four spheres is plotted as a function of the rotation speed. In all cases, the sedimentation
velocity is relatively constant at small rotation speeds, but tends to increase for larger rotation speed values.
Fig. 5b shows the same data but in terms of the drag coefficient, again, calculated form Eq. (9), as a function
of Reynolds number. Along with the experimental values of the drag coefficient, the Newtonian prediction is
shown. Clearly, the drag for spheres sedimenting in this Boger fluid is significantly larger than the Newtonian
value, even without rotation. Furthermore, when the rotation is applied, the drag is reduced significantly
showing a decrease with Reynolds number which is, in fact, stronger than the Newtonian rate (approximately
Re-1.5). The drag reduction is of up to 30% relative to the measurements without rotation.
Since the same measurement was conducted for the two different fluids, a direct comparison can be

conducted. Note that the spheres are the same, sedimenting in fluids with approximately the same value
of viscosity, but the fluid densities are slightly different. Most importantly, one of the fluids is viscoelastic
while the other one is Newtonian.
Fig. 6(a) shows the drag coefficient as a function of Re, for all the measurements conducted in this study.

The plot clearly shows the differences between the Newtonian and Boger fluid. It also demonstrates the
effect of rotation on the drag coefficient. Two salient features can be readily identified: the drag is much
larger in the Boger fluid; and when rotation is applied, a significant increase in the sedimentation velocity
(and thus a clear reduction in the drag) occurs. The rotation-driven drag reduction occurs at a slightly
higher rate than that caused by an increase in Reynolds number for Newtonian fluids. This drag reduction
is believed to be due to the elasticity of the polymeric Boger fluid. Note that, since the sedimentation speed
is different for each of the fluids, both the values of the drag and Reynolds number change.
Fig. 6(b) shows the normalized drag coefficient, defined in Eq. (13), for all the measurements in the Boger

and Newtonian fluids, as a function of the rotational Weissenberg number calculated according to Eq. (15).
The plot shows that for the case of the Boger fluid, the drag is about twice the Newtonian value when
rotation is absent. Such values are in reasonable agreement with the measurements obtained by Jones et al.
[6], who also used a corn syrup-based Boger fluid. When rotation is applied, the corrected drag coefficient
is observed to clearly decrease with Weissenberg number.
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FIG. 6: (a) Comparison of drag coefficient data for the Newtonian (empty markers) and the Boger fluid
(filled markers) with Stokes law (solid line). Symbols refer to experimental measurements of the spheres

with different diameter: 7.99 mm (squares), 8.72 mm (circles), 8.81 mm (triangles) and 9.57 mm
(diamonds). Crossed out markers represent measurements without rotation. (b) Dimensionless drag

coefficient Xe as a function of the Weissenberg number Wi for the Newtonian (empty markers) and Boger
fluid (filled markers). The symbols are the same as in (a) with the addition of the experimental

measurements obtained by [6] (open stars).

As discussed at the beginning of this section, for a sphere rotating (but not translating) in a viscoelastic
fluid, in a regime where the secondary flow is driven mainly by elastic stresses (as in these experiments), the
fluid moves towards the sphere in the equatorial plane, and away from the sphere near the axis of rotation.
On a physical basis, as the sphere rotates, polymers are stretched along the curved streamlines, adding
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FIG. 7: Change in the normalized drag correction factor, Xe, as a function of the rotational Weissenberg
number, Wi = λω. Shown is the comparison of the theory (lines) to the numerical solutions (symbols) for

β = 0.3 and β = 0.7 in an Oldroyd-B fluid.

tension to the streamlines and generating hoop stresses. This extra tension pulls fluid toward the sphere and
away at the poles of rotation. For a sedimenting sphere, these rotation-induced hoop stresses are convected
to the back of the sphere, providing a potential mechanism for an extra hydrodynamic force on the sphere,
which could result in an enhanced settling velocity. This will be explored in the following section using
numerical simulations.

V. NUMERICAL & THEORETICAL RESULTS

Numerical simulations were used to compare with the experimental results and elucidate the effect of
sphere rotation on the drag coefficient. First, in Sec. VA, we present the results of the asymptotic theory,
compared with a set of numerical simulations for validation. Next, in Sec. VB, we present the results of the
numerical simulations compared to the experiments, and propose a physical explanation for what is observed
experimentally.

A. Asymptotic theory

In the perturbation theory, the calculation proceeds by assuming that the Deborah number De = λU/a
and Weissenberg number Wi = λω are small, as described in Sec. III C. For the polymeric stress, we’ve
chosen to use the Oldroyd-B constitutive model. From the theory, for a given value of De and Wi, we
calculate the drag force (Fd) on the sphere. This is slightly different from the experiment where the external
force on the sphere is fixed, and the terminal settling speed U is measured. However, both setups can be
used to understand how the steady drag changes as a function of Wi, and here we will present results for
the resistance setup (i.e., fixed U). The result for the drag, to second order in De and Wi, is:

Xe =
Fd

6πηaU
= 1− (1 − β)De2

258 + 143(1− β)

25025
− (1− β)Wi2

141− 11(1− β)

1155
(16)
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FIG. 8: Change in the normalized drag correction factor, Xe, as a function of the rotational Weissenberg
number, Wi = λω. Results compare a single experimental trial (d = 7.99 mm), as open symbols, to

numerical simulations, as closed symbols (a line is drawn through the numerical simulation data as a guide
to the eye).

The O(De2) term in Eq. (16) is the first correction to the drag due to fluid elasticity (in the absence of
sphere rotation) and matches what has been shown before [34, 39, 55], namely a drag reduction for small De
at O(De2). Recently, a higher order theory has shown that the drag can be significantly enhanced at higher
De [58], in accordance with what was found experimentally in this study and elsewhere [3]. The O(Wi2)
term is the first correction to the drag due to sphere rotation in an elastic fluid, showing a drag reduction
at small Wi. The scaling is the same as that found by Giesekus [34], although it should be noted that the
coefficients are not precisely the same.
A comparison between the simulation results and the theoretical result is shown in Fig. 7. In this plot, the

drag correction factor (Xe) at a given rotational Weissenberg number is normalized by the drag correction
factor at Wi = 0. Two values for the solvent contribution to the viscosity were chosen, β = 0.3 and β = 0.7.
In this set of simulations, the Oldroyd-B model was used for the polymeric stress to compare directly with
the asymptotic calculations. The Deborah number was set to be De = 0.1 and the drag force on the sphere
was calculated. The simulations show good agreement with the theory (within 2%) for Wi ≤ 1.

B. Simulations results compared to experiments

To compare the simulations directly to the experiments, we used the same fluid and sphere properties as
shown in Tables 1-3. As discussed in Sec. III A, in this set of simulations we used the FENE-P constitutive
model to describe the polymeric contribution to the Boger fluid stress. Starting with the relaxation time from
Table II (λ = 0.5102 s), we fit the remaining FENE-P model parameters as η0 = 0.8644 Pa s, β = 0.2201, and
L = 32.07 using nonlinear regression to minimize the error between the FENE-P model and the steady-shear
data (η and N1) for γ̇ ≤ 20 s−1 from Fig. 1. The model fit is shown in Fig. 1. In our simulations, we chose
to compare to a single experimental trial, where d = 7.99 mm and ρs = 2190 kg/m3, and imposed a rotation
rate on the sphere as given in Table IV. The sedimentation Reynolds number in the simulations, as defined
in Eq. 12, ranged from 0.31 < Re < 0.52, similar to that from the experiments.
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In Fig. 8, the change in the drag correction factor, Xe, is plotted as a function of rotational Weissenberg
number, Wi = λω, from simulations and a single experimental trial. In this plot, we again plot Xe/Xe,Wi=0;
for the mobility setup (fixed Fext) used in the experiments and these simulations, this is equivalent to plotting
UWi=0/U . From Fig. 8, we observe that the simulations do qualitatively capture the decrease in the drag
coefficient (or increase in the settling velocity) as the rotation rate is increased.

The simulations fail to predict the large drag increase for the particle in the purely sedimenting (non-
rotating) case at Wi = 0, over-predicting DeWi=0. From simulations, we calculated DeWi=0 = 2.87, whereas
from the experiment, we measured DeWi=0 = 1.93. This corresponded to values of Xe,Wi=0 = 1.22 from
the simulations and Xe,Wi=0 = 1.86 from the experiment; in other words, the drag on a purely sedimenting
(non-rotating) sphere was under-predicted in the simulations. Possible reasons for this discrepancy are
addressed in Sec. III A, where we discuss the choice of the FENE-P constitutive model and the benefits
and shortcomings of this model (and other dumbbell models) in complex flows. The value of Xe,Wi=0 from
our simulations is similar to that calculated by others using the FENE-P model [59] for similar values of
DeWi=0. In a more recent study, it was shown that inclusion of dissipative stress contributions can improve the
quantitative description of the drag when using a modified hybrid FENE-CR and extensional White-Metzner
model, although this construction adds a new rheological parameter (a dissipative relaxation timescale) to
the model [52]. To verify that the effect of rotation rate on the drag is not a strong function of DeWi=0, we
tested a second simulation case where the external force on the sphere was chosen such that the calculated
terminal settling velocity in the absence of rotation matched that of the experiment (i.e., DeWi=0 = 1.93).
With this reduced Fext, we found that the change in the drag correction factor Xe/Xe,Wi=0 in this second
case was within 3% of the value shown in Fig. 8 at Wi = 5.3. This conclusion seems to also be supported
from the experimental measurements, where the effect of rotation rate on the drag does not appear to be a
strong function of DeWi=0, at least in the parameter range tested here.

Although the simulations qualitatively predict the decrease in the drag coefficient (or increase in the settling
velocity) as the rotation rate is increased, the agreement is not quantitative at high Wi. It is possible that this
discrepancy is partially explained by the limitations introduced by using the FENE-P model. Additionally,
from the shear rheology plot in Fig. 1, we note that the Boger fluid used in the experiments appears to
exhibit a slight increase in the shear viscosity for shear rates above roughly 20 (i.e., Wi > 10). This apparent
thickening is not predicted by the FENE-P model (nor other dilute dumbbell models) and may further
explain this discrepancy. Given the qualitative agreement and the possible explanations for the quantitative
differences, we can therefore look to the simulations to explore the mechanism whereby the drag decreases
for a rotating sphere in an elastic fluid.

In the simulations, we observed oscillations in the calculated terminal settling velocity at high values
of the rotation Weissenberg number, Wi ≥ 5.3, which persisted even at long times (e.g., t > 20λ). The
amplitude of these oscillations was roughly 2% at Wi = 5.3 with a frequency of approximately 0.25/λ.
The amplitude grew to up to 10% at the highest tested Wi = 16.0 with a frequency of approximately
0.4/λ. The reported simulation values for Wi ≥ 5.3 are therefore averages over two periods of oscillations.
We observed that the oscillation amplitude decreased roughly linearly as the CFL number was reduced,
suggesting that the oscillations, if real, are small relative to the terminal settling velocity. The oscillation
amplitude was not significantly changed when the computational domain was doubled in length. Previously,
oscillations for a purely sedimenting (non-rotating) sphere have been observed in highly elastic fluids from
both experiments [60] and numerical simulations [61, 62], particularly in polymeric solutions with small
viscous damping (i.e., small solvent contribution to the viscosity, β), as reviewed by McKinley [1].

C. Physical mechanism

From our simulations, we can compute the total drag force Fd experienced by the sphere by integrating the
traction, σijnj , over the surface of the sphere. At steady state, this drag force is balanced by the gravitational
body force on the sphere, Fext = 4πa3(ρs − ρf )g/3. To further study the mechanism of the drag decrease
due to sphere rotation, we can decompose the drag force into contributions from the pressure drag, viscous
drag, and polymer drag. Thus, we can write the total drag (in the z- or x3-direction) at steady state as,

Xe =
Fd

6πη0aU
=

1

6π

[

−

∫

S

pn3dS + (1− β)

∫

S

(

∂u3
∂xk

+
∂uk
∂x3

)

nkdS +

∫

S

σP
3knkdS

]

, (17)
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FIG. 9: Contributions to the drag correction factor, Xe, as a function of the rotational Weissenberg
number, Wi = λω, from simulations.

where the three terms above correspond to the pressure, viscous, and polymer drag, respectively. These
contributions to the drag correction factor are plotted in Fig. 9 as a function of the rotational Weissenberg
number. We observe that as the rotation rate is increased, the polymer drag on the sphere increases.
However, this is outweighed by a strong decrease in the pressure drag experienced by the sphere. This
reduction in the pressure drag is a notable result considering this is a low Reynolds number flow (Re < 1)
and suggests a change in the wake structure behind the sphere. This type of pressure-driven drag change in
elastic fluids has been observed before, in both the purely sedimenting case [59], and in the case of a sphere
settling in a cross shear flow [43], although in these two cases, the pressure drag drives an increase in the drag
for highly elastic flows (i.e., for large De). It has also been observed that the dynamics of settling particles
– including, e.g., lateral migration of a settling particle near a confining wall and interactions between two
nearby settling particles – is affected by fluid viscoelasticity largely through a modification to the pressure
distribution on the particles, rather than a direct contribution from the polymeric stresses [63]. The present
case of the rotating and sedimenting sphere appears to be another example where the dominant viscoelastic
effect appears indirectly as a modification of the pressure distribution experienced by the particle.

In Fig. 10a, we show pressure contours on the surface of the particle and in the surrounding fluid at
increasing rotational Weissenberg number. We can see that indeed the wake structure is significantly altered
by the rotation of the sphere in this elastic fluid. As the rotational Weissenberg number is increased, a
high pressure region forms on the downstream side (in the wake) of the sphere. To investigate this, we
examine the mechanism by which the polymers stretch in this flow. In Fig. 10b, we show the trace of the
polymer conformation tensor, cii, on the surface of the particle and in the surrounding fluid. We observe that
the polymers are highly stretched around the surface of the sphere as the rotational Weissenberg number
increases. In Fig. 10c, we show contours and streamlines of the velocity near the particle. We see that in
the absence of rotation, fluid streamlines seeded in the y-z plane remain in that plane. As the rotation rate
is increased, the fluid is rotated around the sphere in a three-dimensional envelope around the particle. We
also note that in the downstream wake of the sphere, this wake envelope appears to be tightened at high
rotational Weissenberg numbers.

As the rotational Weissenberg number increases, the polymers are stretched around the sphere, generating
hoop stresses. These hoop stresses are then convected by the settling motion towards the downstream side of
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FIG. 10: (a) Pressure contours on the surface of the spherical particle and in the surrounding fluid (shown
in the y-z plane). Pressure is minus the hydrostatic pressure and made dimensionless with η0UWi=0/a. (b)

Contours of the trace of the polymer conformation tensor normalized by the maximum polymer
extensibility, cii/L

2, on the surface of the spherical particle and in the surrounding fluid (shown in the y-z
plane). (c) Velocity contours of uz, here made dimensionless with UWi=0, on the surface of the spherical
particle and in the surrounding fluid (shown in the y-z plane). Streamlines of (ux, uy, uz) are seeded at

z = ±2 and x = 0 across a range of y (seed lines are shown in red).

the sphere. We propose that these regions of high hoop stress induce an inward radial force that is balanced
by the fluid pressure. This leads to the tightening of the wake and the high pressure region that is observed
in Fig. 10, resulting in a decrease in the pressure drag experienced by the sphere, and an increase in the
particle settling velocity, as observed in the experiments.
In Fig. 11, we show a close-up of streamlines near the particle with the x-component of the velocity set to

zero. In doing so, we are able to visualize the start of a secondary flow at rotational Weissenberg numbers
Wi ≥ 5.3, where we observe recirculation zones forming on the upstream side of the sphere. These secondary
flows are reminiscent of those that have been observed previously for a rotating sphere viscometer in a
viscoelastic fluid [27, 29, 30]. In the rotating-sedimenting case here, the recirculation zone forms as a result
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FIG. 11: Velocity contours, here made dimensionless with UWi=0, on the surface of the spherical particle
and in the surrounding fluid (shown in the y-z plane). Streamlines of (0, uy, uz) are seeded at z = ±1.25

and x = 0 across a range of y (seed lines are shown in red).

of the competition between the flow generated by the rotation of the sphere in the elastic fluid, which pulls
fluid toward the sphere in the equatorial plane and out towards the poles, and the flow past the sphere.
The physical mechanism proposed here helps to illuminate why the drag decreases for a rotating sphere

sedimenting in an elastic Boger fluid. This mechanism differs from that described for a sphere sedimenting
and freely rotating in a cross sheared elastic Boger fluid, where the drag increases as the cross shear flow
strength increases [40, 41, 43]. In the present case of the rotating sphere, the sphere is forced to rotate,
e.g., due to an applied torque, in an otherwise quiescent fluid. For the parameter range explored here, this
gives rise to azimuthal symmetry around the sphere’s rotation axis. As described above, this results in the
generation of hoop stresses as the sphere rotates, which are then convected towards the back of the sphere,
leading to the formation of a high pressure region on the back of the sphere and an overall decrease in the
drag. In the latter case of the sphere in a cross shear flow, the sphere freely rotates due to the external
flow, giving rise to 180◦ rotational symmetry about the sphere, with an azimuthally periodic variation in
the traction (and the polymer stretch) near the sphere surface [64, 65]. The external shear flow stretches
polymers and generates tension along the shear flow streamlines, as well as convecting the stretched polymers
near the sphere out into the shear flow direction. The extra fluid tension manifests as an increase in the drag
experienced by the sphere, and for a weakly elastic fluid flow past the sphere (i.e., De < 1) this becomes
predominately a viscous drag increase at higher Wi [41, 43]. For a highly elastic fluid flow past the sphere (i.e.,
De ∼ O(1)) in a coupled cross shear flow, this sphere’s wake region grows as the highly stretched polymers
are convected into the shear flow direction to form viscoelastic “wing-like” wake structures, deflecting flow
past the sphere and resulting in predominately a pressure drag increase at higher Wi [43]. Although these
mechanisms have important differences, it is possible that there exists a parameter regime where the effect
of sphere rotation on the drag, from the present study, becomes important in the cross shear flow case, and
this is an area for potential future investigation.

VI. CONCLUSIONS

In this study, we used a polyacrylamide/corn syrup Boger fluid to study the effect of viscoelasticity on
the drag coefficient for a sedimenting and rotating sphere. In the purely sedimenting (non-rotating) case, we
observed a drag coefficient that was larger than in a Newtonian fluid, in reasonable agreement with those
obtained by Jones et al. [6], who also used a polyacrylamide/corn syrup based Boger fluid. To study a
simultaneously sedimenting and rotating sphere, we used a novel experimental setup to induce a controlled
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rotation of a sedimenting sphere about the axis aligned with gravity. We showed that with this setup,
increasing the rotation rate of the sphere reduces the drag on the sphere in a viscoelastic fluid, resulting in
an increased settling velocity. By using a nearly constant viscosity Boger fluid, it was demonstrated that
this increase in the settling velocity is due to elastic effects. This result was supported by a perturbation
theory for small De and Wi using an Oldroyd-B model, which showed that in the absence of fluid inertia,
the drag is reduced at O(Wi2). The experimental results were also supported by numerical simulations,
which showed that the reduction in drag was likely attributable to convected hoop stresses from the rotating
and translating sphere, which result in an increase in the fluid pressure on the backside of the sphere and
an overall reduction in the drag. This finding suggests a possible mechanism for increasing the mobility
of particles in viscoelastic fluids. We suggest that this conclusion would hold for active spherical particles
as well, although this was not the focus of this study and deserves further investigation. A number of
micro-organisms exhibit rotational motion during locomotion, for example mammalian spermatozoa, which
have a rotating head driven by a rotating and beating flagellar tail, and Volvox colonies, which are roughly
spherical squirmers that can rotate due to beating surface flagella [66, 67]. Additionally, it seems likely that
the change in the particle mobility is not only associated with the case where the rotation is around the axis
aligned with translation, although alternate orientations were not studied here. For example, for a sphere
translating and freely rotating in an external shear flow, an additional lateral drift has been predicted at
O(Wi) when the rotation is not aligned with the direction of translation [55]. Finally, as highlighted in
Sec. I, the modifications in the drag coefficient for spheres settling in quiescent Boger fluids have been shown
to be affected by the solvent quality and polymer extensibility in those fluids (which varies, e.g., between
Type-I and Type-II Boger fluids). As such, in future investigations, it would be interesting to study how the
related fluid rheological properties, such as the polymer extensibility parameter and the solvent contribution
to the viscosity, affect the results presented here.
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