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For two-dimensional flow past a linearly-sprung circular cylinder to which has been attached an
internal “nonlinear energy sink” consisting of a mass allowed to rotate about the cylinder axis and
a viscous damper that linearly retards the rotational motion of that mass, we show, for a given set
of parameters, that as many as three distinct unsteady long-time solutions (two periodic and one
chaotic), in addition to one or more steady solutions, can coexist. For other combinations of the
parameters, two unsteady solutions (both periodic, one periodic and one quasi-periodic, one periodic
and one chaotic, one quasi-periodic and one-chaotic, or both chaotic) can coexist with one or more
steady solutions. These multiple solutions, all of which appear to be linearly stable, are found in a
range of Reynolds number (15 < Re < 50) in which the flow is expected to be two-dimensional. The
discovery of this unprecedented degree of solution multiplicity establishes the potential of this system
to serve, at low Re, as a testbed for detailed investigation of basins of attraction of the Navier–Stokes
equations, and in studies of noise- and disturbance-induced transitions between different long-time
solutions.

I. INTRODUCTION

A key issue in understanding the solution structure of the Navier–Stokes equations is the dependence of solutions on
initial conditions. One manifestation of this is the sensitive dependence of turbulent (and more generally, temporally
chaotic) solutions on initial conditions.
A second facet of this issue concerns situations in which there exist qualitatively distinct long-time attracting

solutions, each with its own basin of attraction in the initial condition space. In several cases, such behavior has been
characterized, including for von Kármán rotating disc flow and variants [1, 2]; vortex-induced vibration in flow past a
cylinder [3, 4]; flow in a pipe, where steady axisymmetric, fully-developed flow can exist over a broad range of Re with
either transitional or turbulent flow also being a solution [5]; Rayleigh–Bénard convection [6–9]; Taylor–Couette flow
[10–14]; flow in a pair of channels [15]; dynamo-related magnetohydrodynamic flows [16]; multicomponent convection
in a porous medium [17]; flow in a nearly symmetric two-dimensional sudden expansion [18]; and a drop rising through
an immiscible liquid [19, 20].
Situations having more than one long-time attracting solution (referred to here as “long-time solution”) are of

interest for three reasons. First, if transition from one long-time solution to another can be induced by an intentional
disturbance, then “switching” from one flow state to another has the potential to favorably affect heat or mass
transfer, aerodynamic performance, or chemical reaction rates in a controllable way. Second, systems in which
there are coexisting long-time solutions facilitate study of transitions induced by underlying thermodynamic [21] or
environmental [22] fluctuations. Finally, such situations provide a platform for delineating basins of attraction in the
initial condition space.
Identification of multiple long-time solutions typically involves conducting a bifurcation analysis, or conducting

laboratory or computational experiments to explore the infinite-dimensional space of initial conditions. As a result,
there is an interest in systems for which multiplicity occurs in two-dimensional flows at relatively low Reynolds number,
and quantitative experiments and high-fidelity computations can be performed relatively easily. Two-dimensionality
is important from the standpoint of reducing the dimension of the initial condition space. Two-dimensionality and low
Reynolds number are important from the standpoint of simplifying experimental measurements and computations,
and allowing them to be performed at high resolution.
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A particularly attractive class of two-dimensional flows in which to study multiplicity is vortex-induced vibration
(VIV) of a linearly-sprung circular cylinder, for the case in which cylinder motion is perpendicular to the mean flow.
In this case, at a Reynolds number of 100 (based on cylinder diameter), Navrose & Mittal [3, 4] recently found a new
region of multiplicity in the interior of the lock-in region, in addition to the multiplicity previously identified at the
“ends” of the lock-in region. Those authors found that the extent of this “middle” range of multiplicity (measured in
terms of a dimensionless “reduced speed” defined by the free-stream velocity divided by the product of the cylinder
diameter and the in vacuo natural frequency of the spring–mass system) decreased linearly to zero as the ratio of
cylinder density to fluid density approached ten from above.

Here, we consider multiplicity in a related system previously investigated by Tumkur et al. [23], in which two-
dimensional flow of an incompressible Newtonian fluid excites cross-stream vibration of a linearly-sprung vertical
cylinder of circular cross-section in an unbounded domain. Inertial coupling between the rectilinear motion of the
cylinder and the rotational motion of a mass attached to the cylinder axis, whose rotation is linearly retarded by a
damper (e.g., solid–solid friction at the pivot), provides a mechanism for energy to be mechanically dissipated (i.e.,
not by viscosity within the fluid). As discussed by Tumkur et al. [23], the key issues are a) inertial coupling of the
rectilinear and rotational motion, b) the inherent lack of a natural frequency for the rotational motion (when the
attached mass rotates about a vertical axis, there is no preferred frequency associated with gravity), and c) mechanical
dissipation, which combine to give rise to a “nonlinear energy sink” (NES). Gendelman et al. [24] and Sigalov et

al. [25, 26] showed that for a linearly-sprung mass undergoing rectilinear motion, attached to a second mass whose
rotational motion is linearly retarded by a viscous damper, the free response of this in vacuo system is quite complex.

In the context of flow-induced vibration, Tumkur et al. [23] showed that a rotational NES allows for a much richer
response than is found for “standard” (NES-less) VIV. (In the range of Reynolds numbers considered below, we use
“standard VIV” to refer to time-periodic two-dimensional flow and time-periodic motion of a linearly-sprung cylinder
absent an NES [3, 4].)

The present work establishes that up to three long-time periodic, quasi-periodic, or temporally chaotic solutions,
along with a steady, symmetric, motionless-cylinder solution, can coexist when the motion of a rotational NES is
inertially coupled to the rectilinear motion of the cylinder. The range of multiplicity extends well below the critical
Reynolds number for flow past a fixed cylinder (Refixed ≈ 46). The results pertain to a density ratio of ten, thus
facilitating experiments in water and other liquids.

The remainder of the paper is organized as follows. We present the formulation and computational approach in §II,
the results in §§III–IV, a discussion in §V, and a conclusion in §VI.

II. FORMULATION AND APPROACH

A. Physical model

The physical problem, involving a Newtonian fluid with constant density ρf and kinematic viscosity ν flowing with
uniform velocity Uex past a linearly-sprung circular cylinder with diameter D, is identical to that considered by
Tumkur et al. [23], and is shown schematically in figure 1. The cylinder is allowed to move transversely to the mean
flow, in the y-direction, with its motion restrained by a linear spring with spring constant Kcyl. The cylinder has
an “overall,” or “effective” density ρb = (Mstat +MNES)/(πD2L/4), where L is the spanwise extent of the flow, and
Mstat and MNES are the masses of the nonrotating part of the cylinder (the “stator”) in contact with the flow, and
the rotational NES, respectively. (We note that in most laboratory experiments, the spring or other elastic restraint
lies outside the span of the flow. Here, the stator, the NES, or both can extend beyond the span of the flow.) The
NES consists of two components. First, a mass MNES is allowed to rotate at an effective distance r0 from the cylinder
axis. (For a point mass or a mass concentrated on a line parallel to the cylinder axis, r0 is simply the distance from
the axis. For any distributed mass, Tumkur et al. [23] showed that r0 = R2

g/Rcm, where Rg and Rcm are the radius of
gyration and the distance from the center of mass to the axis of rotation, respectively.) The second component is a
viscous damper, which retards rotation of the attached NES mass with a torque linearly proportional (with coefficient
CNES) to the latter’s angular velocity.

The dimensionless equations are identical to those of Tumkur et al. [23], given by

∂v

∂τ
+ v ⋅∇v = −∇p + 1

Re
∇2v (1a)

∇ ⋅ v = 0 (1b)
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d2y1
dτ2

+ [2π g∗n
Re
]2 y1 = εpr̄0 d

dτ
[dθ
dτ

sin θ] + 2CL

πm∗
(2a)

d2θ

dτ2
+ ζ

Re

dθ

dτ
= sin θ

r̄0

d2y1
dτ2

(2b)

where velocity, time and length (including cylinder displacement) have been scaled with cylinder diameter D and free-
stream velocity U , the Reynolds number is Re = UD/ν, θ is the angular position of the NES mass rotating about the
cylinder axis, and CL is the lift coefficient. We take θ = 0 to coincide with the positive y-axis. The other dimensionless

parameters are m∗ = ρb/ρf , the dimensionless in vacuo natural frequency g∗n =D2
√
Kcyl/(Mstat +MNES)/(2πν) of the

spring–mass system, εp = [MNES/(Mstat +MNES)]/(Rcm/Rg)2, r̄0 = r0/D, and a dimensionless damping parameter
ζ = CNESD

2/(νr20MNES). For a point mass or a concentrated line mass, εp = MNES/(Mstat +MNES). We note that
m∗ can be made very large, even when the fluid is a liquid, and that εp can be varied over a very wide range, by
extending the stator and NES beyond the span of the flow.
In the limit of very high damping of the rotational motion of the attached mass, rotation ceases and the system

behaves as would a linearly-sprung NES-less cylinder, i.e., with no effect of the rotatable mass. In that limit, the
motion (or lack thereof) depends only on the Reynolds number, dimensionless spring constant, and ratio of cylinder
density to fluid density.

B. Inlet transients

To explore coexistence of multiple long-time solutions, we used inlet transients symmetric and asymmetric about
y = 0, rather than searching in the initial condition space. These inlet transients smoothly relax to a uniform
inlet condition in finite time, providing a finite-time transition from a prescribed inlet disturbance to uniform inlet
flow compatible with a steady, symmetric, motionless-cylinder (SSMC) solution. (If vx(x, y, τ) = vx(x,−y, τ),
vy(x, y, τ) = − vy(x,−y, τ) and p(x, y, τ) = p(x,−y, τ), we refer to the flow as symmetric about y = 0. The
corresponding vorticity distribution is anti-symmetric.) Our approach can be thought of as a variation on persistent
inlet excitation [27, 28], but with a finite duration, since persistent inlet excitation would not be compatible with an
SSMC solution.
Each asymmetric inlet transient v(xin, y, τ) = exvx,in(y, τ) with

vx,A(y, τ ;α) = {1 + αexp[−(y − 1)2/2]} [1 − τ

25
] + τ

25
(3a)

vx,B(y, τ ;β) = (1 + β {2tanh[(y + 36)/30]
tanh(12/5) − 1})[1 − τ

25
] + τ

25
(3b)

vx,C(y, τ ;γ) = [1 + γ y

36
] [1 − τ

25
] + τ

25
(3c)

vx,D(y, τ ; δ) = [1 + δ sin(πy/36)] [1 − τ

25
] + τ

25
(3d)

for 0 ≤ τ ≤ 25, has the same uniform profile (vx,in(y, τ) = 1) for τ ≥ 25, where xin is the location of the upstream
computational inlet, discussed in §II C. These transients (figures S1a-d [29]) vary on a time scale (25 convective time
units) orders of magnitude larger than the time-step size, and also considerably larger than the time scale for vortex
shedding and cylinder motion. (The fifth transient, denoted by E, is uniform flow for τ ≥ 0, i.e., vx,E(y, τ) = 1.)
In (3a-d), α, β, γ and δ characterize the degree of asymmetry of the prescribed inlet transient, with large values
corresponding to strong asymmetry, and each of the limits α → 0, β → 0, γ → 0 and δ → 0 corresponding to uniform
flow for all τ ≥ 0. Unless otherwise specified, α = β = γ = δ = 1.
In each case, the initial condition in our domain is a divergence-free velocity field v(x, y,0) = exvx,in(y,0) with a

cross-stream profile identical to the initial inlet velocity. The compatibility of the initial and inlet profiles at τ = 0 and
x = xin is important in that it avoids incompatibilities between a specified nonuniform inlet condition and a uniform
initial condition in the domain, or between a uniform inlet condition and a nonuniform initial condition. Also, in each
case, the initial position of the NES mass is θi = π/2 unless otherwise indicated, and the initial velocity of the NES
mass is zero. The cylinder is initially motionless at its equilibrium position.
In searching for coexisting long-time solutions, use of multiple inlet transients over 0 ≤ τ ≤ 25 is equivalent to

use of multiple initial conditions at τ = 25. The instantaneous velocity and pressure fields at τ = 25, as well as the
rectilinear displacement and velocity of the cylinder and angular position and velocity of the rotating mass at τ = 25,
are determined by the initial-value problem (beginning at τ = 0) with the imposed inlet transient. There is thus a
mapping from each combination of an inlet transient over 0 ≤ τ ≤ 25 and an initial condition at τ = 0, to an initial
condition at τ = 25, with the mapping being effected by the governing equations.
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C. Computational approach

Solutions are approximated computationally using the open-source, spectral-element Navier–Stokes solver Nek5000
[30] whose adaptation to the problem at hand is described by Tumkur et al. [23]. The computational domain extends
72 cylinder diameters in the cross-stream direction and 96D in the streamwise direction, with the undisplaced cylinder
center located 24D away from the inlet boundary and equidistantly from the side-walls. Our production runs use a
mesh with 2784 spectral elements, polynomial degree N = 5 and time-step size ∆τ = 2 × 10−3. For these values of the
parameters, the long-time solutions are qualitatively similar to those where we simultaneously halved the time-step
size, quadrupled the number of elements, and increased the polynomial degree to nine (figures S2a-h [29]).
As in the work of Tumkur et al. [23], the time-step size used is sufficiently small that no fluid–structure interaction

iteration is required.

III. PHASE DIAGRAM AND STABILITY BOUNDARY

When an SSMC is found, we define the final angular position of the NES mass by

θ∞ = lim
τ→∞

θ(τ). (4)

In this case, the flow is symmetric about y = 0, even though the position of the NES mass might not be. All other
long-time solutions we found are unsteady, with the flow being asymmetric at each time.
In what follows, m∗ = 10, εp = 0.3, ζ = 4/3 and r̄0 = 0.3 unless otherwise stated.

A. Overview of the phase diagram

For the stated combination of density ratio (m∗), NES parameters (εp, ζ and r̄0), and initial angular position
θi = π/2, the solid and dotted lines in figure 2 show linear stability boundaries for the NES-less and NES-equipped
cases, respectively, as determined by Tumkur et al. [23] using inlet transient A with α = 10−4. The 279 tilted squares,
pentagons, upright squares and circles correspond to cases in which inlet transients A–E lead to four, three, two
and one long-time solutions, respectively. (No more than one SSMC solution is counted in making this assignment,
regardless of the number of values of θ∞ found with different inlet transients.) Moreover, for each symbol shape (and
hence for each number of distinct long-time solutions) there is a one-to-one correspondence between the symbol color
and the combination of long-time solutions found.
For each combination of g∗n and Re, the number and type of SSMC solutions is indicated using one or more internal

lines. A horizontal line denotes a case in which the symmetric inlet transient does not lead to cylinder motion, so
that the rotating mass is never displaced. A vertical line denotes a case in which at least one inlet transient gives rise
to an SSMC solution with ∣θ∞ − nπ∣ ≤ 10−6π (n an integer). A diagonal cross denotes a case where at least one inlet
transient gives rise to an SSMC solution with ∣θ∞ − nπ/2∣ ≥ 10−6π for all integers n. For symbols containing more
than one of these lines, the interpretation is “additive.” Thus, an open circle with vertical and horizontal lines and
a diagonal cross corresponds to the case in which every inlet transient leads to an SSMC solution, with at least one
being θ∞ = π/2, at least one being θ∞ = nπ and at least one being θ∞ ≠mπ/2, where m and n are integers. Similarly,
a pentagon with a horizontal line corresponds to a case in which the only SSMC solution found has θ∞ = π/2, and two
unsteady long-time solutions also exist. Situations in which all of the inlet transients give rise to unsteady long-time
solutions are denoted by symbols with no internal lines.
As a consequence of the mapping from an inlet transient and τ = 0 initial condition to a τ = 25 “initial condition”,

the existence of more than one long-time attracting solution for a given set of parameters demonstrates that the initial
condition space for this autonomous system can be decomposed into parts, from each of which attraction occurs to a
different long-time solution. While it is typically not trivial to identify basins of attraction in the initial condition space
even for a finite-dimensional system in which the basins are neither fractal nor riddled [32–36], the difficulty of doing
so in the infinite-dimensional initial condition space for any nonlinear partial differential equation is daunting. One
can in principle project the function space of initial conditions onto a finite-dimensional space, and divide that into
basins of attraction. But as far as we know, there has been only one attempt to identify basins of attraction in a flow,
namely the work of Skufca, Yorke & Eckhardt [37], who considered a nine-dimensional reduced-order (ODE) model
of a parallel shear flow, and delineated basins of attraction in a two-dimensional projection of the nine-dimensional
initial condition space.
We do not attempt to fully explore the initial condition space (or the space of inlet transients), and thus make no

claim for completeness of our “collection” of long-time solutions for any combination of Re and g∗n. We consider only
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integer Re, for which we focus on identifying qualitatively different long-time solutions. We make no claim regarding
solutions at fractional Re values, and do not characterize routes to chaos, transitions as Re or g∗n varies, or basins of
attraction in the infinite-dimensional space of initial conditions or in any projection thereof.

B. Relationship to the stability boundary

As discussed by Tumkur et al. [23], the two stability boundaries shown in figure 2 pertain to an SSMC base
flow, and were computed using noninfinitesimal disturbances with small asymmetry, along the lines of Zielinska &
Wesfreid [38]. For the NES-less case, the stability boundary ABCDE separates conditions under which sufficiently
small disturbances to the base flow decay for combinations of Re and g∗n on one side, and do not decay on the other
side. For the NES-equipped case, we specify an initial value θi = π/2, and note that the stability boundary AB′C′D′E
separates situations where asymmetric disturbances decay, from those in which they do not. (As discussed below, the
symmetric inlet transient E can lead to instability only as a result of asymmetries in the numerics.) We also note that
the steady symmetric flow with θi = π/2 can evolve to an SSMC solution in which the angular position of the NES
mass has a different value. If that outcome occurred when infinitesimal disturbances were used, then there would
be two possibilities, in which the final position θ∞ of the NES mass differs infinitesimally or noninfinitesimally from
π/2. In terms of a base state corresponding to an SSMC solution and θi = π/2, we characterize the first situation as
stable, and the second as unstable because the disturbance grew to a noninfinitesimal amplitude before ultimately
decaying to θ∞ ≠ θi. Because the stability boundaries were determined using noninfinitesimal disturbances, a final
value θ∞ = π/2 is expected to arise in only two cases: a) when the disturbance is symmetric and the NES mass is not
displaced, and b) as a limiting case when the asymmetry of the inlet transient tends to zero. As discussed by Tumkur
et al. [23], both possibilities have been realized.

Figure 2 shows that in the portion of the Re–1/g∗n plane in which the NES-less case is linearly stable, only SSMC
solutions are found. Moreover, in the portion of the Re–1/g∗n plane in which the NES-less case is linearly stable
and the NES-equipped case is unstable, none of the SSMC solutions found has θ∞ = π/2. This includes those for
symmetric inlet transient E, showing that in this part of the Re–1/g∗n plane, the initial SSMC solution is destabilized
by small asymmetries in the numerics. In the portion of the Re–1/g∗n plane in which the NES-equipped case is linearly
stable and the NES-less case is unstable, additional computations for inlet transients with smaller asymmetries
(α = β = γ = δ = 10−1, 10−2, 10−3 and 10−4) give results consistent with the linear stability boundary (table S1 [29]).
The dependence of the final state on disturbance amplitude (shown for inlet transient A in table S1 [29]) shows that
the SSMC solution with θi = π/2 is subject to finite-amplitude instability in this portion of the Re–1/g∗n plane.

As discussed by Tumkur et al. [23], the stability boundaries are triple-valued over a range of g∗n, and linear stability
of an SSMC solution depends on Re, g∗n, m

∗, ζ and εp sin
2 θs, but not on r̄0, or separately on either εp or θs (where θs

is the steady NES angular position). Based on this or examination of (2a,b), it is clear that linear stability analysis
of the SSMC solution with θs = nπ reduces to the NES-less case. (On physical grounds, this must be so because there
is no inertial coupling if θ = nπ and dθ/dτ = 0.) As discussed in §IV, for each combination of Re, g∗n, m

∗ and ζ for
which a θs = π/2 SSMC solution is linearly stable, there is a range of stable values of εp sin

2 θs, and so stable SSMC
solutions do not have a unique θs, except when θs = nπ is the only stable SSMC solution.

IV. NATURE OF THE DISTINCT SOLUTIONS

Here, we categorize and discuss the computed solutions over a range of Re and 1/g∗n, largely based on the long-time
dynamical behavior of the rotating mass, which is qualitatively distinct for each unsteady long-time solution, and of
the wake. This focus is appropriate because, as discussed in §II C, the long-time behavior is qualitatively insensitive
to the details of the numerical discretization, provided that the discretization provides sufficient temporal and spatial
resolution.
The relationship between the temporal complexity of the NES mass rotation, cylinder displacement, and flow is of

interest from the standpoint of using one or two of them as diagnostics for the remainder. There are two distinct cases.
First, when the NES mass does not rotate, if either the cylinder displacement or the flow is steady, time-periodic,
quasi-periodic, or chaotic, then so is the other, on account of the coupling through (2a) and the boundary conditions
at the fluid/cylinder interface. In the second case, when the NES mass rotates, (2a,b) show that neither the flow nor
y1 can be steady, and that if any one of the NES mass rotation, cylinder motion, or flow is periodic, quasi-periodic, or
chaotic, then so are the others. Note that (2b), considered in isolation as a second-order ODE for θ with y1(τ) being
a given periodic function, allows for the possibility of a time-periodic cylinder motion giving rise to chaotic NES mass
rotation. But when (2a) is also considered, it becomes clear that a periodic y1 is incompatible with a chaotic θ.
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The transient behavior of the asymptotically periodic and quasi-periodic solutions (all of which include a chaotic
transient [31]), and the long-time chaotic solutions, are sensitive not only to initial conditions, but also to the details
of the numerical discretization. When the discretization provides sufficient spatial and temporal resolution, this
sensitivity has very little effect on the statistics (broadly defined) of the long-time solution. Sensitivity of transient
or long-time chaotic behavior to discretization likely corresponds to sensitivity to initial conditions in a physical
experiment. For such solutions, the reported behavior is thought to be representative, in the same sense that, for
a broad class of physical systems, chaotic behavior in a single realization of a physical experiment is thought to be
representative of what would be observed in a larger ensemble. Evidence for this hypothesis can be found in the
results presented in §IVD.

A. Steady solutions

For an SSMC solution with any value of θs, the flow is identical to that past a fixed cylinder. As noted in §III B,
for an NES-equipped cylinder the linear stability of an SSMC solution depends on only Re, g∗n, m

∗, ζ and εp sin
2 θs.

For Re = 36, 1/g∗n = 0.17 and inlet transient A with α = 10−4 (used to compute the stability boundaries), table I shows
that for εp = 0.3 and 0.6, there is a limited range of angular positions of the NES mass for which the SSMC solution is

stable. That range has upper and lower bounds π/2 and θcrit = arcsin(Γ/εp)1/2, respectively, where Γ ≈ 0.0912 is the

minimum value of the “combination” parameter εp sin
2 θs for which stability is possible. For θi = 0, a standard VIV

solution is the long-time solution. Different long-time solutions are found for larger values of εp sin
2 θi in the range

0 < εp sin2 θi < 0.0912, where any SSMC solution necessarily has θ∞ ≠ θi, with arcsin(Γ/εp)1/2 ≤ θ∞ ≤ π/2.
The physical mechanism is as follows. For θs = 0, the NES has no consequence for linear stability, and the only

possible long-time solutions are the standard VIV solution corresponding to an NES-less sprung cylinder, and an
SSMC solution. On the other hand, the more θs differs from an integer multiple of π, the more potential there is
for the NES mass to respond to rectilinear cylinder motion arising from asymmetric disturbances. This response can
bleed off kinetic energy associated with that rectilinear motion, damping disturbances. When θs is close to an integer
multiple of π, the NES mass has little “leverage” to bleed energy from the rectilinear motion, and some disturbances
which would have decayed for larger θs can now grow.

B. Time-periodic solutions

Standard VIV solutions. For standard VIV, the NES has no dynamical effect, and the two-dimensional flow
and cylinder motion are time-periodic (in this range of Re) and identical to the NES-less case. Conversely, if θ is
always equal to an integer multiple of π, cylinder oscillation corresponds to standard VIV, and (2a,b) show that the
rectilinear motion of the cylinder is coupled only to the flow. Consistent with what is known about standard VIV [3],
we believe that when this solution is linearly stable for m∗ ≤ 10, there are no additional unsteady long-time solutions
with θ∞ equal to an integer multiple of π. For Re = 35 and 1/g∗n = 0.28 (leftmost red circle in figure 2), and inlet
transient A, coupling NES mass rotation to the cylinder’s rectilinear motion leads to growth of disturbances in y1 and
θ during an interval of transient chaos (see Movie 1 [29]), followed by an asymptotic approach to standard VIV with
θ∞ = 0 (see figures S3a-h [29]). Asymptotic values of θ equal to even and odd multiples of π have been observed, with
the final value depending on the transient chaotic behavior, which in turn depends on the specified inlet transient and
the detailed error properties of the computational algorithm.
Periodic, predominantly unidirectionally rotating (PPUR) solutions. Figures 3(a-h) show time series for

Re = 38 and 1/g∗n = 0.18, using inlet transient C. A notable feature is the very long chaotic transient (extending
over 2000 convective time units) before the trajectory settles down to a time-periodic solution that could have been
overlooked had the simulation been terminated earlier. The chaotic transient features several episodes (340 < τ < 400,
660 < τ < 700, and briefly near τ = 1020, 1180, 1350, 1530 and 1630; see Movie 2 [29]) of significant wake elongation
and symmetrization. Elongation and symmetrization are not found (here and in previous work) in the NES-less
case, showing that the NES is necessary for these flow phenomena. In the asymptotic state (figures 3e-h), the NES
mass rotates exclusively in the counterclockwise direction, swinging through a full 2π during each period. (For an
inlet transient with opposite symmetry, it is easy to prove that the NES mass rotates in the opposite direction.)
Comparison of the asymptotic limit cycle (figure 4a) to the NES-less standard VIV case (figure 4b) shows that the
wakes are similar.
That the solution continues to wander through the phase space before finally being attracted to a time-periodic

solution at around τ = 2100 suggests that both the standard VIV solution (to which the trajectory was not attracted
after the inlet transient) and SSMC solution are nonattracting sets in the phase space, whose existence is a necessary
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condition for transient chaos [31].
If the first factor in the first term on the right-hand side of inlet transient C is modified to 1 + y/36.001, then the

pre-PPUR transient (see figures S4a-d [29]) is quite different than for the unmodified inlet transient C (figures 3a-d),
with the duration of transient chaos being significantly shorter. This sensitivity to inlet transient details is reminiscent
of sensitivity to initial conditions in systems displaying transient chaotic behavior [31], and follows directly from the
relationship between inlet transients and initial conditions discussed in §II B.
For Re = 36 and 1/g∗n = 0.17 (the parameters for which SSMC solutions were presented above) with inlet transient

A, Movie 3 [29] and figures 5(a-h) show that the solution settles into a PPUR state by about τ = 200. The NES
mass rotates predominantly counterclockwise, but with some reversal during a small fraction of each cycle (figure
5h). Power spectral analysis shows that y1 has a dominant dimensionless frequency of 0.139, with a relatively weak
harmonic contribution at fD/U = 0.278. The lift and drag coefficients show significant response at both frequencies.
In contrast to the PPUR solution discussed above for Re = 38 and 1/g∗n = 0.18, the PPUR solution for Re = 36 and
1/g∗n = 0.17 (both with inlet transient A) involves a definite “hesitation” in the angular position of the NES mass
(near θ = 3π/2) during each cycle, with the NES mass coming to rest and quickly executing a small clockwise reversal,
before resuming its counterclockwise motion. Vortex shedding is strong from the start, with no discernible partial
stabilization or vortex elongation.
Back-and-forth periodically rotating (BAFPR) solutions. For Re = 24, 1/g∗n = 0.4, and inlet transient A,

figures 6(a-h) and Movie 4 [29] show that during an initial transient (0 < τ < 35), relatively rapid, large-amplitude
cylinder motion significantly disturbs the early-time spanwise vorticity distribution, which is convected downstream
and out of the computational domain. During this time, the cylinder and NES mass undergo large rectilinear and
angular displacements, respectively. This is followed by an interval (from about τ = 50 to about τ = 150) that begins
with considerable vortex elongation (see Movie 4 [29]) and small-amplitude cylinder motion and NES mass rotation
about θ = 0. As time progresses, oscillations in y1 and CL continue to grow, the NES mass remains nearly stationary
near θ = 0, and the solution seemingly approaches standard VIV. At about τ = 480, however, the amplitude of
oscillation of the NES mass grows rapidly. As shown in figure 6(c), this begins with “split-peak oscillations,” leading
to large “spikes” in the lift, and ultimately to a time-periodic solution in which split-peak oscillations of the NES
mass persist (figure 6h). The increasing deviation of the NES-equipped case from the NES-less case beginning near
τ = 480 is associated with the NES mass rotation becoming more closely coupled to the cylinder motion, and hence
to the flow, as θ increases. The wake is qualitatively similar to what is seen for standard VIV (compare figure 7a to
figure 7b). At long times, y1, CL and θ are periodic (figures S5a-c [29]), with a slightly richer harmonic content in
the Fourier spectrum for CL than for y1 and θ. The dominant frequencies for CL, y1 and θ are close to St, St and
St/2 (where St is the Strouhal frequency), respectively, strongly suggesting a mechanism of 1:1:2 internal resonance
between the lift, rectilinear cylinder motion, and rotation of the NES mass, respectively.

C. Quasi-periodic solutions

For Re = 33 and 1/g∗n = 0.19, figures 8(a-h) and Movie 5 [29] show that inlet transient A gives rise to a long transient
in which the amplitude of oscillations in y1 decays from greater than 0.2 to about 0.05, and the NES mass rotates
counterclockwise, approaching −10π. As the NES mass becomes nearly motionless near −10π, a wake instability sets
in, and the oscillation amplitudes of y1 and CL linearly grow, leading to increased wake asymmetry and unsteadiness.
By about τ = 520, the amplitude of y1 has increased to the point where rotation of the NES mass is excited, and
the system rapidly approaches a long-time solution that appears to be quasi-periodic, and in which the wake is quite
different from that for an NES-less linearly-sprung cylinder (compare figure 9d to figure 9e).
Figures 10(a,c) and tables S2(a,c) [29] show that the dominant frequency for y1 and CL is f1 = 0.1449, close to

the natural frequency (1/(0.19 × 33) = 0.1594) of the linearly-sprung cylinder. For θ, figure 10(b) shows that the
dominant frequency is f2 = 0.0834. For y1 (using the 18 frequencies having the highest energy), θ (16 frequencies)
and CL (15 frequencies), respectively, each frequency can be written as a sum of rational multiples of the essentially
incommensurable frequencies f1 and f2, whose ratio is 0.576 (tables S2a-c [29]). (The closest ratio of “small” integers
is 5/7 = 0.571428... . The closest ratio of integers with denominator less than 26 is 11/19 = 0.578947... .) The rational
numbers in the “a” and “b” columns of tables S2(a-c) [29] are multiples of 1/3. For the long-time solution, the
waveforms for y1 (figure 8e) and CL (figure 8g) are quite similar. The power spectrum for y1 (figure 10a) shows a
(small) peak near 0.0205, corresponding to the modulation frequency, which is the difference between four pairs of
frequencies in each of the three power spectra (see tables S2a-c [29]).
In the asymptotic regime, dy1/dτ fluctuates, with significant deviation, about a mean of essentially zero. The long-

time θ and dθ/dτ (figures 8f and 8h, respectively) are strongly modulated, at a frequency of 0.019, with no significant
power at the frequency dominant for y1 and CL. The angular motion has its two most energetic peaks at 0.0834 and
0.1039, separated by 0.0205 = (0.1449 − 0.0834)/3, the modulation frequency for y1, CL and θ.
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Although the dominant frequencies (0.1449 and 0.0834) of y1 and θ “cross over” into each other’s time series (each
extracted frequency in y1 and θ can be written as a rational linear combination of the two dominant frequencies; tables
S2a-c [29]), the modulation frequencies (0.0205 for y1, and 0.019 for θ) are not among the most energetic frequencies
extracted.
Finally, modulation of CL is somewhat asymmetric (figure 8g), being larger near the minima than at the maxima.

Modulation of y1 is considerably less asymmetric.

D. Temporally chaotic solutions

Fully-developed chaotic (FDC) solutions. For Re = 31, 1/g∗n = 0.28, and inlet transient C, figures 11(a-e) and
Movie 6 [29] show that after an initial transient (from τ = 0 to about τ = 70), the trajectory settles into a chaotic state,
whose nature is evident from the broadband frequency content of the wavelet spectra for y1, sin θ and CL (figures
S6a-c [29]). By comparison to the standard VIV case (figure 12d), figures 12(a,b) show that the wake structure is
considerably affected by the NES, not only in the near field, with recurring episodes featuring noticeable elongation of
the attached vorticity (figure 12a), but also in the far field, with less organized vortex structures (figure 12b). Figure
12(c) shows that during other time intervals, the wake structure is reminiscent of standard VIV (figure 12d).
Movie 6 [29] shows that in the asymptotic regime, the cylinder displacement shows a number of peaks (e.g., near

τ = 1170, 1248, 1308, 1386 and 1472), recurring at roughly equal intervals, interlaced with very short intervals of
small cylinder displacement. During each of the latter relatively quiescent episodes, the wake undergoes considerable
elongation and significant symmetrization, corresponding to minima in the time series of drag (figure 11e). But just as
an SSMC solution can give rise (via instability) to the Kármán vortex street in the NES-less case, we believe that the
partially symmetrized flow found here elongates until it becomes unstable with respect to a wake instability. Judging
from Movie 6 [29], the streamwise extent of wake elongation appears to be roughly the same in each episode.
To characterize the chaotic response, we consider the streamwise and cross-stream velocity components at a point

fixed with respect to an inertial reference frame and located in the near wake, 1.25D downstream of the cylinder
center and 1D above the mid-line y = 0 (referred to as Point P), along with their wavelet and Fourier spectra (figures
S7a-f [29]). As with y1, θ and CL, the broadband frequency content of the wavelet and Fourier spectra for the two
velocity components evidences the chaotic nature of the flow. Qualitatively identical results are obtained for the two
velocity components at a point 3.25D downstream of the undisplaced cylinder center and 1D above the mid-line. (We
refer to this as Point Q.)
Figures 13(a-f) show the normalized autocorrelation of vx,P ≡ vx(xP , yP , τ), the normalized cross-correlations of

vx,P , vy,P ≡ vy(xP , yP , τ) and dy1/dτ with each other, the normalized cross-correlation of vx,P and vx,Q ≡ vx(xQ, yQ, τ),
and the normalized cross-correlation of dy1/dτ with CL, where we define the normalized cross-correlation of q(τ) and
s(τ) as

aq,s(τc) = ∫
τ2

τ1

q′(τ)s′(τ + τc)dτ
(τ2 − τ1) [⟨q′2⟩⟨s′2⟩]1/2 (5)

with q′(τ) = q(τ) − ⟨q⟩, s′(τ) = s(τ) − ⟨s⟩ and the angle brackets denote mean quantities. For the normalized
autocorrelation, we simply replace s(τ) by q(τ). The most striking feature of these plots is that none decays as the
lag τc increases to 1200 convective time units, corresponding to almost 200 shedding cycles. This is in stark contrast
to the results shown in figures 20(g,h) of Tumkur et al. [23], where the cross-correlations of the cylinder velocity with
the two velocity components at Point P showed significant decay over lag times much shorter than observed in figures
13(a-f). The difference between our nondecaying (or very slowly decaying) correlations and those of Tumkur et al.

[23] is largely due to the relatively “weakly chaotic” nature of the present time series for vx,P , vy,P , vx,Q and dy1/dτ ,
as revealed by comparison of the wavelet spectra in figures S7(c,d) [29] to those in figures 20(c,d) of Tumkur et al.

[23], and of the power spectra in figures S7(e,f) [29] to those in figures 20(e,f) of Tumkur et al. [23]. It is clear that the
response in the present case, while definitely broadband, is more strongly dominated by two frequencies than is the
case for the higher-Re system considered by Tumkur et al. [23]. The autocorrelation of vx,P , the cross-correlations
of vx,P with either vx,Q, vy,P , or dy1/dτ , and the cross-correlation of vy,P with dy1/dτ , are essentially identical,
largely because the velocity components at Points P and Q, and the cylinder velocity, are strongly correlated. The
cross-correlation of dy1/dτ with CL shown in figure 13(f) is qualitatively similar. To eliminate the effect of the two
dominant frequencies in the correlation plots, we apply a first-order Butterworth band-stop filter with lower and upper
critical frequencies 0.05D/U and 0.6D/U , respectively, to the time series of dy1/dτ , CL, vx,P , vy,P , vx,Q, and vy,Q. In
contrast to figures 13(a-f), figures S8(a-f) [29] show that the autocorrelations of the filtered signals are virtually zero
after about 30 time units, which corresponds to approximately five shedding cycles.
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Cursory inspection of the time series for θ (figure S9 [29]) shows that the NES mass does not have a strong preference
for any particular position (e.g., θ = nπ for any integer n). This is more clearly seen using the cumulative distribution
function

CDF(φ) = P (θ mod 2π ≤ φ), φ ∈ [−π,π) (6a)

and probability density function

PDF(φ) = d[CDF(φ)]/dφ, (6b)

where P (Xi) is the probability that the variable X assumes the value Xi. For Re = 31, 1/g∗n = 0.28 and inlet
transient C, the NES mass has only a very weak preference for θ = 0 or π (see figures S10a,b [29]). This preference
persists regardless of the sampling window used in the time series, and regardless of whether the PDF is computed
by differentiation of the distribution function, or by a “binning” approach (figures S10c-f [29]). The PDF is an
approximately even function of θ, with minima near ±π/2.
The CDF and PDF of dθ/dτ at the times when θ crosses through an integer multiple of π show that there is a

minimum nonzero value of ∣dθ/dτ ∣ (figures S11a,b [29]). Comparison to the CDF and PDF when the values of dθ/dτ
are additionally conditioned on the requirement that the NES mass was displaced by at least 0.1 (radian) since the
previous zero-crossing, to eliminate the effect of “jitter” near integer multiples of π (figures S11c-d [29]), shows that
the crossings having the smallest values of ∣dθ/dτ ∣ are “jittering” near integer multiples of π. No instances were found
in which θ and dθ/dτ simultaneously vanished. (If this happened, (2b) shows that the NES mass would come to rest,
and (2a) shows that the solution would be identical to standard VIV thereafter.) It is clear that there is a threshold
value of ∣dθ/dτ ∣ ≈ 0.1 for “jitterless” crossings of θ = nπ. The explanation is that if ∣dθ/dτ ∣ is sufficiently small when
θ = nπ, then “capture” by a VIV or SSMC solution (with no rotation of the NES mass) is possible if the small amount
of rotational kinetic energy can be dissipated. In that case, the long-time solution would not be chaotic.
To further characterize the fully-developed chaotic solution, we estimate the correlation dimensions dcorr of y1

and CL using the algorithm of Grassberger & Procaccia [39], implemented by Hegger et al. [40]. We compute the
correlation sum Cm(σ) over a range of scales σ for several values of the embedding dimension m. Convergence of
dcorr is established when for sufficiently large m, the slope of logCm(σ) vs. logσ becomes independent of m and σ
over a relatively broad range of σ. For such a range, Cm(σ) scales like σdcorr .
We apply this approach at Re = 31 and 1/g∗n = 0.38 with inlet transient C (figure 11a). We discard the initial portion

of the time series (0 ≤ τ ≤ 70), use 500 points per convective time unit (about 3000 points per nominal shedding cycle),
a time delay chosen in the standard way (here, 1046 sampled points), and a Theiler window parameter corresponding to
10 000 sampled points. Least-squares lines fitted to Cm over the same intermediate range of σ (roughly 10−3 ≤ σ ≤ 10−2)
used by Tumkur et al. [23] show that as m increases, the limiting slopes of logCm(σ) vs. logσ for y1 and CL are
3.46 and 3.50, respectively, consistent with the dimension of 3.2 found by Tumkur et al. [23] for a different chaotic
solution at Re = 100 with other values of 1/g∗n and the NES parameters. As discussed by those authors, such relatively
low values for the correlation dimension are consistent with expectations for low- and intermediate-Re flows with two
additional degrees of freedom (rectilinear cylinder motion and NES mass rotation), and are comparable to the fractal
dimensions of 2.48, 3.10 and 4.65 computed for a temporally chaotic two-dimensional flow past a NACA 0012 airfoil
at Re = 1600, 2000 and 3000, respectively [41].
Step-like chaotic (SLC) solutions. For Re = 36, 1/g∗n = 0.17 (the parameters for which results were presented

above for the SSMC and PPUR solutions), and inlet transient B, figures 14(a-e) and Movie 7 [29] show that the long-
time solution is characterized by a succession of intervals (e.g., 960 < τ < 1080) during which the oscillation amplitudes
of y1, CL and CD monotonically grow, the NES mass nearly comes to rest at θ = nπ (n = 0 for 960 < τ < 1080), and the
solution appears to, but does not, approach the standard VIV solution. As the amplitudes of y1 and CL near their
maximum values (e.g., near τ = 1080), there is a rapid onset of large-amplitude oscillations of the NES mass, marking
the end of linear growth of y1 and CL, and the onset of temporal chaos. This intermittent bursting manifests itself in
broadband frequency content of the wavelet spectra for y1, sin θ and CL, shown in figures S12(a-c) [29]. This chaotic
episode, whose duration varies from one cycle to the next, ends with a sudden reduction in oscillation amplitudes for
y1, CL and CD (nearly two-fold for y1 and CL between τ = 1160 and τ = 1250 in figures 14a and 14c, respectively).
The NES mass concomitantly executes a large-amplitude, predominantly counterclockwise motion, and rapidly jumps,
in what we refer to below as a “1:1 resonance capture,” from nπ to about mπ, where n and m are distinct integers
(figure 14b). While the angular position of the NES mass slowly approaches mπ (m = 4 for 1250 < τ < 1360), the
amplitudes of y1 and CL begin to grow rapidly, and the previously described behavior starts anew. The step-like
nature of the time series for θ corresponds to these successive jumps from nπ to mπ, where ∣n −m∣ ≤ 4 in the cases
examined.
The corresponding wavelet spectra (figures S12a-c [29]) for y1, sin θ and CL exhibit several notable features. The

spectrum for y1 shows that the long-time cylinder response is exclusively at the Strouhal frequency during the intervals
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of linear growth of y1 and CL (e.g., for 1250 ≤ τ ≤ 1360 and for 1480 ≤ τ ≤ 1600), and predominantly at the
Strouhal frequency otherwise, with a broadband contribution evidencing temporal chaos. Identical conclusions can
be drawn from the spectrum of CL. On the other hand, the spectrum of sin θ exhibits no dominant frequency
and is predominantly broadband, except for intervals during which the NES mass nearly comes to rest after a
jump. As discussed above, each such interval features sudden, predominantly unidirectional motion of the NES
mass, immediately followed by a much quieter interval.
The wavelet spectrum of sin θ (figure S12b [29]) shows that during each angular jump of the NES mass shown in

figure 14(b), there is a dominant frequency close to St, which slowly and slightly decays as the NES mass approaches
an integer multiple of π. This strongly suggests that each jump in θ is the manifestation of a transient 1:1 resonance
capture during which energy transfer from the cylinder to the NES mass occurs, leading to a rapid decrease in the
amplitude of y1. Each such event is followed by a prolonged interval during which the NES mass becomes nearly
motionless near θ = nπ, corresponding to escape from the state of 1:1 resonance. To illustrate this point, figure 15
shows the trajectory of the NES mass in the two-dimensional projection (θ,dθ/dτ) of the phase space for a time
window during which several such 1:1 transient resonance captures (two in the present case) successively occur.
To establish the temporally chaotic nature of the step-like solution at Re = 36 and 1/g∗n = 0.17 with inlet transient

B, we compute the correlation dimension of the attractor. We use 100 ≤ τ ≤ 3000, 500 points per convective time unit,
a time delay corresponding to 833 sampled points, and a Theiler window parameter corresponding to 10 000 sampled
points. For y1 and CL, the correlation dimension dcorr approaches limiting values of 2.64 and 2.62, respectively, as m
increases. These values are measurably lower than those determined above for the FDC solution.
Slowly decaying cycle (SDC) solutions. For Re = 46, 1/g∗n = 0.15 and inlet transient B, figures 16(a-e) and

Movie 8 [29] show that the long-time solution is characterized by successive cycles of regular motion interrupted by
chaotic bursts. During each interval of regular motion, the oscillation amplitudes of y1, CL and CD slowly decrease,
and the NES mass executes nearly unidirectional rotational motion. At the end of each such SDC, the cylinder
has almost come to rest. This is followed by a short interval during which the cylinder remains nearly motionless,
the angular velocity of the NES mass decays considerably, the oscillation amplitude of CL decreases precipitously
(to below 0.04), and CD is nearly constant. This strongly suggests that, during each such interval, the trajectory
approaches an SSMC state (in which the cylinder and NES mass are motionless, with no lift and constant drag). If an
SSMC solution was indeed reached, its stability would depend on the angular position of the NES mass, as discussed
in §III B.
However, as ∣dθ/dτ ∣ decreases towards zero, the oscillation amplitudes of y1 and CL grow. This leads to transfer

of kinetic energy from rectilinear cylinder motion to NES mass rotation, and ultimately gives rise to large-amplitude
oscillations of the latter. This rapid linear growth of θ ushers in an interval of transient chaos, the duration of which
varies among the SDCs within a single time series. For Re = 46 and 1/g∗n = 0.15, the trajectory settles into a new
slowly decaying cycle, strongly suggesting that the “intermittently chaotic” slowly decaying solution is not part of a
longer initial transient, but, rather, is a stable attractor for the present combination of parameters.
A remarkable feature of this slowly decaying solution is the striking change in wake structure at the end of each

SDC and immediately thereafter. As discussed above, each SDC ends with a dramatic diminution of the amplitudes
of y1, CL and CD, followed by a brief interval during which the solution appears to approach an SSMC solution. This
transition from a large-amplitude VIV-like state to a nearly SSMC state is accompanied by slow, yet considerable,
elongation of the attached vorticity, as shown in Movie 8 [29] for the entire computation. Movie 9 [29] shows that,
for a large fraction of the first SDC (200 < τ < 765), the wake is qualitatively similar to standard VIV (compare
Movie 10 [29] at the same Re and 1/g∗n), and that it is not until τ ≈ 660, when the amplitude of y1 rapidly drops,
that significant wake elongation begins. Still later, the attached vorticity is elongated to about 10D (see Movie 9
[29] at τ = 757.2). Elongation and symmetrization of the wake continue as the cylinder and NES mass become nearly
motionless, CL approaches zero, and CD becomes nearly constant. The attached vorticity elongates beyond 30D (see
τ = 850 in Movie 9 [29]), corresponding to a nearly symmetric vorticity distribution, with slight waviness attributable
to small residual oscillatory motion of the cylinder.
We conjecture that the instability that develops following the spectacular elongation and nearly complete sym-

metrization of the vorticity distribution, and which starts the trajectory on its path toward temporal chaos, has its
origin in the following. Near the “quietest” time in one cycle (e.g., over 800 < τ < 846 in figures 16a-e), ∣dθ/dτ ∣
decreases while θ passes through nπ. But this clearly does not lead to θ and dθ/dτ vanishing asymptotically, and
“capture” by a VIV or SSMC solution. Instead, an instability leading to another cycle of chaotic motion develops.
Figure 2 shows that the point Re = 46, 1/g∗n = 0.15 is on the unstable side of the NES-equipped (with εp sin

2 θs = εp)
and NES-less (with εp sin

2 θs = 0) stability boundaries, for which the codimension-two points are at 1/g∗n = 0.119 and
0.140, respectively. Thus, we expect that no SSMC solution (regardless of θ∞) will be linearly stable.
Because the SDC solution lies on a chaotic attractor, no two slowly decaying cycles in a given time series are identical

in duration or mean amplitude. Of the four SDCs shown in figures 16(a-e), two (corresponding to approximately
200 < τ < 765 and 1870 < τ < 2520) extend over intervals significantly longer than the other two (covering approximately
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1100 < τ < 1350 and 1510 < τ < 1640). Figure 16(a) shows that the oscillation amplitude of y1 decreases approximately
linearly during the first portion of each SDC (e.g., for 200 < τ < 600, during which the amplitude of y1 drops by about
27%), after which it decays much more rapidly in the latter portion of the cycle (e.g., 660 < τ < 765 for the first SDC,
during which the amplitude of y1 drops by about 88%). During the intervals of slow decay, strong modulation is seen
in CL and dθ/dτ , with that of the former exhibiting a strong departure from up/down symmetry. Modulation in the
oscillation of CL is not reflected in the cylinder motion, but does seem to affect modulation of dθ/dτ , as evidenced
by the inflection near the minima of ∣dθ/dτ ∣ at about τ = 580 and τ = 2330, accompanied by a similar inflection near
the minima of CL. Finally, as required by invariance of (2a,b) under a sign change in θ, the direction of rotation of
the NES mass has no influence on the flow. This is reflected in the qualitatively very similar waveforms of the lift
coefficient for the first (200 < τ < 765), and last (1870 < τ < 2520) SDCs in figure 16(d), with the NES mass rotating
predominantly counterclockwise and clockwise during the former and latter periods, respectively.
Wavelet spectra for y1, sin θ and CL (figures S13a-c [29]) show that, during each SDC, the response is predominantly

at a frequency near the Strouhal frequency, with higher harmonics being weak and present during only part of each
SDC. (This is particularly clear in the time series shown in Movie 9 [29] for the first SDC.) During the chaotic bursts,
there is no discernible dominant frequency, indicative of a broadband response.
To confirm the chaotic nature of the long-time slowly decaying solution, we compute the correlation dimension

of the attractor as described earlier, discarding the portion of the time series corresponding to τ < 50. As the
embedding dimension m increases, the correlation dimension approaches limiting values of 2.50 and 2.55 for y1
and CL, respectively, comparable to those obtained for the step-like chaotic solution described above. In contrast,
application of this procedure to the first SDC (200 < τ < 765) yields correlation dimensions of 2.28 and 2.24 for y1 and
CL, respectively, slightly smaller than those obtained for the longer time series. For the same Re and 1/g∗n values,
figures S14(a-e) [29] show that halving the time-step size and increasing the polynomial order produces results that are
qualitatively similar to those shown in figures 16(a-e). This supports the hypothesis made earlier that the statistics
of the reported chaotic long-time solutions are insensitive to the details of the discretization.
A slowly decaying solution of similar type was found by Tumkur et al. [23] at higher Re (60 ≤ Re ≤ 120) and with

different NES parameters. For m∗ = 10, 1/g∗n = 0.056, Re = 100, εp = 0.3, r̄0 = 0.5, ζ = 0.3395, θi = π/2, and inlet
transient E (uniform flow), those authors found a similar slowly decaying solution, with elongation of the attached
vorticity to a downstream position as much as 9.5D aft of the cylinder center. In contrast to the Re = 46 case
described above, the intermittently bursting solution found by Tumkur et al. [23] features a dominant frequency that
continuously decreases as each SDC progresses, falling well below St before each burst into chaos. This mechanism
was attributed to an added-mass effect induced by the presence of the NES mass. Another noteworthy difference is
that all SDCs of the slowly decaying solution found by Tumkur et al. [23] have similar durations.

V. DISCUSSION

A. Overview of multiplicity and the phase diagram

Although rigorous demonstration that any of the unsteady long-time solutions reported in §IV are stable or attract-
ing is beyond the scope of this work, the fact that they are found at Reynolds numbers where flow past a vibrating
circular cylinder is thought to be two-dimensional, that they persist over hundreds of shedding cycles, and that they
appear to be robust with respect to the computational parameters, strongly suggests that they are locally stable or
attracting, within the class of two-dimensional solutions [3]. This also suggests that for combinations of Re and 1/g∗n
for which two or more long-time solutions coexist, “mode switching” of the trajectory between them can occur only
as the result of strong external disturbances. This question is worthy of investigation, but beyond the scope of the
present work.
Figure 2 shows that for intermediate Re, there is a large portion of the Re–1/g∗n plane in which two or more

long-time solutions coexist, and no solution is globally attracting. For one combination of the parameters (Re = 37,
1/g∗n = 0.17), we find two periodic solutions and a chaotic solution coexisting with more than one steady solution. For
a number of other combinations of Re and 1/g∗n, we find two distinct unsteady solutions (both periodic, one periodic
and one quasi-periodic, one periodic and chaotic, one quasi-periodic and one chaotic, or both chaotic), in most cases
coexisting with one or more steady solutions. For no Re–1/g∗n combination do we find five or more long-time solutions,
and in no case are more than three unsteady. No aperiodic solutions are found for 1/g∗n > 0.38.
As discussed in §I, multiple long-time solutions of the Navier–Stokes equations have been found before. In the

majority of the situations in which multiplicity has been found, the flow is driven by rotation of an infinite plane, or
by rotation of one or both members of a pair of infinite planes (see [1, 2], and references cited therein), and all of the
flows are either steady or time-periodic. For pipe flow, the steady Poiseuille solution is linearly stable at Re values
well above the experimentally observed critical Re associated with finite-amplitude instability [42], so that the “base
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flow” and turbulence coexist over a wide range of Re. For pipe flow and plane Couette flow [43], intermittency, in
which laminar and turbulent flow alternate in time at a particular streamwise location, have also been observed over
a range of conditions. But no previous case of which we are aware gives rise to the degree of multiplicity found here,
in which as many as three unsteady long-time solutions (including one or more aperiodic solutions) coexist with one
or more steady solutions in a laminar flow.
As discussed by Tumkur et al. [23], the stability boundaries shown in figure 2 demonstrate that below the fixed-

cylinder critical value Refixed ≈ 46, an NES can stabilize the θs = π/2 SSMC solution, in the sense that there are
combinations of Re and 1/g∗n for which this SSMC solution is unstable absent an NES and stable with an NES. The
stability boundaries also show that in the same range of Re, an NES with θs = π/2 can destabilize the SSMC solution.
This raises the question of how an NES might be used at higher Re, to not only change the amplitude of VIV, but
also to completely suppress VIV. If one thinks of the VIV suppression “design” problem as one in which the goal is to
use the NES to “bleed off” energy from incipient rectilinear motion, then one approach is to place the rotating mass
at θ = π/2, where (2a,b) show that “maximum coupling” is obtained in the case of small-amplitude oscillations.
Finally, figure 17 shows the cumulative probability distribution function of final values of the angular position of

the NES mass for all combinations of Re, 1/g∗n and inlet transient for which an SSMC solution was found. It is not
surprising that there is a large concentration near θ = π/2, where all of the simulations begin, and many end. However,
there are also large concentrations near integer multiples of π. These correspond to solutions in which a) the inlet
transient excited significant cylinder motion, b) the NES ultimately bled off kinetic energy from the rectilinear motion
of the cylinder, and c) in accomplishing that, the NES mass was “entrained” into a final angular position that is an
integer multiple of π.

B. Experimental considerations

Finally, the issue arises as to how our predictions can be confirmed experimentally. There are three key questions.
First, how can an experiment be set up? Second, will three-dimensional effects render the two-dimensional analysis
moot? Third, what is the importance of nonlinearity?
Experimental realization, including a detailed discussion of a distributed rotating mass dynamically equivalent

to the point-mass model described here in §II A was presented by Tumkur et al. [23]. We pointed out there that
constraints on the radial extent of the rotator (associated with either large values of r̄0 or the maximum density of
available materials) can be overcome by placing the rotating mass outside the spanwise extent of the flow. We note
here that if the rotator is placed outside of the flow domain, one need not use very dense materials (e.g., tungsten),
because the spanwise extent of the rotating mass can be made as large as needed. This is a simple consequence of the
fact that the rotating and nonrotating masses are characterized on a per-unit-length basis, where the relevant length
is the spanwise extent of the flow. So placing the rotating mass (or for that matter, some of the nonrotating mass)
beyond the spanwise boundaries of the flow increases the mass, while leaving the (flow) length unchanged.
Three-dimensionality can become an issue in two ways. First, for a fixed cylinder, even a slightly three-dimensional

geometry (e.g., any finite-span cylinder) can give rise to oblique shedding [44]. While this is not well understood in the
context of flow-induced vibration, it is clear that the effects can be reduced by use of a large aspect ratio cylinder. To
assess the significance of three-dimensional geometries would require computation of three-dimensional time-periodic
base flows and Floquet analysis of their stability, which is beyond the scope of the present work. Second, there is
the potential for three-dimensional instability in a strictly two-dimensional base flow [45, 46]. Fortunately, work by
Leontini et al. [46] strongly suggests that two-dimensional flow past a circular cylinder undergoing either transverse
VIV or forced transverse oscillation becomes unstable with respect to three-dimensional disturbance at Re above the
known fixed-cylinder critical value of 190 [45], far beyond the range considered here.
As for nonlinearity, we note that our results were obtained in simulations of the fully nonlinear governing equations,

in which the initial-value problem was solved using disturbances of significant magnitude in the inlet transients (3a-d).
No linearization was performed, and the allowance for large disturbances strongly suggests that the results should be
relatively robust with respect to typical disturbances in laboratory facilities.

VI. CONCLUSION

For a linearly-sprung circular cylinder in cross flow at Re < 50, equipped with a nonlinear energy sink consisting
of a rotating mass and a linear damper, we found that as many as three distinct unsteady long-time solutions (two
time-periodic solutions and one temporally chaotic solution) and a steady, symmetric, motionless-cylinder solution
can coexist for a single combination of Re, dimensionless spring constant, ratio of cylinder density to fluid density,
and parameters characterizing the rotating mass and its damper. For a number of other combinations of Re and
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1/g∗n (with the other parameters unchanged), we find two distinct unsteady solutions (both periodic, one periodic
and one quasi-periodic, one periodic and chaotic, one quasi-periodic and one chaotic, or both chaotic), in most cases
coexisting with one or more steady solutions. The discovery of this unprecedented degree of multiplicity in a range of
Re (15 < Re < 50) far removed from any expected three-dimensionality is significant because it facilitates high-fidelity
computations that can delineate the structure of the basins of attraction in the initial condition space (or the space
of inlet transients). Understanding solution multiplicity is especially important to studies of noise- and disturbance-
induced transition between attracting solutions, and to flow control. All of the results are obtained for a density ratio
of ten, thus allowing experiments to be performed in water or other liquids, without the cylinder extending beyond
the span of the flow.
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εp = 0.3

θi/π εp sin
2
θi Long-time solution

0.0000 0.0000 SVIV

0.0100 0.0003 PPUR

0.0500 0.0073 SLC

0.1000 0.0286 SLC

0.1200 0.0407 SLC

0.1300 0.0473 SLC

0.1350 0.0508 SLC

0.1400 0.0544 PPUR

0.1450 0.0581 SLC

0.1500 0.0618 SLC

0.1540 0.0649 SLC

0.1580 0.0680 SLC

0.1620 0.0712 SLC

0.1660 0.0745 SSMC⋆

0.1859 0.0912 SLC

0.1860 0.0913 SSMC†

0.1880 0.0930 SSMC†

0.1900 0.0948 SSMC†

0.1920 0.0965 SSMC†

0.1960 0.1001 SSMC†

0.1980 0.1019 SSMC†

0.2000 0.1036 SSMC†

0.3000 0.1964 SSMC†

0.4000 0.2714 SSMC†

0.4500 0.2927 SSMC†

0.4900 0.2997 SSMC†

0.5000 0.3000 SSMC†

εp = 0.6

θi/π εp sin
2
θi Long-time solution

0.0000 0.0000 SVIV

0.0100 0.0006 SSMC⋆

0.0500 0.0147 QP

0.1000 0.0573 QP

0.1275 0.0912 QP

0.1276 0.0913 SSMC†

0.1300 0.0946 SSMC†

0.1500 0.1237 SSMC†

0.2000 0.2073 SSMC†

0.3000 0.3927 SSMC†

0.4000 0.5427 SSMC†

0.5000 0.6000 SSMC†

TABLE I. Relationship between values of the combined parameter εp sin
2 θi and long-time solutions using inlet transient A with

α = 10−4, at Re = 36 and 1/g∗n = 0.17, computed for εp = 0.3 and 0.6 (SVIV: standard VIV solution; SSMC†: steady, symmetric,
motionless-cylinder solution with θ∞ = θi; SSMC⋆: steady, symmetric, motionless-cylinder solution with θ∞ ≠ θi; SLC: step-like
chaotic solution; PPUR: periodic, predominantly unidirectionally rotating solution; QP: quasi-periodic solution).



Re Inlet transient Long-time solution θ∞/π

34

A SSMC −29.9592

B SSMC 0.5143

C SSMC 0.5002

D SSMC 0.5054

E SSMC 0.5000

35

A SSMC −35.3523

B SSMC 0.5464

C SSMC 0.5002

D SSMC 0.5081

E SSMC 0.5000

36

A SSMC −6.0110

B SSMC 0.7175

C SSMC 0.5004

D SSMC 0.5127

E SSMC 0.5000

37

A SSMC −29.5312

B SSMC 0.9951

C SSMC 0.5005

D SSMC 0.5254

E SSMC 0.5000

38

A SSMC −21.0000

B SSMC 1.0000

C SSMC 0.5007

D SSMC 0.5670

E SSMC 0.5000

39

A SSMC 23.7403

B QP −

C SSMC 0.5010

D SSMC 0.7197

E SSMC 0.5000

40

A SLC −

B SLC −

C SSMC 0.5015

D SLC −

E SSMC 0.5000

41

A FDC −

B FDC −

C SSMC 0.5024

D FDC −

E SSMC 0.5000

42

A FDC −

B FDC −

C SSMC 0.5054

D FDC −

E SSMC 0.5000

43

A FDC −

B FDC −

C FDC −

D FDC −

E SSMC 0.5000

44

A PPUR −

B FDC −

C PPUR −

D PPUR −

E SSMC 0.5000

TABLE II. For caption see next page.



Re Inlet transient Long-time solution θ∞/π

45

A PPUR −

B PPUR −

C PPUR −

D PPUR −

E SSMC 0.5000

46

A SDC −

B SDC −

C SDC −

D SDC −

E SSMC 0.5000

47

A SDC −

B SDC −

C SDC −

D SDC −

E SDC −

48

A SDC −

B SDC −

C SDC −

D SDC −

E SDC −

TABLE II. (Continued) Relationship between inlet transients and long-time solutions for a range of Re at 1/g∗n = 0.15
(FDC: fully-developed chaotic solution; SDC: slowly decaying cycle solution; PPUR: periodic, predominantly unidirection-
ally rotating solution; QP: quasi-periodic solution; SSMC: steady, symmetric, motionless-cylinder solution).
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FIG. 1. Linearly-sprung cylinder in cross-flow with rotational NES.
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FIG. 3. Time series for the PPUR solution found with inlet transient C at Re = 38 and 1/g∗n = 0.18: (a) cylinder displacement,
(b) NES angular position, (c) lift coefficient, (d) NES angular velocity, (e–h) details of long-time behavior of quantities shown
in (a–d).
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FIG. 4. Spanwise vorticity for the PPUR solution found with inlet transient C at Re = 38 and 1/g∗n = 0.18, at (a) τ = 2878.8,
and (b) NES-less VIV for the same parameters and the same phase of cylinder motion as in (a).
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FIG. 5. Time series for the PPUR solution (with reversal) found with inlet transient A at Re = 36 and 1/g∗n = 0.17: (a) cylinder
displacement, (b) NES angular position, (c) lift coefficient, (d) NES angular velocity, (e–h) details of long-time behavior of
quantities shown in (a–d).
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FIG. 6. Time series for the BAFPR solution found with inlet transient A at Re = 24 and 1/g∗n = 0.4: (a) cylinder displacement,
(b) NES angular position, (c) lift coefficient, (d) NES angular velocity, (e–h) details of long-time behavior of quantities shown
in (a–d).
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FIG. 7. Spanwise vorticity for the BAFPR solution found with inlet transient A at Re = 24 and 1/g∗n = 0.4, at (a) τ = 1804,
and (b) NES-less VIV for the same parameters and the same phase of cylinder motion as in (a).
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FIG. 8. Time series for the QP solution found with inlet transient A at Re = 33 and 1/g∗n = 0.19: (a) cylinder displacement,
(b) NES angular position, (c) lift coefficient, (d) NES angular velocity, (e–h) details of long-time behavior of quantities shown
in (a–d).



0 5 10 15 20 25 30

x/D

−4
0

4

y/
D

(a)

0 5 10 15 20 25 30

x/D

−4
0

4

y/
D

(b)

FIG. 9. Spanwise vorticity for the QP solution found with inlet transient A at Re = 33 and 1/g∗n = 0.19, at (a) τ = 1950.8, and
(b) NES-less VIV for the same parameters and the same phase of cylinder motion as in (a).



(a) (b) (c)

FIG. 10. Fourier spectra of (a) y1, (b) θ, and (c) CL computed over the time window 1200 ≤ τ ≤ 2000 for the QP solution found
with inlet transient A at Re = 33 and 1/g∗n = 0.19.
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FIG. 11. Time series for the FDC solution found with inlet transient C at Re = 31 and 1/g∗n = 0.28: (a) cylinder displacement,
(b) NES angular position, (c) NES angular velocity, (d) lift coefficient, and (e) drag coefficient.
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FIG. 12. Spanwise vorticity for the FDC solution found with inlet transient C at Re = 31 and 1/g∗n = 0.28, at (a) τ = 766.8,
(b) τ = 1532.2, and (c) τ = 1890.8; and (d) NES-less VIV for the same parameters and the same phase of cylinder motion as in
(c).



0 400 800 1200
τc

−1

0

1

a
v x

,P
,v

x
,P

(a)

0 400 800 1200
τc

−1

0

1

a
v x

,P
,v

y,
P

(b)

0 400 800 1200
τc

−1

0

1

a
v x

,P
,d
y 1

/d
τ

(c)

0 400 800 1200
τc

−1

0

1

a
v y

,P
,d
y 1

/d
τ

(d)

0 400 800 1200
τc

−1

0

1

a
v x

,P
,v

x
,Q

(e)

0 400 800 1200
τc

−1

0

1

a
d
y 1
/d

τ,
C

L

(f)

FIG. 13. For the FDC solution found with inlet transient C at Re = 31 and 1/g∗n = 0.28, (a) autocorrelation of vx,P , and
cross-correlations of (b) vx,P and vy,P , (c) vx,P and dy1/dτ , (d) vy,P and dy1/dτ , (e) vx,P and vx,Q, and (f) dy1/dτ and CL.
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FIG. 14. Time series for the SLC solution found with inlet transient B at Re = 36 and 1/g∗n = 0.17: (a) cylinder displacement,
(b) NES angular position, (c) NES angular velocity, (d) lift coefficient, and (e) drag coefficient.
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FIG. 15. Detail, from τ = 700 to τ = 1410, of the trajectory, in a two-dimensional projection of the phase space, for the SLC
solution found with inlet transient B at Re = 36 and 1/g∗n = 0.17; closed circles at I and J denote the approximate times at
which the first 1:1 resonance capture begins and ends (τ = 892.5 and 922, respectively), while closed circles at K and L refer to
the corresponding times (τ = 1180.5 and 1224.5, respectively) for the second capture. Open squares denote points at specified
values of τ .
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FIG. 16. Time series for the SDC solution found with inlet transient B at Re = 46 and 1/g∗n = 0.15: (a) cylinder displacement,
(b) NES angular position, (c) NES angular velocity, (d) lift coefficient, and (e) drag coefficient.
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FIG. 17. CDF of θ∞ for all SSMC solutions found.


