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Abstract

Using Direct Numerical Simulations (DNS), we examine the effects of the Taylor Reynolds num-

ber, Rλ Rλ ≡ u′λ/ν (where u′, λ and ν denote the fluid r.m.s. velocity, the Taylor micro-scale

and the fluid kinematic viscosity, respectively), and Froude number, Fr Fr ≡ aη/g (where aη is

the Kolmogorov acceleration, and g is the acceleration due to gravity), on the motion of small,

spherical, settling bidisperse inertial particles (characterized by their Stokes number St ≡ τp/τη,

which is the ratio of the particle response time to the Kolmogorov timescale) in isotropic turbu-

lence. Particle accelerations play a key role in the relative motion of bidisperse particles, and we

find that reducing Fr leads to an enhancement of the accelerations, but a suppression of their

intermittency. For Stokes numbers St > 1, the effect of Rλ on the accelerations is enhanced by

gravity, since settling causes the particle accelerations to be affected by a larger range of flow scales.

The results for the Probability Density Function (PDF) of the particle relative velocities show that

for bidisperse particles, decreasing Fr leads to an enhancement of their relative velocities in both

the vertical (parallel to gravity) and horizontal directions. Importantly, our results show that even

when the particles are settling very fast, turbulence continues to play a key role in their vertical

relative velocities, and increasingly so as Rλ is increased. This occurs because although the settling

velocity may be much larger than typical velocities of the turbulence, due to intermittency, there

are significant regions of the flow where the turbulence contribution to the particle motion is of the

same order as that from gravitational settling. Increasing Rλ enhances the non-Gaussianity of the

relative velocity PDFs, while reducing Fr has the opposite effect, and for fast settling particles,

the PDFs become approximately Gaussian. Finally, we observe that low-order statistics such as

the Radial Distribution Function (RDF) and the particle collision kernel, are strongly affected by

Fr and St, and especially by the degree of bidispersity of the particles. Indeed, even when the

difference in the value of St of the two particles is ≪ 1, the results can differ strongly from the

monodisperse case, especially when Fr ≪ 1. However, we also find that these low-order statis-

tics are very weakly affected by Rλ when St ≤ O(1), irrespective of the degree of bidispersity.

Therefore, although the mechanisms controlling the collision rates of monodisperse and bidisperse

particles are different, they share the property of a weak sensitivity to Rλ when St ≤ O(1).
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I. INTRODUCTION

Multiphase turbulent flows have attracted substantial interest for many years both be-

cause of the intellectually stimulating challenges associated with understanding them, and

also because of their practical importance to a wide range of applications. Examples include

the interaction between multiple flowing fluids such as is found in oil-refrigerant mixtures

for refrigeration systems ([1–3]), and the transport of bubbles in liquids such as occur in

airlift pumps ([4–6]). The class of multiphase flows involving the motion of small suspended

particles in turbulent flows is of particular interest to the present work, being important for

environmental sciences (atmospheric pollution transport ([7]), sea spray ([8]), and cloud for-

mation ([9])), astrophysics (protoplanetary disks, and the atmospheres of planets and dwarf

stars ([10])) and industrial processes (turbulent combustion ([11]), spray nozzles ([12]), flu-

idized bed reactors [13]). In many of these applications, the particle motion is not only

affected by the fluid turbulence, but also by particle inertia and gravitational settling.

The motion of particles with inertia can differ profoundly from that of inertialess fluid

particles in turbulent flows [14]. For example, even in incompressible flows, inertial particles

can spatially cluster across a range of length scales [7, 15–19], and their trajectories in

configuration space can intersect [20–22]. Gravity not only leads to finite settling velocities

for inertial particles, but it also modifies the way the particles interact with the turbulent

flow [7, 23]. The latter is in fact quite subtle, and recent results have shown that it can lead

to non-trivial effects on the multiscale motion of inertial particles in turbulence [24–28].

When considering problems such as particle mixing and collision rates, it is the relative

motion of particles in turbulence that is of importance. This relative motion is often studied

by considering the relative motion of two particles (“particle-pairs”) in the turbulent flow [14,

29]. The motion of inertial particle-pairs can differ substantially depending upon whether

the two particles have the same (monodisperse) or different (bidisperse) inertia. Several

studies show that in the absence of gravity, bidispersity enhances the relative velocities and

suppresses the spatial clustering of inertial particles compared with the monodisperse case

[28, 30–32].

In a recent study, we considered the effect of gravity (characterized by the Froude num-

ber, Fr ≡ aη/g, where aη is the Kolmogorov acceleration, and g is the acceleration due to

gravity) on the relative motion of bidisperse particles [28], and found that the combined
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effects of gravity and turbulence lead to some interesting effects which were absent in the

monodisperse case. Using Direct Numerical Simulations (DNS), statistics of the particle

relative velocities in the directions parallel and perpendicular to the direction of gravity

were computed. It was observed that at the small scales of the turbulent flow, decreasing

Fr leads to an enhancement of the particle relative velocities, not only in the direction of

gravity, but even in the plane normal to its action. This is quite unlike the monodisperse

case where it has been shown that decreasing Fr leads to a uniform suppression of the iner-

tial particle relative velocities in all directions [24, 27]. The results in [28] also showed that

unlike the monodisperse case [24, 27], the clustering of bidisperse inertial particles is always

suppressed as Fr is decreased (except when the bidisipersity is very weak, i.e. the monodis-

perse limit). The theoretical analysis in [28] explained these differences between bidisperse

and monodisperse particles as being due to the fact that at the small scales, the relative

motion of bidisperse particles is dominated by a term in their equation of relative motion

that depends upon the acceleration of the particles, and the accelerations are enhanced in

the presence of gravity [26, 27]. For monodisperse particles, this acceleration contribution

vanishes, and their relative motion is dominated by the particle interaction with the fluid

relative velocity field.

Since most of these studies are based on DNS at low to moderate Reynolds numbers, it is

important to understand how representative the results are of the real problems of interest,

since in nature the flows have much larger Reynolds numbers [14]. Here the Reynolds number

is defined based on the Taylor-scale Reynolds number, Rλ ≡ u′λ/ν, where u′ is the fluid

r.m.s. velocity, λ is the Taylor micro-scale, and ν is the fluid kinematic viscosity. Reynolds

number affects turbulence in two distinct, but related ways, namely through the classical

effect of enhanced scale separations with increasing Reynolds number [33], and enhanced

internal intermittency at the small scales of the flow [34]. Given the current limitations

of the Reynolds numbers accessible with DNS, one way to explore the effect of Reynolds

number on particle motion in turbulence would be to use theoretical models. However,

current (fully predictive) theoretical models of inertial particle motion at the small scales

of turbulence are only accurate for weak particle inertia, can fail dramatically for moderate

to strong particle inertia, and do not account for the effects of internal intermittency in the

turbulence [e.g. see 17, 22]. An alternative method is to use DNS over a range of Reynolds

numbers to look for trends in the behavior. This can provide insight regarding the extent to
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which results obtained at low/moderate Reynolds numbers might be extrapolated the real

problems of interest where the Reynolds numbers are much larger.

In [18] & [27], the effect of Reynolds number on the motion of monodisperse inertial

particles with and without gravity was explored using DNS over the range 88 ≤ Rλ ≤ 598,

where Rλ is the Taylor Reynolds number [33]. As might be expected, the higher-order

statistics of the particle relative velocities (e.g. kurtosis) showed a strong dependence on

Rλ. However, they also showed that collision rates (which depend on low-order statistics)

of monodisperse particles with Stokes numbers St . 1 are essentially independent of Rλ.

This result implies that the essential physics governing particle collisions in atmospheric

clouds where Rλ = O(104) and typically St < 1 [35] might in fact be captured by DNS

studies with Rλ = O(102). For St > 1, the results in [18] & [27] show that the collision

rates are sensitive to Rλ, and it was argued this is most likely due to the fact that particles

with sufficient inertia are affected by the increasing range of scales as Rλ is increased, owing

to the fact that they posses sufficient memory to be affected by their past interaction with

scales outside the dissipation range, even when their current separation lies in the dissipation

range (though it is possible that enhanced intermittency also plays a role).

To the best of our knowledge, no previous study has explored the effect of Rλ on the

motion of bidisperse particles in turbulence. Previous DNS studies of settling bidisperse

particles considered only single (and low) Reynolds numbers (Rλ = 84.9 in [36], Rλ = 143

in [26], and Rλ = 90 in [28]). As explained earlier, the relative motion of bidisperse particles

differs substantially from that of monodisperse particles, being dominated by different effects

and mechanisms. It is therefore possible that the Rλ dependence of bidisperse particles

could differ from that of monodisperse particles. Another key difference is that in the

monodisperse case, gravity only affects the particle motion implicitly through the way it

modifies the particle interactions with the turbulence, since the relative motion induced by

the gravitational settling is zero (both particles have the same settling speeds). By contrast,

in the bidisperse case, gravity has an explicit effect, and in the direction of gravity one might

expect gravity to dominate the particle motion when Fr ≪ 1 (if the difference in the Stokes

numbers of the two particles is ≥ O(1). But as discussed in [28], this is not guaranteed since

fluid accelerations are highly intermittent in turbulence [37], such that even if the average

Froude number is ≪ 1, there may be significant regions of the flow where the instantaneous

Froude number, Fr′ ≡ ‖a‖/g (where a is the instantaneous fluid acceleration), is ≥ O(1).
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Since intermittency increases with increasing Rλ, then at large Rλ, turbulence may continue

to play a key role in the bidisperse particle relative motion in the direction of gravity even

when Fr ≪ 1.

In order to address these issues, the present paper considers the effect of both Rλ and Fr

on the motion of bidisperse particles in turbulence. Our previous study considered Fr =

∞, 0.3, 0.052 and Rλ = 90 [28], and he present study significantly extends the parameter

space by considering Fr = ∞, 0.3, 0.052 and Rλ = 90, 224, 398 in order to investigate the

questions discussed above concerning the role of Rλ on the motion of settling, bidisperse

particles in turbulence.

II. THEORETICAL CONSIDERATIONS

We are concerned with dilute suspensions of particles in turbulent flows, with the particle

mass loading sufficiently small so the back-reaction of the particles on the underlying flow can

be ignored, corresponding to the one-way coupled regime [16]. Such a regime is applicable

for the motion of droplets in atmospheric clouds [35] (and also some industrial problems

such as aerosol manufacturing, drug delivery, and spray combustion, to name a few), where

particles may also be assumed to be small (i.e d/η ≪ 1 where d is the particle diameter

and η is the Kolmogorov length scale) and dense (ρp/ρf ≫ 1, where ρp and ρf represent

the particle density and fluid density, respectively). These assumptions justify the use of a

point-particle approach where the inertial particle motion is governed by a simplified version

of the equation of [38]

ẍp(t) ≡ v̇p(t) =
u(xp(t), t)− vp(t)

τp
+ g, (1)

where u(xp(t), t) denotes fluid velocity at the particle position xp(t), vp(t) is the particle

velocity, τp ≡ ρpd
2/18ρfν is the particle response time, ν is the fluid kinematic viscosity,

and g is the gravitational acceleration vector. We also consider fluid particles whose motion

obeys ẋp(t) ≡ u(xp(t), t).

Particle inertia can be characterized by the Stokes number, St ≡ τp/τη, where τη is the

Kolmogorov time scale. Equation (1) assumes a linear drag force on the particles, which

is thought to be valid for St ≤ O(1) [27, 39], and this is the range we restrict attention

to. The effect of gravity on the particle motion may be characterized through the settling
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parameter, Sv, defined as the ratio of particle’s settling velocity in a quiescent flow, τpg

(where g ≡ ‖g‖), to the Kolmogorov velocity scale, uη ≡ η/τη. The effect of gravity on

the flow can be characterized by the Froude number, Fr ≡ aη/g = ǫ3/4/(ν1/4g), where

aη ≡ uη/τη is the Kolmogorov acceleration, and ǫ is the mean turbulent kinetic energy

dissipation rate. Note that from these definitions we also have Fr ≡ St/Sv.

To consider the relative motion between two particles, we consider the motion of a “satel-

lite” particle relative to a “primary” particle. When each particle is governed by (1), the

equation describing their relative motion (in non-dimensional form) is [28]

˜̈rp(t̃) = ˜̇wp(t̃) =
∆ũ(x̃p(t̃), r̃p(t̃), t̃)− w̃p(t̃)

St2
+

∆St(ãp(t̃)− egFr−1)

St2
(2)

where ·̃ denotes a quantity non-dimensionalized using the Kolmogorov scales, ∆u is the dif-

ference in the fluid velocity at the two particle positions, xp(t) is the position of the primary

particle, xp(t) + rp(t) is the position of the satellite particle, wp(t) is their relative veloc-

ity, St1 and St2 are the Stokes numbers of the primary and satellite particles, respectively,

∆St ≡ St1 −St2, a
p(t) is the primary particle acceleration, and eg ≡ g/g is the unit vector

in the direction of gravity.

The formal solution of (2) is (we drop the ·̃ for notational ease, and assume t ≫ St2)

wp(t) =
1

St2

∫ t

0

e−(t−s)/St2∆up(s)ds− ∆St

Fr
eg +

∆St

St2

∫ t

0

e−(t−s)/St2ap(s)ds, (3)

and the particle acceleration ap may be expressed as [28]

ap(t) =
1

St21

∫ t

0

e−(t−t′)/St1(up(t)− up(t′))dt′. (4)

In the following, we discuss the implications of the above equations and summarize the key

findings of [28] regarding the effects of bidispersity and gravity on the relative motion of

inertial particles in turbulence. We provide this summary in order to make the paper self-

contained, since the recent findings of [28] will play a key role in the interpretation of our

DNS results.

In (3), only the first term survives for monodisperse particles, and the effect of gravity

appears implicitly, through the way it affects the particle interaction with ∆u. The first

integral of (3) reveals that the particle-pairs are influenced by their past interaction with

the turbulent flow over the time-span t − s ≤ O(St2) along their trajectory history. The

impact of this path-history effect on the statistics of wp(t) depends upon both St2, and
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the timescale of ∆up. In the presence of gravity, the particles fall through the flow, and

the timescale of ∆up is reduced compared to the case without gravity [27]. Consequently,

gravity reduces the path-history effect, and in the case of monodisperse particles, this leads

to a suppression of the particle relative velocities [27].

The second term on the rhs of (3) describes the explicit effect of gravity on the particle

motion; it acts only in the direction of gravity and represents the difference in the settling

velocity of the two particles (the “differential settling velocity”). The third term depends

upon the particle acceleration, which is implicitly affected by gravity. This third term

causes the relative velocities of bidisperse particles to be greater than those of monodisperse

particles in the absence of gravity. In [27], it was argued that because gravity causes particles

to fall through the fluid velocity field, the fluid velocity changes more rapidly along their

trajectory than in the absence of gravity (i.e. larger values of up(t)−up(t′) for a given t− t′

in (4)), such that gravity enhances the inertial particle accelerations. This enhancement

occurs for both the horizontal and vertical components of ap, and is in fact stronger for

the horizontal component [27]. Gravity therefore enhances both the vertical and horizontal

components of wp(t).

We now turn to consider the effect of Rλ on the motion of settling, bidisperse inertial

particles in turbulence. As is well-known, turbulent flows become increasingly intermittent

at the small scales as Rλ is increased [33, 34]. This would then lead to the expectation that

wp(t) should exhibit increasingly intermittent fluctuations due to the first and third terms

on the rhs (3). While this will strongly affect the higher-order moments of wp(t), the effect

on lower-order moments, such as those relevant to particle collision rates, is not immediately

clear. Indeed, in [27] it was shown that for monodisperse particles, the lower-order moments

of wp(t) are almost independent of Rλ for St . 1.

For typical (r.m.s.) values of ∆up and ap(t), we expect that the differential settling

contribution to (3) will completely dominate the behavior of wp(t) in the vertical direction

when Fr ≪ 1 if |∆St| ≫ Fr. However, owing to intermittency, as Rλ is increased, regions

where the first and third terms on the rhs (3) become O(|∆St|/Fr) are increasingly probable.

Therefore, for a given value of Fr, turbulence is expected to play an increasingly important

role on the verticle vertical relative motion of the particles as Rλ is increased, even when

|∆St|/Fr ≫ 1, where simple dimensional arguments would suggest the effect of turbulence

could be neglected.
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In [27], we derived the following asymptotic prediction for the particle accelerations in

the vertical direction in the regime St1 ≫ (u′/uη)Fr

〈ap3(t)ap3(t)〉
a2η

=
1

Fr

(
u′

uη

)2(
1

St21Fr−1 + lη−1

)
, (5)

where u′ is the fluid r.m.s. velocity, and l is the integral length scale of the flow. In [27], (5)

was found to agree very well with DNS over the regime for which it was derived. Using the

scaling u′/uη ∼ Re1/4, l/η ∼ Re3/4, where Re ≡ u′l/ν, and Rλ =
√
15Re, we find

〈ap3(t)ap3(t)〉
a2η

∼ 151/4/(FrR
1/2
λ ), for (St21/Fr)2/3 ≪ Rλ ≪ (St1/Fr)2, (6)

whereas

〈ap3(t)ap3(t)〉
a2η

∼ Rλ/(15
1/2St21), forRλ ≪ min[(St21/Fr)2/3, (St1/Fr)2]. (7)

Consequently, two very different asymptotic behaviors are predicted depending upon the

parameter regimes of the system, although likely only (6) would be obtainable in realistic

applications where Rλ ≫ 1. The asymptotic model for the horizontal accelerations given in

[27] leads to similar predictions for that direction.

III. COMPUTATIONAL DETAILS

We perform Direct Numerical Simulations (DNS) of the incompressible Navier-Stokes

equation on a triperiodic cube of length L , using a pseudo-spectral method on a uniform

mesh with N3 grid points. The fluid velocity of isotropic turbulence flow field u(x, t) is

obtained by solving the incompressible Navier-Stokes equation

∂tu+ ω × u+∇

(
p

ρf
+

‖u‖2
2

)
= ν∇2u+ f , ∇.u = 0 (8)

where ω ≡ ∇ × u is the vorticity, ρf is the fluid density, p is the pressure (determined by

using∇.u = 0), ν is the kinematic viscosity and f is the external forcing term to numerically

generate statistically stationary homogeneous turbulence flow field. A deterministic forcing

scheme was used for f , where the energy dissipated during one time step is resupplied to the

low wavenumbers (large scales) with magnitude κ ∈ (0,
√
2]. Time integration is performed

through a second-order, explicit Runge-Kutta scheme and alias control is achieved through

a combination of spherical truncation and phase-shifting.
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Parameter DNS 1 DNS 2 DNS 3 DNS 4

N 128 128 1024 512

Rλ 93 94 90 224

Fr ∞ 0.3 0.052 ∞
L 2π 2π 16π 2π

ν 0.005 0.005 0.005 0.0008289

ǫ 0.324 0.332 0.257 0.253

l 1.48 1.49 1.47 1.40

l/η 59.6 60.4 55.6 204

u′ 0.984 0.996 0.912 0.915

u′/uη 4.91 4.92 4.82 7.60

TL 1.51 1.50 1.61 1.53

TL/τη 12.14 12.24 11.52 26.8

κmaxη 1.5 1.48 1.61 1.66

Np 262,144 262,144 16,777,216 2,097,152

Parameter DNS 5 DNS 6 DNS 7 DNS 8

N 512 1024 1024 1024

Rλ 237 230 398 398

Fr 0.3 0.052 ∞ 0.052

L 2π 4π 2π 2π

ν 0.0008289 0.0008289 0.0003 0.0003

ǫ 0.2842 0.239 0.223 0.223

l 1.43 1.49 1.45 1.45

l/η 214 213 436 436

u′ 0.966 0.914 0.915 0.915

u′/uη 7.82 7.7 10.1 10.1

TL 1.48 1.63 1.58 1.58

TL/τη 27.36 27.66 43.0 43.0

κmaxη 1.62 1.68 1.60 1.60

Np 2,097,152 16,777,216 2,097,152 2,097,152

TABLE I: Simulation parameters for the DNS study of isotropic turbulence (arbitrary

units). N is the number of grid points in each direction, Rλ ≡ u′λ/ν is the Taylor

micro-scale Reynolds number (Rλ ≡
√
15Re for homogeneous and isotropic flows),

λ ≡ u′/〈(∇u)2〉1/2 is the Taylor micro-scale, L is the box size, ν is the fluid kinematic

viscosity, ǫ ≡ 2ν
∫ κmax

0
κ2E(κ)dκ is the mean turbulent kinetic energy dissipation rate,

l ≡ 3π/(2k)
∫ κmax

0
E(κ)/κdκ is the integral length scale, η ≡ ν3/4/ǫ1/4 is the Kolmogorov

length scale, u′ ≡
√
(2k/3) is the fluid r.m.s. fluctuating velocity, k is the turbulent kinetic

energy, uη is the Kolmogorov velocity scale, TL ≡ l/u′ is the large-eddy turnover time,

τη ≡
√
(ν/ǫ) is the Kolmogorov time scale, κmax =

√
2N/3 is the maximum resolved

wavenumber, and Np is the number of particles per Stokes number.
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Inertial particles governed by (1) were tracked in the turbulent flow, assuming the influ-

ence of particles on the flow is negligible (a good approximation for the motivating appli-

cations). Fifteen different particle classes are simulated with Stokes numbers and settling

parameters in the range of 0 ≤ St ≤ 3 and 0 ≤ Sv . 58, respectively, with N3/64 parti-

cles simulated per St. Once the flow field has become statistically stationary, particles are

uniformly introduced into the flow with the local fluid velocity. The particle statistics were

computed after the particle distributions and velocities had reached a statistically stationary

state, independent of their initial conditions.

The solution of (1), depends upon the fluid velocity at the particle position u(xp(t), t),

and this must be evaluated by interpolating the grid values of fluid velocity at the surround-

ing points to particle centers xp(t). In this study we apply an 8th-order, B-spline interpo-

lation (from the Eulerian grid) which provides a good balance between high-accuracy and

efficiency [see 40]. Further details on all aspects of the computational methods can be found

in [40].

In this study, eight different simulations are performed in which 90 ≤ Rλ ≤ 398. The

primary object of this study is to explore the effect of gravity and Rλ on the small-scale

motion of the bidisperse particles, particularly at conditions representative of those in cu-

mulus clouds. Therefore, in addition to the zero gravity case Fr = ∞, we follow [27] and

consider Fr = 0.3, 0.052, which characterize strongly turbulent cumulonimbus clouds and

weakly turbulent stratiform clouds, respectively [41].

As reported in our recent works ([27] & [28]), in the case of strong gravity (Fr < 1)

the use of periodic boundary conditions in the DNS can artificially influence the motion of

inertial particles if the box length L is too small, and to resolve this issue, larger domain

sizes must be used. The DNS used here are designed to keep both the small and large scales

of the flow approximately constant while extending the domain size to remove the artificial

periodicity effects. A detailed discussion on this periodicity issue and how we address it is

given in [27, 28]. Details of the DNS are summarized in Table I.

. In particular, periodic boundary conditions become problematic when the time it takes

the settling particles to traverse the distance L is smaller than the large eddy turnover

time, L /τpg < O(TL). As discussed in [27], if L /τpg < O(TL), particles can artificially

re-encounter the same large eddy as they are periodically looped through the domain. To

resolve this issue, larger domain sizes must be used to ensure L /τpg > O(TL) for each
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particle class simulated, and this places significant limitations on the value of Rλ that can

be reliably simulated when Fr ≪ 1. Our DNS satisfy the requirement L /τpg > O(TL) for

the range of St and Fr considered, and are designed to keep both the small and large scales

of the flow approximately constant while extending the domain size. Details of the DNS are

summarized in Table I.

IV. RESULTS AND DISCUSSION

A. Acceleration

Figures 1 & 2 show the DNS results for the acceleration PDFs, at three different Rλ both

with gravity and without gravity, in the vertical and horizontal directions, respectively. We

observe that the Rλ dependency can be stronger for the case with gravity than without

gravity, especially for St > 1. A possible explanation for this is as follows. For particles

moving according to (1), the acceleration (normalized by the Kolmogorov scales) may be

written as [28]

ap(t) =
1

St2

∫ t

0

e−(t−t′)/St(up(t)− up(t′))dt′. (9)

Equation (9) shows that since e−(t−t′)/St decays on the scale St, ap(t) is only affected by

up(t)− up(t′) for times t− t′ ≤ O(St). Further, the quantity up(t)− up(t′) ≡ u(xp(t), t)−
u(xp(t′), t′) depends in part on ‖xp(t)−xp(t′)‖. If St ≪ 1, ‖xp(t)−xp(t′)‖ is small (compared

to the integral lengthscale of the flow) for t − t′ ≤ O(St), and so up(t)− up(t′), and hence

ap(t), will be dominated by the small-scales. As St is increased, ‖xp(t) − xp(t′)‖ can be

significant for t − t′ ≤ O(St), and so the accelerations of these particles are increasingly

affected by larger scales in the flow. However, in the regime Fr ≪ 1 and St ≥ O(1),

gravity significantly enhances the particle displacement ‖xp(t)− xp(t′)‖ over the time span

t− t′ ≤ O(St), due to the fast settling of the particles. As a result, the particle accelerations

for a given St can become increasingly affected by larger scales in the flow as Fr is decreased,

and hence the accelerations of inertial particles can be more sensitive to Rλ with gravity

than without, since gravity causes the particles accelerations to be affected by a wider range

of flow lengthscales.
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FIG. 1: PDF of the vertical particle acceleration, normalized by aη, for different St, Fr,

and Rλ combinations. Black, red and blue lines correspond to Rλ = 90, Rλ = 224 and

Rλ = 398, respectively, and circle and triangle symbols denote Fr = ∞ and Fr = 0.052,

respectively.

In figure 3, we show results for the variance of the particle accelerations, and the ratio of

their values for the case with gravity to the case without gravity. The results indicate that

for Fr = ∞, increasing St monotonically decreases the particle accelerations. This decrease

occurs both due to the effect of preferential sampling, whereby the inertial partcles avoid

strongly vortical regions where there is rapid fluid acceleration, and also due to the filtering

effect, whereby with increasing St, the particles become sluggish and have a modulated

response to the fluid accelerations along their trajectory [42, 43]. The results for Fr < 1
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FIG. 2: PDF of the horizontal particle acceleration, normalized by aη, for different St, Fr,

and Rλ combinations. Black, red and blue lines correspond to Rλ = 90, Rλ = 224 and

Rλ = 398, respectively, and circle and triangle symbols denote Fr = ∞ and Fr = 0.052,

respectively

show a non-monotonic dependence of the fluid acceleration variances on St. The initial

enhancement of the particle accelerations with increasing St is explained by the arguments

in §II, namely, that the fast settling of the particles causes them to experience rapid changes

in the fluid velocity along their trajectory, leading to large particle accelerations. However,

as St is increased, the filtering effect begins to take over, and the accelerations begin to

reduce.

It is interesting to note that the results for Fr = 0.052 show that as Rλ is increased, the
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FIG. 3: Variance of (a) vertical and (b) horizontal particle accelerations, as a function of

St for different Fr and Rλ combinations. Black, red and blue lines correspond to Rλ = 90,

Rλ = 224 and Rλ = 398, respectively, and circle, square and triangle symbols denote

Fr = ∞, Fr = 0.3 and Fr = 0.052, respectively.

dependence of the acceleration variances on St become weaker for St & 1. This is because as

Rλ is increased, the behavior approaches (although the data indicates it does not reach) the

asymptotic regime described by (6) in which the acceleration variances become independent

of St.

In figure 4 we plot the kurtosis of the inertial particle accelerations to explore intermit-

tency in the accelerations. The results show that while increasing Rλ enhances the kurtosis

for all St, increasing St monotonically suppresses the kurtosis of the particle accelerations

relative to the fluid particle case St = 0, as previously observed in [18]. However, we also

find that decreasing Fr significantly suppresses the kurtosis further, producing values ap-

proaching those of a Gaussian PDF. Therefore, the effect of gravity on the inertial particle

accelerations is to enhance the size of the fluctuations, but also to suppress intermittency

in the fluctuations. Note that since we are considering homogeneous, stationary turbulence,

for which 〈ap(t)〉 = 0, our results for the kurtosis imply that for Fr ≪ 1 and St & 1 (i.e.

Sv ≫ 1), the particle acceleration PDFs could be modeled as a Gaussian distribution with

variance given by the asymptotic models in [27].
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FIG. 4: Kurtosis of (a) vertical and (b) horizontal particle accelerations, as a function of

St for different Fr and Rλ combinations. Black, red and blue lines correspond to Rλ = 90,

Rλ = 224 and Rλ = 398, respectively, and circle, square and triangle symbols denote

Fr = ∞, Fr = 0.3 and Fr = 0.052, respectively.

B. Relative Velocities

We now turn our attention to the PDFs of the vertical and horizontal components of

the particle relative velocities. In figures 5 and 6, the values of the Stokes numbers for

the particle-pairs are chosen to represent weak (|∆St| = 0.1), moderate (|∆St| = 0.5) and

strong bidispersity (|∆St| = 2). Figure 5 shows the PDFs for particles with separation in the

dissipation range (0 ≤ r/η ≤ 2), and figure 6 shows the PDFs for particles with separation

in the lower end of the inertial range (18 ≤ r/η ≤ 20).
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FIG. 5: PDF of (a),(c),(e) vertical, and (b),(d),(f) horizontal relative velocity for St1 = 1,

and different St2, Fr and Rλ combinations, and for particles with separation r ∈ [0, 2]η.

Black, red and blue lines correspond to Rλ = 90, Rλ = 224 and Rλ = 398, respectively, and

circle and triangle symbols denote Fr = ∞ and Fr = 0.052, respectively.
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FIG. 6: PDF of (a),(c),(e) vertical, and (b),(d),(f) horizontal relative velocity for St1 = 1,

and different St2, Fr and Rλ combinations, and for particles with separation r ∈ [18, 20]η.

Black, red and blue lines correspond to Rλ = 90, Rλ = 224 and Rλ = 398, respectively, and

circle and triangle symbols denote Fr = ∞ and Fr = 0.052, respectively.
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An important finding from these results is that, as anticipated in §II, even when

|∆St|/Fr ≫ 1, the effect of turbulence on the vertical relative motion of the particles

cannot be ignored. Indeed, when gravity dominates the vertical relative velocities (i.e. for

|∆St|/Fr → ∞), the PDF of the vertical relative velocity is a delta function centered on

uη|∆St|/Fr. However, the results in figure 5(e) show that even when |∆St|/Fr ≈ 39 (i.e.

≫ 1), the PDF is far from such a delta function, and that departures of the PDF from

a delta function are becoming stronger as Rλ is increased. This is despite the fact that

a standard scaling analysis of the equation of relative motion suggests that the effect of

turbulence should be negligible compared to the differential sedimentation velocity when

|∆St|/Fr ≫ 1. In general, arguments based on scaling analysis of the equations can be

misleading in turbulent flows as they do not accurately characterize the behavior of the

system during large fluctuations about the mean-field behavior. Our results imply that

extremely large values of |∆St|/Fr would be required to observe a regime where the vertical

relative motion of the particles is completely dominated by gravity. This has important

implications for modeling since in many applications, |∆St|/Fr may never be large enough

to fully neglect the role of turbulent fluctuations on their motion. However, our results do

show that the mode of the vertical relative velocity PDFs are close to the gravity-dominated

prediction uη|∆St|/Fr for each of the values of Rλ considered, as was also observed in [28]

for Rλ ≈ 90. Therefore, if only low-order moments of the relative velocities need to be

predicted, the effects of turbulence could be ignored when |∆St|/Fr ≫ 1.

The results in figures 5 and 6 also show that the effect of Rλ is generally stronger as Fr

is decreased, similar to what was observed with the accelerations. This is largely due to the

fact that at these separations, the particle acceleration contribution to wp(t) is stronger than

that associated with ∆u, and as explained earlier, gravity can enhance the dependency of

the accelerations on Rλ as it increases the range of scales affecting the particle accelerations.

In figure 7 we show results for the relative velocities of bidisperse particles with weak

inertia. For St1 = 0.1, St2 = 0.05, the vertical velocities are slightly enhanced by gravity,

while the horizontal velocities are not affected by Fr. However, for St1 = 0.1, St2 = 0.3, the

effect of Fr is appreciable, with gravity noticably enhancing both the vertical and horizontal

velocities.

In order to consider the effect of Fr and Rλ on the shape of the relative velocity PDFs, in

figure 8 we plot the ratio Sp
−‖/(S

p
2‖)

1/2 corresponding to the ratio of mean inward longitudinal
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relative velocity to the square root of second-order longitudinal relative velocity structure

function. These quantities are defined as Sp
−‖ ≡ 〈wp

‖(t)| < 0〉r, Sp
2‖(r) ≡ 〈wp

‖(t)w
p
‖(t)〉r, where

wp
‖(t) ≡ ‖rp(t)‖−1rp(t) ·wp(t), 〈·〉r denotes an ensemble average conditioned on r = ‖rp(t)‖,

and | < 0 denotes that only negative values of wp
‖(t) contribute to the average. While other

quantifies of the PDF shape could be used, we choose this measure of the PDF shape since

it is of interest to the problem of particle collisions, to which we will turn our attention in

the next section. The results are plotted for St1 as a function of St2 at three different values

of Fr and Rλ. For a Gaussian PDF, Sp
−‖/(S

p
2‖)

1/2 = 1/
√
2π ≈ 0.4, and the results in figure

8 show that the departures from the Gaussian limit are strongest for St = O(1), |∆St| ≪ 1,

and Fr = ∞. The dip in the curves that occurs in the monodisperse limit |∆St| → 0 show

how sensitive the relative velocities are to bidispersity, and this sensitivity is enhanced as

Fr is decreased. This occurs because the differential sedimentation term |∆St|/Fr, though

identically zero for monodisperse particles, quickly becomes large as |∆St| is increased if

Fr ≪ 1. This emphasizes the importance of accounting for bidispersity when describing

the small-scale dynamics of settling inertial particles in turbulence, such as in clouds, even

if |∆St| ≪ 1.
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FIG. 7: PDF of (a),(c),(e) vertical, and (b),(d),(f) horizontal relative velocity for

St1 = 0.1, and different St2, Fr and Rλ combinations, and for particles with separation

r ∈ [0, 2]η. Black, red and blue lines correspond to Rλ = 90, Rλ = 224 and Rλ = 398,

respectively, and circle and triangle symbols denote Fr = ∞ and Fr = 0.052, respectively.

Our results also show that the departures from Gaussianity of the relative velocities

become stronger as Rλ increases, as may be expected. However, as Fr is decreased, the

PDFs become increasingly Gaussian. This is important for models of particle collisions in

turbulence, since most of these model S2‖, and then from this recover a model for the mean
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FIG. 8: Ratio between mean inward relative velocities and the standard deviation

of the longitudinal relative velocities as a function of St2, at r/η = 0.375 for different St1,

Fr and Rλ combinations. Black, red and blue lines correspond to Rλ = 90, Rλ = 224 and

Rλ = 398, respectively and circle, square and triangle symbols denote Fr = ∞, Fr = 0.3

and Fr = 0.052, respectively.

collision velocity Sp
−‖ by assuming the Gaussian relationship Sp

−‖ =
√

Sp
2‖/2π [e.g., see 22].

Our results imply this is reasonable for Fr ≤ 0.3 and |∆St| ≥ O(1).
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C. Particle Collisions

We now turn our attention to the quantities that are important for particle collisions in

turbulence, specifically, the RDF g(r) which quantifies the spatial clustering of the particles,

the collision velocity Sp
−‖(r), and the collision kernel K(r) [44]. The collision kernel is given

by K(d) ≡ 4πd2g(d)Sp
−‖(d), where d ≡ (d1 + d2)/2 is the collision diameter of two spherical

particles with diameters d1 and d2 [44]. While the results so far show that Rλ can have a

strong effect on the relative motion of settling bidisperse particles, it is possible that the

low-order moments characterizing the mean particle collision rates are not so sensitive to

Rλ. This was found to be the case in [27] for settling monodisperse particles, and we now

explore the bidisperse case.

Figure 9 shows the results for the RDF. As was shown in [28], increasing bidispersity

and decreasing Fr both lead to the suppression of the spatial clustering of the particles,

as characterized by the RDF. For St < 1, the RDF slightly decreases with increasing Rλ,

while for St > 1 it increases slightly with increasing Rλ. We also note that the results

show that the RDF can be extremely sensitive to |∆St|, especially for Fr ≪ 1. The results

in figure 9(d) are particularly striking, showing that for |∆St| ≥ O(1), the clustering is

absent for Fr = 0.052, but then as the monodisperse limit |∆St| → 0 is approached,

the level of clustering dramatically increases, and becomes stronger than the Fr = ∞
case. This illustrates nicely the profound difference in the effect of gravity on the clustering

of monodisperse and bidisperse inertial particles in turbulence, where in the former case

it can enhance the clustering in certain parameter regimes, whereas for the latter it can

dramatically suppresses the clustering.
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FIG. 9: Radial distribution function (RDF) at r/η = 0.125, as a function of St2, and for

different St1, Fr and Rλ combinations. Black, red and blue lines correspond to Rλ = 90,

Rλ = 224 and Rλ = 398, respectively and circle, square and triangle symbols denote

Fr = ∞, Fr = 0.3 and Fr = 0.052, respectively.

Figure 10 shows the results for the mean collision velocity Sp
−‖. The results show that both

increasing bidispersity and decreasing Fr lead to enhancement of Sp
−‖, which is simply due to

the enhanced contribution from the differential settling velocity. However, as for the RDF,

the dependency of Sp
−‖ on Rλ is very weak across the entire range Fr = ∞ to Fr = 0.052,

especially for St1, St2 . 1. For |∆St|/Fr ≫ 1, this is to be expected since in this case Sp
−‖

is dominated by the differential settling velocity of the particles, which is independent of
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FIG. 10: Mean inward relative velocities at r/η = 0.125, as a function of St2, and for

different St1, Fr and Rλ combinations. Legend for this plot is the same as that in figure 9.

Black, red and blue lines correspond to Rλ = 90, Rλ = 224 and Rλ = 398, respectively and

circle, square and triangle symbols denote Fr = ∞, Fr = 0.3 and Fr = 0.052, respectively.

the turbulence and hence independent of Rλ. In the regime |∆St|/Fr ≤ O(1), the weak

dependency of both the RDF and Sp
−‖ on Rλ is likely due to the fact that if St ≤ O(1) and

r ≤ O(η), the particle-pair dynamics is dominated by the dissipation range of the turbulence

[45], and also because RDF and Sp
−‖ are low order moments, whereas the strong effects of

intermittency are mainly associated with the high-order statistics of the phase-space motion.

Finally, in figure 11 we plot the normalized collision kernel K̂(d) ≡ K(d)/d2uη. As
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explained in [28], we plot the results at the smallest r/η for which our DNS data is reliable,

since for bidisperse particles, the exact functional forms for the RDF and Sp
−‖ are not known,

and therefore we cannot justifiably extrapolate our DNS data down to the desired values

of d/η. We observe that K̂ increases both with increasing bidispersity and decreasing Fr,

which follows because the enhancement of Sp
−‖ is stronger than the reduction of the RDF

due to increasing bidispersity and decreasing Fr. As follows from the behavior of Sp
−‖ and

the RDF, K̂ shows a weak Rλ dependence over the range considered here, especially for

St1, St2 . 1.
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FIG. 11: Collision Kernel at d/η = 0.125 as a function of St2, and for different St1, Fr and

Rλ combinations. Legend for this plot is the same as that in figure 9. Black, red and blue

lines correspond to Rλ = 90, Rλ = 224 and Rλ = 398, respectively and circle, square and

triangle symbols denote Fr = ∞, Fr = 0.3 and Fr = 0.052, respectively.

V. CONCLUSIONS

In this paper, we have explored the influence of Froude number, Fr, and the Taylor

Reynolds number, Rλ, on the dynamics settling, bidisperse particles in statistically station-

ary, isotropic turbulence using Direct Numerical Simulation (DNS). In particular, our DNS

covered the ranges 0.052 ≤ Fr ≤ ∞ and 90 ≤ Rλ ≤ 398, along with particle Stokes numbers

in the range 0 ≤ St ≤ 3.
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We first analysed the statistics of particle accelerations since they play a key role in the

relative motion of bidisperse inertial particle-pairs in turbulence. The acceleration variance

and kurtosis results showed that decreasing Fr enhances the inertial particle accelerations,

whereas it suppresses their intermittency. Further, the Probability Density Function (PDF)

of the accelerations showed that for St > 1, the effect of Rλ on the particle accelerations

becomes more pronounced in the presence of gravity, since gravity causes the particle accel-

erations to be affected by a larger range of flow scales. We also observed that for Fr ≪ 1

and St & 1, the acceleration PDFs become almost Gaussian, and may therefore be predicted

using the asymptotic models for the acceleration variance of particles settling in turbulence

given in [27].

We then studied the relative velocity of the bidisperse inertial particles. The PDF of

the particle relative velocities showed that decreasing Fr enhances the relative velocities

of these particles in both the directions parallel to gravity (vertical) and perpendicular to

gravity (horizontal), even when St ≪ 1. Most importantly, we also found that even when

the particle settling velocity is large, turbulence still makes a substantial contribution to

the vertical relative velocities, and increasingly so as Rλ is increased. This behavior arises

because of intermittency in the turbulence, due to which there are significant regions of the

flow where the turbulent velocities are of the same order as the particle settling velocity, even

though the mean-field fluctuations of the turbulence are small compared with the particle

settling velocity. An important practical consequence of this is that when modeling the

mixing of bidisperse particles in turbulence with Rλ ≫ 1, the effect of turbulence cannot

be ignored even when the particle settling parameter is Sv ≫ 1 (unless only the low-order

statistical properties of the mixing are of interest). Our results also show that reducing Fr

systematically suppresses the intermittency of the relative velocities, and in some parameter

regimes the PDFs become almost Gaussian at the small-scales of the turbulence.

Finally, we examined the Radial Distribution Function (RDF) and particle collision ker-

nels. We found that these low-order statistics are strongly dependent upon Fr, St, and the

degree of bidispersity (the difference in the Stokes numbers of the particles) but are insen-

sitive to Rλ when St . 1. The latter finding is the same as was observed for monodisperse

particles in [27], despite the fact that the mechanisms governing the spatial clustering and

collisions of monodisperse particles are in general quite different from those for bidisperse

particles. These results indicate that the collisions of droplets in atmospheric clouds might
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be well described even by DNS with relatively low Rλ (and more generally, for gas-solid

flows where Rλ ≫ 1).

It would be interesting for future experimental efforts on heavy particle motion in tur-

bulence to test the findings presented in this paper. Experimental data for Fr lower than

considered in this paper is also of interest to understand how the system behaves as Fr → 0,

which is difficult to do in DNS due to the effects of periodic boundary conditions on the

settling particles, and the associated need for large computational domains. For larger par-

ticles, the effects of non-linear drag forces (ignored in this study) on the particles can be

important, and the impact of this on the motion of settling bidisperse particles in turbu-

lence should be explored. A difficulty, however, is that studies have shown that widely used

empirical laws for non-linear drag are not quantitatively accurate for settling particles in

turbulence [39], and new models are required. Future studies should also consider the full

polydisperse case for inertial particles in turbulence, which is important for problems where

the particle number density is sufficiently high for the binary collision assumption to fail.
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