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In dynamical systems theory, suppression of instabilities around a fixed point is generally achieved
by controlling the linearized dynamics of infinitesimal perturbations, because considering small-
amplitude disturbances allows for application of a range of celebrated techniques from linear control
theory. In this paper, we consider the problem of design and implementation of a controller for
fully nonlinear, high-dimensional, dynamical systems with the goal of steering trajectories to an
unstable fixed point of the governing equations. Our control strategy is based on previous work by
the authors [Blanchard, Mowlavi & Sapsis, Nonlinear Dynamics 95, 2745–2764 (2019)], and takes
advantage of the unique properties of the optimally time-dependent (OTD) modes, a set of global,
time-evolving, orthonormal modes that track directions in phase space associated with transient
growth and persistent instabilities. We show that the OTD control strategy introduced previously
is robust with respect to perturbation amplitude even in cases in which the trajectory initially
evolves on an attractor that lies far away from the target fixed point. In recognition of the fact that
actuation capabilities are generally limited in practice, we also formulate a localized control strategy
in which the OTD modes are computed in a spatially localized subdomain of the physical domain
of interest. We suggest a strategy for selecting the optimal control domain based on a quantitative
criterion derived from the OTD modes. We show that even when the range of the controller is
reduced, OTD control is able to steer trajectories towards the target fixed point.
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I. INTRODUCTION

From a practical perspective, control of dynamical systems faces at least two major challenges. The first is that
of dimensionality. Nearly all engineering applications involve high- or infinite-dimensional physical models, for which
designing robust, versatile controllers is prohibitively expensive because many control strategies do not scale well with
the dimension of the system [1]. This pitfall is generally avoided by projecting the dynamics onto an appropriate
low-dimensional subspace in which design and implementation of controllers are computationally tractable [2, 3]. Of
course, the projection subspace must be selected with great care, because this choice immediately dictates the type of
instabilities that the controller will be able to detect and act upon. Popular choices for model order reduction include
the proper orthogonal decomposition (POD) [4] and its derivative, the balanced POD (BPOD) [5], the eigensystem
realization algorithm (ERA) [6], and the dynamic mode decomposition (DMD) [7, 8]. However, all of these techniques
have been found to struggle greatly with capturing transient (non-normal) instabilities. As noted by Rowley &
Dawson [3], POD is virtually useless in situations dominated by transient growth, while DMD, BPOD, and ERA
perform slightly better but still require relatively large subspaces to achieve acceptable errors, even for geometries
as simple as plane Poiseuille flow. So the question remains of finding an appropriate low-dimensional subspace that
most accurately capture instabilities, regardless of the exponential or non-normal nature of the latter.
The second challenge is that of nonlinearity. The general approach to flow control is based on linearization of the

governing equations around an unstable fixed point, since the linearized equations describe the fate of infinitesimal
perturbations in the vicinity of that fixed point [9]. Linearity is convenient because many instability and transition
phenomena in fluid mechanics arise from a linear mechanism [10, 11], and also because it allows for use of an arsenal
of control algorithms (e.g., optimal linear quadratic regulators or robust H∞ controllers) that have been tried and
tested over the years [2]. Yet, there are a number of practical situations in which the dynamics are fundamentally
nonlinear and use of linear control theory is moot—for example, in control of turbulent flow [12]. In those situations,
the issue of nonlinearity adds to that of high dimensionality, and it becomes much more difficult to design and
implement optimal controllers that are as flexible and powerful as those available in the linear setting. Great strides
have been made by using iterative, adjoint-based, gradient optimization strategies and model predictive control [13],
but the underlying computational machinery is quite complex for implementation in real-life configurations. Another
approach, suggested by Bewley [14], is to bluntly apply any linear control strategy to the corresponding fully nonlinear
problem. As discussed in [14], there is some evidence that linear control strategies applied to nonlinear systems might
be effective, although cases exist in which this approach has a destabilizing effect on the dynamics, rather than a
stabilizing one.
The present work builds on the results of Blanchard et al. [15], who recently proposed a control strategy that

addresses the first of the above challenges. Their approach leveraged the power of the optimally time-dependent (OTD)
modes, a set of orthonormal basis functions that adaptively track directions of transient and persistent instabilities
along a given trajectory of a dynamical system. This fundamental property of the OTD modes led Blanchard et
al. [15] to realize that these modes formed the ideal candidate subspace for the formulation of a reduced-order
control algorithm capable of suppressing transient and asymptotic instabilities. Using the fact that the OTD-reduced
linearized dynamics describes the evolution of perturbations along a given trajectory with no error (i.e., there is a one-
to-one correspondence between the OTD-reduced linearized system and the full-order one), they designed a controller
in the OTD-reduced space that enforced no instantaneous growth of perturbations at all times. The resulting control
law fulfilled the requirement of low-dimensionality (the number of control inputs equaled the number of OTD modes
used in the dimensionality reduction), and was able to suppress normal and non-normal instabilities, a feat that no
other reduced-order method so far had been found capable of.
The purpose of the present paper is two-fold. First, it addresses the question of robustness of the OTD control

strategy proposed by Blanchard et al. [15] with respect to the amplitude of the perturbations. While the original
approach relied on the assumption that perturbations around the target fixed point had small amplitude, here we
consider cases in which the initial deviation from the fixed point has finite amplitude, so nonlinear effects may no
longer be ignored. The goal is to determine whether OTD control, owing to its time-dependent, adaptive properties,
can pull out a trajectory that initially evolves on an attractor presumably far away from the target fixed point, and
drive it to an unstable fixed point of the governing equations. Second, we investigate how the control strategy by
Blanchard et al. [15] can be adapted for use in situations in which range of actuation is limited, as is the case in
experiments. We formulate a modified control law in which the OTD modes (and, consequently, the control force) are
computed in a localized region of the physical domain in which computations or experiments are performed. We also
suggest a strategy for selection of the OTD control subdomain, which we apply to various examples of high-dimensional
bluff-body flows.
The paper is organized as follows. We formulate the control problem and review the concept of OTD control in §II,

investigate how OTD control performs in fully nonlinear situations in §III, propose a spatially localized OTD control
strategy in §IV, and offer some conclusions in §V.
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II. FORMULATION OF THE PROBLEM

A. Preliminaries

We consider a finite-dimensional autonomous dynamical system

ż = F(z), z(t0) = z0, (1)

where z(t) ∈ R
d is the state vector at time t, F : Rd → R

d is a smooth vector field, and overdot denotes differentiation
with respect to time. Equation (1) may be viewed as the result of projecting an infinite-dimensional dynamical
system onto a finite-dimensional subset of complete functions (e.g., Fourier modes or Lagrange polynomials), so the
assumption of finite-dimensionality does not restrict the scope of the analysis. We assume that the dimension d of the
state vector is very large, as is often the case in fluid mechanics where z may contain values of the primary variables
(or combinations thereof) at thousands or millions of grid points or measurements points. We also assume that (1)
admits at least one fixed point ze (with F(ze) = 0), and focus on cases in which ze is linearly unstable. (Here and in
what follows, the subscript e stands for “equilibrium”.) Trajectories initiated in the vicinity of ze are rapidly expelled
from it and ultimately settle into a different attractor A , which may be steady, time-periodic, quasi-periodic, or
chaotic.
Now, we consider the controlled system

ż = F(z) +Bc, (2)

where c ∈ R
p is the control variable and B ∈ R

d×p is the control action matrix. Our goal is to design the control force

fc = Bc so that it pulls the trajectory out of the long-time attractor A and steers it toward the unstable fixed point

ze. Many challenges immediately arise, the first of which being that of dimensionality. As discussed in §I, designing
a controller for (2) for a range of parameters is a very expensive task, and for the approach to be computationally
tractable, order reduction of the dynamics is almost inevitable. This is usually accomplished by a Galerkin projection
of (2) onto an appropriate basis. Selection of the projection basis must be done carefully, as it determines which
information is retained, and which is lost upon projection. For instance, one may elect to project the governing
equations onto a set of POD modes computed from a collection of snapshots of the trajectory. The resulting low-
dimensional system accurately captures the dynamics encapsulated in the data used to generate it, but it is generally
incapable of describing regimes for which few or no snapshots were collected [3, 16]. In fact, nearly all data-driven
order-reduction techniques suffer greatly from this shortcoming, which is a simple consequence of the fact that these
methods are “biased” toward the data. Likewise, the eigenvectors of the linearized operator Le = ∇F(ze) have shown
their limitations when it comes to model order reduction, since they fail to capture episodes of transient instabilities
due to non-normal growth, a phenomenon ubiquitous in fluid mechanics and climate dynamics [17].
By contrast, our control problem requires a projection subspace that can self-adapt to the direction of instabilities

as the trajectory evolves in the phase space. In the quest for the ideal subspace, a recent concept, introduced by
Babaee & Sapsis [18] and referred to as the “optimally time-dependent (OTD) modes”, has come to the rescue. The
idea is to consider the evolution of a collection of r independent infinitesimal perturbations vi ∈ R

d around a given
trajectory z. Each perturbation obeys the variational equation

v̇i = L(z)vi, 1 ≤ i ≤ r, (3)

where L(z) = ∇F(z) ∈ R
d×d is the Jacobian matrix of F evaluated at z. We emphasize that L(z) is a time-dependent

operator because it depends on the current state z(t). Thus, L(z) is not equal to Le, except when z = ze. As
discussed in Wolfe et al. [19] and Blanchard & Sapsis [20], the collection of vectors {vi(t)}

r
i=1 propagated with

(3) asymptotically collapses upon itself because the magnitude of the individual members vi(t) grows exponentially
rapidly, and the angle between each of them precipitously vanishes as each vi(t) seeks out the most unstable direction
in the phase space. To keep track of the directions associated with growth or decay of perturbations, Babaee & Sapsis
[18] suggested to append to the variational equation a constraint enforcing orthonormality of the vectors vi(t) at all
times. Incorporating this constraint in (3) leads to the OTD equation for the ith OTD mode ui ∈ R

d,

u̇i = L(z)ui −

r
∑

k=1

(〈L(z)ui,uk〉 − Φik)uk, 1 ≤ i ≤ r, (4)

where 〈· , ·〉 is a suitable inner product, and Φ = (Φik)
r
i,k=1 ∈ R

r×r is any skew-symmetric tensor. The subspace

spanned by the collection {ui(t)}
r
i=1 of OTD modes is referred to as the OTD subspace, and by construction is the

same as that spanned by {vi(t)}
r
i=1. (The OTD modes form an orthonormal basis of that subspace.) The second
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term on the right-hand side of (4) sums up contributions from the Lagrange multipliers enforcing orthogonality of ui

and uj (i 6= j) and normality of ui. Without this term, the ith OTD equation reduces to the ith variational equation
(3). We emphasize that the linearized operator appearing in (4) depends on the state z of the system as the trajectory
wanders through the phase space, which allows for the possibility of the OTD modes departing significantly from the
most unstable eigendirections of Le. If the skew-symmetric (but otherwise arbitrary) tensor Φ is chosen as

Φik =











−〈L(z)uk,ui〉, k < i,

0, k = i,

〈L(z)ui,uk〉, k > i,

(5)

then the OTD equations assume a lower triangular form,

u̇i = L(z)ui − 〈L(z)ui,ui〉ui −

i−1
∑

k=1

(〈L(z)ui,uk〉+ 〈L(z)uk ,ui〉)uk. (6)

As discussed in Blanchard & Sapsis [20], the lower triangular formulation (6) is particularly insightful because it
is equivalent to continuously performing Gram–Schmidt orthonormalization on {vi(t)}

r
i=1, starting with v1(t) and

moving down. This is the approach we will use to generate the numerical results presented in §IV.
Why are the OTD modes relevant to our reduced-order control problem? To answer this, we must first review

some of the properties of the OTD modes. The fact that the OTD modes span the same subspace as the solutions
of (3) implies that an r-dimensional OTD subspace constantly seeks out the most rapidly growing r-dimensional
subspace in the tangent space (i.e., the space of perturbations). For example, for a hyperbolic fixed point, the most
rapidly growing subspace is the unstable eigenspace of the associated linearized operator, and it has been shown
that the OTD subspace precisely aligns with that subspace at long times [18]. For a time-dependent trajectory, the
OTD subspace aligns exponentially fast with the most unstable eigenspace of the left Cauchy–Green tensor (i.e., the
eigenspace associated with transient instabilities) [21], just like any subspace solution of (3). In other words, the OTD
modes essentially track the directions in the phase space along which transient and persistent instabilities develop.
The added constraint of orthonormality is key, as it provides a numerically stable way of computing those directions
(the OTD subspace does not collapse on itself).
In light of this, it is natural to consider the OTD modes as a candidate basis to reduce the dimensionality of the

linearized dynamics. We introduce the matrix U ∈ R
d×r whose ith column is ui, and note that for any solution v of

the variational equation (3) that belongs to the OTD subspace, the projection

η(t) = U(t)Tv(t) ∈ R
r (7)

(where T denotes the Hermitian transpose operator) obeys the reduced linear equation

η̇ = Lrη, (8)

where we have introduced the reduced linear operator

Lr = UTL(z)U +Φ. (9)

The dimensionality of (8) is the same as that of the OTD subspace, and presumably much smaller than that of the
original equation (3). A great advantage of the OTD order reduction is that it is dynamically consistent, i.e., if η
solves the reduced equation (8), then v = Uη solves the original equation (3), and vice versa [22]. This means
that propagating v with (3) is strictly equivalent to propagating η with (8) and projecting the solution back to the
full space. Thus, the OTD reduction consistently retains the information of the full-order system associated with
transient instabilities along an evolving trajectory. For this reason, the OTD framework is particularly appropriate
for design of low-dimensional controllers. This was recognized by Blanchard et al. [15], who were the first to propose
an OTD-based control algorithm with a view to suppressing modal and non-modal growth around fixed points in
high-dimensional systems. Their approach will be the basis for our analysis, so we briefly review it below.

B. Review of control by optimally time-dependent modes

To formulate an OTD-based control law, Blanchard et al. [15] considered the controlled dynamics of an infinitesimal
perturbation z′ ∈ R

d around a fixed point ze, described by

ż′ = Lz′ +Bc, (10)
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where L ≡ L(z) is used as a proxy for Le. Introducing the OTD projection η = UTz′, and defining a reduced control
matrix Br = UTB ∈ R

r×p, they obtained the reduced controlled variational equation

η̇ = Lrη +Brc. (11)

If the control vector is sought in the form c = Krη, with Kr ∈ R
p×r a reduced feedback gain matrix, then (11)

reduces to

η̇ = Lr,cη, (12)

where Lr,c = Lr +BrKr is the closed-loop reduced linear operator. The latter is time-dependent, so its eigenvalues
are not good indicators for growth or decay of ‖η‖. However, the eigenvalues of its symmetric part characterize the
instantaneous rate of change of the magnitude of the reduced perturbation, since

1

2

d

dt
‖η‖2 =

〈Lr,cη,η〉+ 〈η,Lr,cη〉

2
. (13)

To stabilize the fixed point ze, Blanchard et al. [15] required that the magnitude of reduced perturbations always
decay (i.e., d‖η‖2/dt < 0 for all η 6= 0) and, hence, that (Lr,c + LT

r,c)/2 be negative definite. They noted, however,
that there is no general framework in control theory addressing the issue of pole placement for the symmetric part of
a linear operator. So they made one additional assumption, namely, that the controller can act on every state of the
system (i.e., B = I) and, invoking dynamical consistency of the OTD reduction, arrived at a rather simple ad hoc

expression for the control force,

fc = UQdiag[−(λi + ζ)H (λi)]Q
TUT(z− ze), (14)

where H is the Heaviside function, ζ ∈ R
+ is a damping parameter, Q ∈ R

r×r is a unitary rotation matrix containing
the eigenvectors of (Lr + LT

r )/2, and {λi}
r
i=1 are the eigenvalues of (Lr + LT

r )/2 ranked from most (λ1) to least
(λr) unstable. The Heaviside function guarantees that the control acts only on directions associated with positive
instantaneous growth (those with λi ≥ 0), and the parameter ζ governs the intensity with which these directions are
damped. The closed-loop rate of change of ‖η‖ is thus negative for all times, thereby ensuring that z tends to ze
asymptotically. Due to orthonormality of the OTD modes, the input energy required by the control law (14) can be
easily computed as

Ec =

∫ ∞

ta

‖UTfc‖
2dτ, (15)

where ta denotes the time at which OTD control is activated. There is, of course, an additional cost related to
computation of the OTD modes, which involves solving r d-dimensional differential equations (i.e., the OTD system
(6)). Babaee et al. [21] showed that, in the context of computation of finite-time Lyapunov exponents, the cost of
evolving the OTD equations becomes insignificant as the dimension d of the system becomes large.
As discussed in Blanchard et al. [15], the control law (14) guarantees suppression of transient and asymptotic

instabilities around ze provided that the following three requirements are met. First, for the order reduction to be
dynamically consistent, the OTD subspace must be initialized so that it contains the directions in which the initial
deviation z(t0)− ze grows. Short of this condition (e.g, if the deviation is initially orthogonal to the OTD subspace),
the reduced-order system (11) will leave out some or all of the directions associated with instabilities, on which the
control force (14) will thus have no influence. The second prerequisite is that the dimension r of the OTD subspace
be sufficiently large that no information related to instability is lost upon order reduction. To capture both normal
and non-normal instabilities, Blanchard et al. [15] suggested to select r according to

r ≥ max(dim Eu, dim Es
u), (16)

where Eu and Es
u are the unstable eigenspace of Le and (Le + LT

e )/2, respectively. Criterion (16) pertains to the
full-order operators evaluated at the fixed point ze, so it relies on the assumption that the norm of the perturbation
z− ze never becomes excessively large. This assumption constitutes the third requirement identified by Blanchard et
al. [15]. It allowed use of L as a proxy for Le in (10), and made consistent application of (14) to the original nonlinear
equation (2), notwithstanding that (14) was designed based on the dynamics of the variational equation (10). (These
manipulations are valid if ‖z− ze‖ remains relatively small.)
In the following exposition, we address two key issues raised by Blanchard et al. [15]. The first question is

that of robustness of the control with respect to the amplitude of the perturbation. Success of the control strategy
(14) is guaranteed for small perturbations around ze, but it is not clear whether OTD control ceases to work for
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disturbances with finite amplitude. After all, the OTD modes are able to capture directions of instabilities along
any given trajectory, regardless of how far the state z may be from ze. So it might very well be that the control
algorithm performs extremely well even in situations where linearization is a priori not valid. Robustness is important
because controllers usually “shift” the attractor significantly, rendering models based on POD modes, DMD modes,
or eigenvectors (which are “local” in phase space) moot. Thus, designing a reduced-order controller that is robust
to perturbation amplitude and direction is often considered a daunting task. The results presented hereinafter will
make clear that the OTD modes significantly “deform” as the magnitude of the perturbation grows, which is a key
requirement for robustness of the proposed control algorithm.
The second issue has to do with the range of the control force. In the original formulation, the controller took the

form of a body force acting on the entire physical domain (cf. equation (14)). As noted by Blanchard et al. [15], it
would be valuable to design a control law that acts only in part of the physical domain, because this would make the
approach considerably more attractive from the standpoint of conducting experiments.

III. STABILIZATION OF UNSTEADY FLOWS BY OTD CONTROL

In this section, we investigate how robust the control law (14) is to the amplitude of the perturbation. We apply the
control algorithm (with minor modifications discussed below) to cases in which the initial deviation of the trajectory
from ze is not small. Specifically, we investigate whether OTD control is able to steer the trajectory toward ze after
it pulled it out of a long-time attractor that presumably lies far away from ze. In what follows, the control force
is assumed to act on the entire physical domain, as done in the original formulation by Blanchard et al. [15]. We
emphasize that the control force was designed based on the linearized dynamics, but to test its robustness we decide
to apply it to the fully nonlinear equations. As discussed in §I, this approach is similar to that proposed by Bewley
[14] in which linear control strategies were applied to nonlinear systems.

A. Unsteady low-dimensional nonlinear system

We begin our investigation with a simple low-dimensional nonlinear system introduced by Trefethen et al. [23],

ż = Cz+ ‖z‖Dz, (17a)

where

C =

[

−1/R 1
0 −2/R

]

, D =

[

0 −1
1 0

]

, (17b)

and R is a large parameter (here, R = 25). The matrix C is non-normal, so the linear term on the right-hand side of
(17a) amplifies energy transiently. The nonlinear term involving the skew-symmetric matrix D merely redistributes
energy, but neither creates nor destroys any. As discussed by Trefethen et al. [23], a notable feature of this system
is that although the fixed point ze = 0 is asymptotically stable, sufficiently large non-normal amplification of a
perturbation can activate nonlinear energy mixing, leading to expulsion of the trajectory from the vicinity of ze
and transition to a different long-time attractor. System (17a,b) essentially mimics transition to turbulence in the
Navier–Stokes equations. In (17a,b), transient growth results from self-sustained transfer of energy to the principal
right singular vector of the non-normal operator C, facilitated by the nonlinear terms.
Blanchard et al. [15] showed that for a range of initial disturbances, a one-dimensional OTD subspace (r = 1), and

damping coefficient ζ = 0.1, the control force (14) was able to suppress non-normal growth around ze = 0. In their
numerical experiments, the amplitudes of the initial disturbances were small (no larger than 10−2), so OTD control
was only used to prevent transient amplification of the disturbances and, hence, transition. Here, however, we do not
wish to prevent transition, but rather attempt to steer the trajectory toward the fixed point ze = 0 after transition

has occurred and once the trajectory is in a state presumably far from ze. We consider a range of initial conditions
in the form (0, c)T (c a constant) for which non-normal growth is large enough that it leads to transition. Integration
of (17a,b) is performed with a third-order Adams–Bashforth method with time-step size ∆t = 0.1. For the range of
initial conditions considered, it is straightforward to show that the long-time “turbulent” attractor is actually another
(linearly stable) fixed point, given by z′e ≈ (0.0797, 0.9936)T for R = 25 (cf. figure 1a).
We use the OTD control law (14) with r = 1 and ζ = 0.1 to drive the trajectory toward ze after transition has

occurred. The control is activated at t = 100 as the trajectory is headed toward z′e. Figure 1b shows that the
controller has no difficulty halting the approach to z′e. Upon activation of the control, the trajectory is swiftly ejected
to a different region of the phase space, and then guided toward ze. Figure 1b suggests that expulsion from the
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vicinity of z′e happens more rapidly for initial disturbances with smaller amplitudes. This is because it takes longer
for smaller disturbances to grow, so z is not as close to z′e when the control is activated. In contrast, for disturbances
with larger initial amplitudes, trajectories fall in the “radius of influence” of z′e more rapidly, and it is more difficult
for the controller to pull them out of it. Figure 1c shows that this effect is much less pronounced when the value of
the damping coefficient ζ is increased to 0.6.

(a) (b) (c)

FIG. 1. For the 2-by-2 non-normal system (17a,b), norm of trajectories subject to (a) no control, (b) OTD control with r = 1
and ζ = 0.1, and (c) OTD control with r = 1 and ζ = 0.6. In (b) and (c), control is activated at t = 100. Initial conditions for
the trajectories are (0, c)T, where c = 10−3, 2.5× 10−3, 10−2 and 5× 10−2, from darker to lighter.

Figures 1b,c show that increasing the value of ζ does not accelerate the final approach to ze. The reason is that
the the first OTD mode used in the control asymptotically aligns with the most unstable eigendirection of Le. Since
the target fixed point is asymptotically stable, that eigendirection is associated with a negative eigenvalue. So in the
limit z → ze, the reduced operator Lr (and for that matter, its symmetric part) reduces to a negative number, and
the controller becomes idle. To accelerate the final approach to ze, one approach would be to apply damping to every
OTD direction regardless of the sign of λi, and simultaneously increase the dimension of the OTD subspace. We will
elaborate on the possibility of damping out all the OTD directions in §III B.

We note that the time at which control is activated cannot be chosen arbitrarily large, for the following reason.
If the control force were to be switched on long after transition happened (i.e., when the state z nearly coincides
with the fixed point z′e), OTD control would be no different from modal control, since the OTD subspace would have
aligned with the most unstable eigenspace of z′e. If a single mode is used in the order reduction, the control would
remain idle for all times because the reduced linear operator reduces to the most unstable eigenvalue of L′

e, which is
a negative number. (The case of OTD reduction with two modes is of little interest, since in that case the OTD basis
spans the whole phase space.) Thus, OTD control must be activated before the asymptotic limit is reached.

We also note that if the controller were to be turned off after z had been driven sufficiently close to the target ze,
non-normal instability of the latter would set in again, and two scenarios are possible. If the control is switched off
when z is infinitesimally close to ze, non-normal growth of the deviation z− ze would not be large enough to trigger
transition to z′e, and the trajectory would naturally return to ze, since the latter is asymptotically stable. On the
other hand, if the controller is switched off when z is not infinitesimally close to ze, the amplitude of z − ze might
be sufficiently amplified that transition would occur again. Should that happen, reactivation of OTD control after
transition would irremediably steer the trajectory back to ze. This is possible because the OTD modes are able to
adapt to directions of instabilities as the trajectory evolves in phase space. OTD control thus provides a mechanism
for switching on and off transition at will.

B. Flow past a cylinder

We turn to the two-dimensional flow of a Newtonian fluid with constant density ρ and kinematic viscosity ν past a
circular cylinder of diameter D with uniform free-stream velocity Uex. The Navier–Stokes equations can be written
in dimensionless form as

∂tw +w · ∇w = −∇p+
1

Re
∇2w, (18a)

∇ ·w = 0, (18b)
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with no-slip boundary condition

w|Γcyl = 0 (19a)

on the cylinder surface Γcyl, and uniform flow

lim
x, y→∞

w = ex (19b)

in the far field. Velocity, time and length have been scaled with cylinder diameter D and free-stream velocity U , and
the Reynolds number is Re = UD/ν. With the lower-triangular formulation discussed in §II, the ith OTD mode
obeys

u̇i = Lnsui − 〈Lnsui,ui〉ui −
i−1
∑

k=1

[〈Lnsui,uk〉+ 〈Lnsuk,ui〉]uk, (20a)

∇ · ui = 0, (20b)

with boundary conditions

ui|Γcyl = 0 (21a)

and

lim
x,y→∞

ui = 0, (21b)

where 〈· , ·〉 is the usual L2 inner product. The (spatially discretized) linearized Navier–Stokes operator evaluated at
the current state w is given by

Lnsui = −∇pi +
1

Re
∇2ui −w · ∇ui − ui · ∇w, (22)

where pi is the pressure field that guarantees incompressibility of the OTD mode ui.
We consider the case Re = 50, slightly above the Hopf bifurcation of the steady symmetric solution we known

to occur at Rec ≈ 47. At Re = 50, there is exactly one pair of unstable complex conjugate eigenvalues [24, 25],
which at long times gives rise to a limit cycle with periodic vortex shedding. Blanchard et al. [15] showed that
for small asymmetric inlet perturbations, the control law (14) based on an OTD subspace with dimension at least
2 (and ζ = 0.1) subdued linear instability of the base flow. By contrast, they showed that control law (14) with a
one-dimensional OTD subspace was unable to counteract development of the vortex street. The reason is that the
most unstable eigenspace of Le, with which the OTD subspace rapidly aligns if the flow is initialized infinitesimally
close to we, contains two unstable directions. Hence, a controller based on a single OTD mode necessarily leaves out
one of the two directions responsible for instability.
Here, we do not use OTD control to suppress linear growth of initially small disturbances around we. Rather, we

investigate whether OTD control can take the trajectory out of the limit cycle and guide it toward we. This may be
thought of as an attempt to control an initially non-infinitesimal perturbation, since on the limit cycle, w is far from
we, and the nonlinearity of the Navier–Stokes equations is fully active. The question then arises of how many OTD
modes should be included in the control algorithm in order to stabilize we. (We chose not to discuss this issue in
§III A because for that example the phase space was two-dimensional.) As discussed in §II, the original criterion (16)
formulated by Blanchard et al. [15] guarantees success of the control strategy if the amplitude of the perturbation
is small. Here, however, we consider perturbations that have finite amplitude, and there is no reason to believe that
choosing r = max(dim Eu, dim Es

u) should ensure success of the control strategy. But under no circumstances can r
be less than max(dim Eu, dim Es

u), since the latter accounts for exactly all the directions of transient and asymptotic
instabilities of we.
The computational solution is effected using the spectral-element Navier–Stokes solver nek5000 [26]. The computa-

tional domain extends 24D in the cross-stream direction and 32.4D in the streamwise direction. The cylinder center
is located 8.4D away from the inlet boundary and equidistantly from the side-walls. Our production runs use a mesh
with 316 spectral elements, polynomial degree N = 9, and time-step size ∆τ = 2 × 10−3. For the main flow and
the OTD modes, we specify a no-penetration (“symmetry”) boundary condition on the side-walls, and a stress-free
condition at the outlet. At the inlet, we prescribe a non-homogeneous Dirichlet condition (w = ex) for the main flow,
and a homogeneous Dirichlet condition for the OTD modes. The steady (unstable) base flow we shown in figure 2a
is computed by a selective-frequency-damping (SFD) approach [27].
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FIG. 2. For flow past a cylinder at Re = 50, (a) spanwise vorticity distribution of the steady symmetric solution we, and (b)
snapshot of the spanwise vorticity distribution of the solution on the limit cycle at an instant for which CL is maximum.

We first perform a computation with r = 2 (the smallest value of r for which stabilization is possible in the limit of
small perturbations) and ζ = 0.1. Initial conditions for the main flow are selected as the state on the limit cycle for
which the lift coefficient CL is maximum (cf. figure 2b). For the initial conditions of the OTD modes, we apply Gram–
Schmidt orthonormalization to the divergence-free subspace {sin(my)ex+cos(mx)ey}

r
m=1. (For a detailed discussion

of the initialization of the OTD subspace, we refer the reader to Blanchard et al. [15].) For 0 ≤ t < 100, the control
is idle, and the OTD subspace aligns with the most unstable subspace on the limit cycle. Figures 3a–h show the
vorticity distributions of the first and second OTD modes at four equally-spaced time instants in one shedding cycle
of period T , with CL reaching its maximum amplitude at t = t0. Figures 3a–f show that the OTD modes posses the
same space-time symmetry

ui,x(x, y, t) = ui,x(x,−y, t+ T/2), (23a)

ui,y(x, y, t) = −ui,y(x,−y, t+ T/2), (23b)

pi(x, y, t) = pi(x,−y, t+ T/2), (23c)

as the flow itself [28]. This is a consequence of the fact that the OTD subspace aligns exponentially fast with a
well-defined subspace that depends only on the current flow state w, and not on the history of the trajectory [20, 29].
As a result, the OTD modes inherit the symmetry properties of the flow. Figures 3a–h also show that the vorticity
distributions of the OTD modes on the limit cycle are quite different from that of the OTD modes computed at the
unstable fixed point we (figures 4a,b). As discussed in §II B, the reason is that the OTD subspace evolves hand in
hand with the trajectory. Thus, the OTD subspace coincides with Eu only in the asymptotic limit w → we, but
otherwise strongly departs from Eu.

The control is activated at t = 100, and remains active for all t > 100. Figure 5a shows that the control law (14) is
able to drive w towards we. In addition, movie 1 [30] shows time series for CL cued to the vorticity distributions of
the solution w and the control force fc. Movie 1 [30] shows that the amplitude of CL decreases by about 90% between
t = 100 and 150, evidencing that the controller acts very rapidly. It is also clear from movie 1 [30] that the vorticity
distribution of fc exhibits strong asymmetry about the midline y = 0 for most of the transient interval during which
the trajectory leaves the limit cycle and travels toward we (i.e., for about 100 ≤ t ≤ 145). As w approaches we, the
vorticity distribution of the solution becomes anti-symmetric, and so does that of the control force fc (see for example
t = 160 in movie 1 [30]). At long times, fc is a linear combination of the two most unstable eigenvectors of Le (cf.
figures 4a,b). For t ≥ 200, the vorticity distribution of the solution is indistinguishable from that of we.

A notable feature of movie 1 [30] is that there are multiple “flickers” in the vorticity distribution of the control force
(e.g., near t = 123.4, 128.8, and 131). We have verified that these episodes should not be attributed to insufficient
frame rate in movie 1 [30], as they were found to persist even when the speed of the movie was decreased by a factor of
two, and the frame rate simultaneously increased by a factor of five. Instead, an explanation is provided by examining
the time series for the eigenvalues {λ1, λ2} of (Lr+LT

r )/2, shown in figure 5b. We first recall that the control law (14)
contains a Heaviside function, whose use was originally motivated by the fact that only those directions with positive
instantaneous growth rate should be acted upon (and the other directions should be left unaltered). However, figure
5b shows that the two eigenvalues of (Lr +LT

r )/2 have opposite signs at the time when the control is activated (with
λ1 > 0 > λ2), but identical signs at long times when the trajectory is close to we (with λ1 > λ2 > 0). So λ2 must
change sign at least once as the trajectory travels from the limit cycle to the fixed point. In fact, figure 5b shows that
λ2 changes sign multiple times in the interval 120 ≤ t ≤ 170 (at t = 123.54, 123.75, 127.26, 128.81, 131.09, and again
at t = 164.55 and 164.92). These time instants coincide with the “flickers” in the vorticity distribution of fc: every
time λ2 becomes positive, OTD mode 2 is suddenly included in the control force, and its contribution “jumps” from
zero to non-zero. (Likewise, when λ2 becomes negative, OTD mode 2 is suddenly excluded from fc.)

There are at least two options to eliminate temporal discontinuities in the control force. One possibility is to
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FIG. 3. For flow past a cylinder at Re = 50 on the limit-cycle attractor, vorticity distributions of the (a, c, e, g) first and (b,
d, f, h) second OTD mode, shown at time (a, b) t0, (c, d) t0 + T/4, (e, f) t0 + T/2, and (g, h) t0 + 3T/4.
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FIG. 4. For the steady (unstable) flow past a cylinder at Re = 50, vorticity distributions of the (a) first and (b) second OTD
mode.

introduce an offset ε > 0 in (14), so that fc becomes

fc,ε = UQdiag[−(λi + ζ)H (λi + ε)]QTUT(z− ze). (24)

The modified control law (24) damps out directions of instantaneous growth (just like (14)), as well as those directions
that instantaneously decay at a rate smaller than ε. In other words, for small values of ε, (24) damps out directions
along which perturbations grow or barely decay. Temporal discontinuities in fc are eliminated if λi + ε never changes
sign. In practice, however, it is difficult to know in advance how each λi will evolve when the control is active. So
another approach is to simply eliminate the Heaviside function from (14), and apply the same amount of damping to
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(a) (b)

FIG. 5. For flow past a cylinder at Re = 50 subject to OTD control with r = 2 and ζ = 0.1, (a) time series of ‖w − we‖,
and (b) eigenvalues of the open-loop reduced operator (Lr + LT

r )/2. Control is idle in the interval 0 ≤ t < 100 and active for
t ≥ 100.

every OTD direction, regardless of whether it is associated with instantaneous growth or decay:

fc,all = UQdiag(−ζ)QTUT(z− ze). (25)

The above control strategy is suboptimal, since resources are allotted to damping directions that need not be, but
it guarantees temporal continuity of the control force at all times. We note that with this strategy, the damping
coefficient ζ must be chosen sufficiently large that it can suppress the leading eigenvalue λ1. Figure 5a shows that use
of (25) with ζ = 0.1 is able to stabilize we, and movie 2 [30] confirms that no temporal discontinuities are present in
fc,all. For this control strategy, the input energy Ec required to operate the controller is found to be 0.132, slightly
lower than that for the case shown in movie 1 (0.180).

C. Flow past a NACA 0012 airfoil

For another example of control of bluff-body flow, we consider the two-dimensional flow of an incompressible fluid
with density ρ, kinematic viscosity ν, and free-stream velocity Uex, past a NACA 0012 airfoil of chord length Lc at
an angle of attack α = 10◦. The governing equations and boundary conditions for the main flow and the OTD modes
are identical to (18a–22), where it is understood that Γcyl now denotes the airfoil surface. The Reynolds number,
based on the chord length, is Re = ULc/ν. The Navier–Stokes and OTD equations are solved using nek5000. The
computational domain is a C-grid that extends 10Lc in the streamwise direction and 8Lc in the cross-stream direction.
The airfoil trailing edge is located 5Lc from the outlet boundary and equidistantly from the side-walls. The mesh
is composed of 644 spectral elements with polynomial order N = 9, and the time-step size is ∆τ = 5 × 10−4. The
computational boundary conditions for the main flow and the OTD modes are identical to those used in §III B.
Like in the cylinder flow discussed in §III B, the equations governing flow past a NACA 0012 airfoil admit a steady

solution we for any value of Re and α. The only case for which we is symmetric about the midline y = 0 is when the
geometry is symmetric, i.e., for α = 0◦. For Re = 1000, Kurtulus [31] found that we loses linear stability at αc ≈ 8◦.
For Re = 1000 and α not too greater than αc, there is exactly one unstable pair of complex conjugate eigenvalues,
and linear instability of we gives rise to a laminar time-periodic solution in which alternating vortices are shed aft of
the airfoil. Here, we consider the case Re = 1000 and α = 10◦, for which the base flow (figure 6a) is linearly unstable
and the long-time solution (in the absence of control) is a limit cycle (figure 6b). Consistent with previous work [32],
an Arnoldi calculation (figure 6c) shows that there is a single pair of unstable eigenvalues (ω = 0.4892± 4.7028i) for
the values of Re and α considered. We note that the real part of the unstable pair of eigenvalues is one order of
magnitude larger than that for flow past a cylinder (for which the most unstable pair of eigenvalues is found to be
ω = 0.0186± 0.778i).
We first verify that the original approach by Blanchard et al. [15] is capable of suppressing growth of small-

amplitude perturbations around we. Since dim(Eu) = 2, we expect that the control law (14) with two (but no fewer)
OTD modes should be able to prevent development of instability. The main flow is initialized on we, to which is
superimposed a small asymmetric inlet perturbation in the form

winlet(y, t = 0) = (1 + 0.0001y)ex. (26)
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FIG. 6. For flow past a NACA 0012 airfoil with α = 10◦ and Re = 1000, (a) spanwise vorticity distribution of the steady
solution, (b) snapshot of the spanwise vorticity distribution of the solution on the limit cycle at an instant for which CL is
maximum, and (c) 21 most unstable eigenvalues of the linear operator Le visualized in the complex plane.

For the initial conditions of the OTDmodes, we apply Gram–Schmidt orthonormalization to the subspace {sin(my)ex+
cos(mx)ey}

r
m=1. The control is active for all t ≥ 0. Figure 7a shows time series for |CL − CL,e| (where CL,e is the

value of the lift coefficient for we) for r = 1 and 2, and ζ = 0.1. Clearly, OTD control with r = 2 successfully
suppresses asymptotic growth of the imposed perturbation, while OTD control with r = 1 does not.
Next, we consider a trajectory that evolves on the limit cycle, and use OTD control to take it out and steer it

toward we. Computations are performed with r = 2 (the smallest value of r required for stabilization of we), and
the modified control law (25) to avoid temporal discontinuities in the control force. We consider three values of the
damping coefficient (ζ = 1.8, 2.4 and 3.2). The main flow initially coincides with a state of maximum lift on the limit
cycle (figure 6b). Initial conditions for the OTD modes are specified as above. The control is activated at t = 100
and remains active for the rest of the calculation. For the three values of ζ considered, figure 7b shows that activation
of the control leads to rapid stabilization of we. The time elapsed between activation of the control and beginning
of the final approach to we is shorter for larger values of ζ. The rate at which final approach to we takes place is
essentially independent of ζ, suggesting that the values of ζ considered are sufficiently large that the rate of approach
is dictated by the least stable eigendirection on which the control does not act.

(a) (b)

FIG. 7. For flow past a NACA 0012 airfoil with α = 10◦ and Re = 1000, (a) time series of |CL −CL,e| for trajectories subject
to infinitesimal asymmetric inlet perturbation (26) with OTD control law (14) and ζ = 0.1, and (b) time series of ‖w −we‖
for trajectories initialized on the limit cycle subject to OTD control law (25) with r = 2 and ζ = 1.8, 2.4 and 3.2. In (a), OTD
control is active for all t ≥ 0. In (b), OTD control is idle in the interval 0 ≤ t < 100 and active for t ≥ 100.

For ζ = 1.8, inspection of the vorticity distribution of fc,all reveals that no temporal discontinuities are present (cf.
movie 3 [30]). We also note that, interestingly, although the control acts as a body force on the entire computational
domain, it appears to “work its way downstream”, in that stabilization and symmetrization of the wake first occurs
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in the near field, before propagating to the far field. As the solution in the near field becomes more symmetric,
the vorticity distribution of fc,all evolves accordingly. For example, figure 8b shows that at t = 120 there is a clear
difference between the vorticity distribution of fc,all immediately aft of the airfoil (the vortices arrange themselves in
a way that resembles the vorticity distribution of the unstable eigenvectors of Le), and that in the far field, which
appears considerably less organized, and reflects the strongly asymmetric and unsteady nature of the flow in that
region of the domain (cf. figure 8a). This effect is more pronounced for this geometry at this Re value than it was in
the flow past a cylinder at Re = 50 discussed in §III B.
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FIG. 8. For flow past a NACA 0012 airfoil with α = 10◦ and Re = 1000 subject to OTD control (25) with r = 2 and ζ = 1.8,
spanwise vorticity distributions of (a) the solution w, and (b) the control force fc,all at t = 120 (cf. figure 7b).

The input energy Ec required for stabilization is found to be 0.293, 0.184 and 0.163 for ζ = 1.8, 2.4 and 3.2,
respectively. That larger values of ζ require less energy might seem counterintuitive, but the reason is quite simple.
Figure 7b shows that controller activation is followed by an interval during which ‖w − we‖ decreases non-linearly.
The duration of this interval is larger for smaller values of ζ, and ends approximately when ‖w−we‖ falls below 0.1
(figure 7b). At that time, w has been brought sufficiently close to we, and ‖w−we‖ begins to decrease linearly. The
bulk of the effort is done in the interval of nonlinear decay of ‖w−we‖, as this interval corresponds to the controller
pulling the trajectory out of the limit cycle. That this interval is shorter for larger values of ζ compensates for the
fact that large ζ in principle increases the cost of the control.

D. Kolmogorov flow

We now consider Kolmogorov flow on the torus Ω = [0, 2π]2. The flow obeys the incompressible Navier–Stokes
equations with sinusoidal forcing, written in dimensionless form as

∂tw +w · ∇w = −∇p+
1

Re
∇2w + sin(kfy)ex, (27a)

∇ ·w = 0, (27b)

where kf is a positive integer, and the Reynolds number Re is the inverse of a dimensionless fluid viscosity ν. The
OTD equations are identical to (20a,b), with Lns given by (22). The main flow and the OTD modes satisfy periodic
boundary conditions. The computational solution is effected using nek5000 with a mesh composed of 256 elements
(16 elements in each direction), polynomial order N = 7, and time-step size ∆t = 10−3.
The Kolmogorov flow admits a laminar solution,

we =
Re

k2f
sin(kfy)ex, (28)

which is asymptotically stable for forcing wave number kf = 1 and any value of Re [33]. For kf > 1 and large enough
Re values, the laminar solution we is unstable, and the long-time solution is chaotic [34, 35]. Other invariant solutions
besides (28) are known to exist for this flow. For kf = 4 and Re = 40, Farazmand [36] reported no fewer than 16
different steady (unstable) solutions, with dim Eu ranging from 5 to 38. In [15], Blanchard et al. were able to stabilize
the laminar solution (28) (for which dim Eu = 38) in the limit of small perturbations by applying the control law (14)
with 38 OTD modes.
In the wake of Blanchard et al. [15], we consider parameters kf = 4 and Re = 40 for which (28) is linearly unstable,

and the long-time solution is chaotic. Here, we use OTD control to annihilate the chaotic attractor and steer the
trajectory to the fixed point (28). We note that the temporal regularity of the long-time (chaotic) attractor is lower
than in the previous examples considered. (The long-time attractor was a fixed point in §III A, and a time-periodic
orbit in §§III B and III C.) The main flow is initialized on the chaotic attractor (cf. figure 9a). To initialize the OTD
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modes, we apply Gram–Schmidt orthonormalization to the subspace {cos(mx) sin(my)ex − sin(mx) cos(my)ey}
r
m=1.

The OTD modes thus satisfy the incompressibility constraint and the periodic boundary conditions at t = 0. For the
first 50 convective time units, the control is idle, and the trajectory wanders on the chaotic attractor. The control is
activated at t = 50, and remains active for the rest of the computation.
Figure 9b shows time series for the energy dissipation

Ed(t) =
1

Re|Ω|

∫

Ω

|∇w|2dΩ (29)

for the uncontrolled case (r = 0), and three controlled cases with various values of r and control law (14). We first
note that in the absence of control, the trajectory remains on the chaotic attractor and never approaches the laminar
solution we (for which Ed = 1.25). We also note that for r = 38, the smallest value for which stabilization of we is
possible in the limit of infinitesimal perturbations, OTD control is not able to annihilate the chaotic attractor. (The
calculation was terminated at t = 1500 to give credibility to this claim.) This is in stark contrast with the previous
examples in §§III A, III B and III C, in which choosing r = max(dim Eu, dim Es

u) was sufficient to guarantee success
of the control strategy, notwithstanding that this criterion was based on the assumption that disturbance amplitude
remained small. Kolmogorov flow is thus the first example that we encounter in which r must be strictly greater
than max(dim Eu, dim Es

u) for OTD control to annihilate the attractor. As discussed in §II B, this is a consequence
of the fact that in the chaotic regime, ‖w −we‖ is not small: the number of unstable directions on the attractor, or
along the path from the attractor to the target, may well exceed the number of unstable directions close to we. For
stabilization to be possible, the controller must act on all unstable directions, from the moment the trajectory leaves
the attractor to the final approach to the target. So it is not surprising that in some cases, we need a larger number of
OTD modes than that prescribed by linearized theory. But, as noted in §III.B, we cannot afford to use fewer modes
than max(dim Eu, dim Es

u), because otherwise stabilization close to we would not be possible.
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FIG. 9. For Kolmogorov flow with Re = 40 and kf = 4, (a) spanwise vorticity distribution of the initial condition used in the
computations, and (b) energy dissipation for trajectories with OTD control (with ζ = 0.1), and without control. Control is idle
in the interval 0 ≤ t < 50 and active for t ≥ 50.

To determine the critical value of r for which destruction of the chaotic attractor by OTD control is possible, we
proceed by bisection. But first, we must note that because the original control law (14) is based on linearization
assumptions, there is no guarantee that there exists a low-dimensional OTD control strategy capable of stabilizing we

for large-amplitude disturbances. In fact, when linearization does not hold, the only available bound on the critical
OTD subspace dimension is max(dim Eu, dim Es

u) ≤ r ≤ d, where d is the dimension of the phase space. So our hope
is that there exists a value of r not too greater than max(dim Eu, dim Es

u) such that (14) is efficient, although nothing
guarantees it a priori. The results are shown in figure 9b. We find that OTD control with r = 56 is able to stabilize
we. A refined search shows that no fewer than 44 OTD modes should be included in order to destroy the chaotic
attractor.
For r = 44, movie 4 [30] shows time series for Ed cued to the vorticity distributions of w and fc. The latter

exhibits large-scale coherent structures in the transient interval during which the trajectory is pulled out of the
chaotic attractor (from t = 50 to about 115). At longer times (after about t = 115), the trajectory approaches the
fixed point, and the OTD subspace aligns with the most unstable eigenspace of Le. When w is infinitesimally close
to we, only 38 of the 44 OTD directions are acted upon by the control. For r = 56, movie 5 [30] and figure 9b
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show that w approaches we much more rapidly than for r = 44, which suggests that including more OTD modes in
the controller can prevent “overshoot” of the solution and accelerate stabilization. Finally, we note that the input
energy Ec required by the control is two orders of magnitude larger for r = 44 (1106.8) than for r = 56 (78.68). This
discrepancy has to do with the fact that stabilization is achieved much more rapidly in the latter case.

This completes demonstration of robustness of OTD control in situations where the trajectory initially evolves on
an attractor far from the target fixed point. We found no instances in which the OTD controller had a destabilizing
effect on the dynamics. We conjecture that this is because the OTD modes are computed along the trajectory, and
therefore are able to adapt to situations in which the state of the system is not close to the target fixed point. The
examples discussed above indeed made clear that the OTD modes “deform” as the trajectory visits various regions
in the phase space, including during its journey from the unsteady attractor to the target fixed point.

IV. STABILIZATION OF UNSTEADY FLOWS BY SPATIALLY LOCALIZED OTD CONTROL

The results presented in §III were generated with a control strategy in which it was assumed that the control had
knowledge of, and could act on, every state variable of the system. In other words, the system was assumed fully
observable and fully controllable. As discussed §I, this approach has limited applicability from the standpoint of
conducting experiments, since in practice the range and number of sensors and actuators is limited by the apparatus.
In this section, we attempt to address this issue, and propose a modified OTD control strategy in which the range
of action of the controller is restricted to a small portion of the physical domain, and the control law (including the
OTD modes) is computed solely based on the knowledge of the primitive variables in that subdomain.

A. Formulation of a spatially localized OTD control law

To formulate a practical OTD control law, we assume that range of actuation and access to flow data are limited
to a convex subdomain Ω̄ of the physical domain Ω in which experiments or computations are performed. This
assumption immediately excludes a “naive” control strategy in which the control force fc would be computed on the
entire domain Ω (as in §III), and on which a mask would be applied that sets the value of fc to zero in Ω \ Ω̄, and
leaves it unaltered otherwise. We further assume that the state z̄ of the system in Ω̄ is known with exactitude. The
question then is to find an appropriate formulation for computing the OTD modes in Ω̄, given sole knowledge of the
state in Ω̄.

1. Computation of localized OTD modes

To help us with the formulation, we make a brief incursion in the infinite-dimensional setting. We consider a generic
dynamical system whose evolution obeys ∂tz = F (z), where z belongs to an appropriate function space X defined in
Ω×R

+, and F is a nonlinear differential operator. Infinitesimal perturbations about a trajectory obey the variational
equations ∂tv = L (z; v), where v ∈ X and L (z; v) = dF (z; v) is the Gâteaux derivative of F evaluated at z along
the direction v. The lower triangular OTD system can be written as

∂tui = L (z;ui)− 〈L (z;ui), ui〉ui −

i−1
∑

k=1

[〈L (z;ui), uk〉+ 〈L (z;uk), ui〉] uk, 1 ≤ i ≤ r, (30)

where it is understood that each ui belongs to X , and therefore is defined in Ω× R
+. The OTD equations obtain at

every point x ∈ Ω, so a fortiori at every x ∈ Ω̄. Therefore, we may use (30) to compute the OTD modes in Ω̄. The
question then arises as to what boundary conditions should be specified on ∂Ω̄ for the modes. A natural answer is to
use homogeneous Dirichlet boundary conditions. This choice is appropriate for the following reason. Here, we have
restricted ourselves to controlling the flow in Ω̄ only, so the control force must vanish outside of the control domain.
But we recall from §II B that dynamical consistency of the order reduction demands that the control force belong to
the OTD subspace. Hence, use of homogeneous Dirichlet boundary conditions for the OTD modes guarantees that
the resulting control force fc is continuous across ∂Ω̄.
Use of homogeneous Dirichlet boundary conditions on ∂Ω̄ for the OTD modes is consistent only if we recover

the original OTD modes (i.e., those computed in the full domain Ω) in the limit when Ω̄ → Ω. For open flows of
infinite extent, the far-field velocity components for the base flow are specified as inhomogeneous Dirichlet boundary
conditions (e.g., equation (19b)). In that case, infinitesimal perturbations about the base flow (and likewise, OTD
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modes) must satisfy homogeneous Dirichlet boundary conditions in the far field (e.g., equation (21b)), so there is no
incompatibility of the boundary conditions as Ω̄ → Ω. The issue arises when the flow domain has finite extent, e.g.,
in physically bounded flows, and in any computation of open flows. In the latter case, there is no accepted answer to
the question of what boundary conditions are appropriate for the linearized dynamics. The only related investigation
of which we are aware was done by Peplinski et al. [37]. For flow past a circular cylinder at Re = 50, and for other
open flows, including Poiseuille flow and jet in cross-flow, Peplinski et al. [37] showed that the effect of boundary
conditions on the most unstable eigenvalues of the linearized operator (i.e., those responsible for linear instability
of the base flow) is minuscule, and that only the high-frequency, highly damped modes appear to be significantly
affected. Heuristically, this is because the stronger instabilities should not be affected by the flow conditions in the
far field, as long as the computational domain is large enough.
Based on this discussion, we decide to specify homogeneous Dirichlet boundary conditions for the OTD equation

regardless of the domain in which the OTD modes are computed. The spatially discretized OTD equation retains
a form similar to (6), but now U and L are computed in a subdomain Ω̄ with homogeneous Dirichlet boundary
conditions on ∂Ω̄. We will denote these quantities by Ū ∈ R

m×r and L̄ ∈ R
m×m, respectively, where m is the number

of degrees of freedom associated with Ω̄ (m = d when Ω̄ = Ω). (We note that the OTD modes computed in Ω̄ satisfy
the orthonormality condition in Ω̄.) This allows us to formulate a new control law,

f̄c,sub = ŪQ̄diag[−(λ̄i + ζ)H (λ̄i)]Q̄
TŪTR(z− ze), (31)

where Q̄ and {λ̄i}
r
i=1 are the eigenvectors and eigenvalues of (L̄r + L̄T

r )/2, respectively, and R ∈ R
m×d is a rank-m

restriction matrix that excises from the full state z those degrees of freedom associated with Ω \ Ω̄, and retains those
in the interior of Ω̄. The presence of the restriction operator left-multiplying the deviation z−ze reflects the fact that
only part of the state is accessible. To facilitate application of the control force to the governing equations (which are
defined in Ω), we pre-multiply f̄c,sub by the prolongation matrix RT, which gives

fc,sub = RTŪQ̄diag[−(λ̄i + ζ)H (λ̄i)]Q̄
TŪTR(z− ze). (32)

The modified control force (32) is defined in Ω, by construction vanishes outside of Ω̄, and is C0-continuous across
∂Ω̄.
We note that in a realistic (experimental) set-up, actuation is typically achieved using boundary control (e.g.,

blowing and suction on the surface of a bluff body [38] or near the upstream edge of a cavity [39]). However,
use of a localized body force such as (32) is far from irrelevant. First, as others have noted [40], this approach
facilitates analysis and evaluation of control performance. Second, it often is the case that boundary actuation can be
represented as a Galerkin superposition of actuation modes that mimic the effect of a body force [41, 42]. Third, this
approach has encountered a great deal of success in a range of flow control problems, including flow past a cylinder
[43] and an airfoil [44], and synthetic jets [45]. We also note that other localized control strategies have been found
quite successful, including use of a splitter plate to manipulate the flow immediately behind a bluff body in order to
mitigate wake separation [46, 47]. The addition of a splitter plate aft of a bluff body can be thought of as enforcement
of a discontinuity in the primitive variables along the span of the splitter plate. This is in contrast to the proposed
localized OTD control strategy, in which the actuation produces no artificial discontinuity in the flow field.

2. Selection of control domain

We now have a recipe to compute the OTD modes in a localized domain based on which we were able to formulate
a localized control law. We must now address the question of how to select the size and location of the control
subdomain. We first note that information related to transient instabilities is contained in the full-order linearized
operator L (which is defined globally in Ω). For hyperbolic fixed points, all this information is retained upon OTD
reduction, provided that the dimension of the OTD subspace is large enough [15]. However, this no longer holds when
the OTD modes are computed in a subdomain. So to evaluate the extent to which restriction of Ω to a smaller Ω̄
affects the instability properties of the linearized operator, we consider a measure of instability based on the OTD
modes.
We assume for the moment that the OTD modes are computed in the full domain Ω. We let

Vk(t) = ‖ ∧k
j=1 uj(t)‖ (33)

be the volume of the k-dimensional parallelepipeds spanned by the first k OTD modes. Defining

νj(t) = 〈Luj ,uj〉 (34)
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as the jth instantaneous OTD eigenvalue, we note that the rate of change of Vk(t), which characterizes the instanta-
neous growth or decay of the reference volume Vk(t) at time t, satisfies

d lnVk(t)

dt
=

k
∑

j=1

νj(t). (35)

As discussed in Blanchard & Sapsis [20], the long-time average of (35) coincides with the k-dimensional infinite-horizon
Lyapunov exponent

µ(k) = lim
t→∞

1

t− t0
lnVk(t), (36)

while the one-dimensional infinite-horizon Lyapunov exponent µj associated with the jth “edge” of the parallelepiped
in (33) is nothing more than

µj = lim
t→∞

1

t− t0

∫ t

t0

νj(τ)dτ. (37)

This suggests that the instantaneous OTD eigenvalues νj , or equivalently, their long-time averages µj , may serve as
indicators to determine how much information associated with instabilities the OTD subspace captures. Interestingly,
for k = d (the dimension of the phase space), we have that

d lnVd

dt
= ∇ ·F, (38)

which is simply the divergence of the vector field F. Quite obviously, when the operator L is steady (e.g., evaluated
at a fixed point), the volume Vk grows like the k most unstable eigenvalues of the operator because the OTD subspace
coincides with the most unstable eigenspace Eu.
The instantaneous OTD eigenvalues {νj}

r
j=1 depend only on the OTD modes and the linearized operator, and are

therefore oblivious to whether the OTD modes are computed in the original domain Ω, or a localized domain Ω̄. So
we may define the jth localized instantaneous OTD eigenvalue as

ν̄j(t) = 〈L̄ūj , ūj〉, (39)

where ūj is the jth column of Ū, as well as its long-time average, which we denote by µ̄j . We note that µj and
µ̄j are real numbers, so they may be compared with one another. In particular, we have that µ̄j → µj as Ω̄ → Ω.
Moreover, there is every reason to believe that for subdomains Ω̄ smaller than Ω, the localized OTD eigenvalue µ̄j

will differ from its “global” counterpart µj by some measurable amount. This observation suggests that the difference
between µ̄j and µj may serve as an indicator for how much information related to instability the OTD modes are
able to capture when computed in a smaller domain Ω̄. For example, in flow past a cylinder, we expect µ̄j to greatly
differ from µj if Ω̄ is selected as some region in the far field where the flow is uniform, much more than if Ω̄ includes
a substantial fraction of the near field where the wake instability develops and the vortex shedding appears. In the
following examples, we provide numerical evidence that the µ̄j ’s (more precisely, the leading exponent µ̄1) are indeed
good indicators for selection of the control domain.

B. Application to bluff-body flows

We return to the flow past a circular cylinder at Re = 50 considered in §III B. We begin by verifying the claim made
by Peplinski et al. [37] that the most unstable eigenvalues of Le are virtually unaffected by a change in the far-field
computational boundary conditions on ∂Ω. For the mesh used in §III B, we compute the spectrum of Le by an Arnoldi
algorithm for two sets of far-field boundary conditions. The first set corresponds to the original boundary conditions
that were used in §III B, i.e., homogeneous Dirichlet boundary conditions at the inlet, stress-free boundary condition at
the outlet, and symmetry boundary conditions on the sidewalls. The second set corresponds to homogeneous Dirichlet
boundary conditions specified at the inlet, outlet and on the sidewalls. For these two sets of boundary conditions, a
no-slip boundary condition is specified on the cylinder surface. Figure 10a shows that consistent with Peplinski et al.
[37], the two unstable eigenvalues responsible for linear instability of we are largely unaffected by a change in the far-
field boundary conditions. This is important because it is those eigenvalues that OTD control asymptotically targets.
Figure 10a also shows that the stable eigenvalues are much more sensitive to boundary conditions. Specifically, the
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FIG. 10. For flow past a cylinder at Re = 50, (a) spectrum of Le computed with inflow-outflow-symmetry boundary conditions
(black squares) and homogeneous Dirichlet boundary conditions (red triangles), and (b) location of control subdomains Ω̄1 to
Ω̄4 with the spanwise vorticity distribution of we shown in the background.

real parts of the stable eigenvalues are larger when homogeneous Dirichlet boundary conditions are specified on ∂Ω.
Fortunately, no spurious unstable eigenvalues have appeared, so this discrepancy (which was also noted by Peplinski
et al. [37]) has no consequence for our control strategy.
We proceed to investigate what “fraction” of instability the OTD modes are able to capture when they are computed

in a localized domain Ω̄. We compute long-time averages of the instantaneous OTD eigenvalues for an 8-dimensional
OTD subspace and the four subdomains shown in figure 10b. The first (Ω̄1) coincides with Ω, and therefore serves
as a sanity check, as the OTD eigenvalues in Ω can be directly compared against those computed by the Arnoldi
algorithm. The second (Ω̄2 = {(x, y) : x ∈ [−1, 8], y ∈ [−3, 3]}) corresponds to a rectangular domain that contains
the cylinder and part of the near wake. The third (Ω̄3 = {(x, y) : x ∈ [1, 3], y ∈ [−1, 1]}) corresponds to a square
domain that extends over a smaller area in the near wake, immediately behind the cylinder. The fourth (Ω̄4 = {(x, y) :
x ∈ [12, 18], y ∈ [−3,−1]}) corresponds to a rectangular domain located further downstream where the flow is nearly
uniform.
Table I lists the long-time averages µ̄j of the instantaneous OTD eigenvalues for the four subdomains introduced

above, along with the real part µj of the eight most unstable eigenvalues of Le computed by an Arnoldi algorithm
(the red triangles in figure 10a). For a fair comparison, we use the steady linearized operator Le in the computation
of the OTD eigenvalues. Table I shows that for Ω̄1, the OTD eigenvalues µ̄j agree with the results of the Arnoldi
calculation to within 3%. For Ω̄2, the leading pair of eigenvalues {µ̄1,Ω̄2

, µ̄2,Ω̄2
} is close to {µ1, µ2}, but the other

eigenvalues {µ̄j,Ω̄2
}j≥3 are not close to {µj}j≥3. For Ω̄3 and Ω̄4, the eigenvalues are all negative, with µ̄1,Ω̄3

slightly
closer to µ1 than µ̄1,Ω̄4

.

j µj µ̄j,Ω̄1
µ̄j,Ω̄2

µ̄j,Ω̄3
µ̄j,Ω̄4

1 0.0181 0.0177 0.0157 -0.4615 -0.5127
2 0.0181 0.0177 0.0157 -0.4615 -0.5385
3 -0.0574 -0.0591 -0.1287 -0.8498 -0.5385
4 -0.0574 -0.0591 -0.1287 -0.8498 -0.5530
5 -0.0939 -0.0940 -0.3765 -0.8668 -0.5530
6 -0.0939 -0.0940 -0.3765 -1.1903 -0.6139
7 -0.1073 -0.1084 -0.4083 -1.1903 -0.6139
8 -0.1073 -0.1084 -0.4083 -1.1903 -0.6432

TABLE I. For flow past a cylinder at Re = 50, real part of the eight most unstable eigenvalues µj computed by an Arnoldi
method, compared to the leading eight time-averaged OTD eigenvalues µ̄j,Ω̄k

computed in control subdomain Ω̄k (cf. figure
10b) with r = 8.

To interpret the results in table I, we apply OTD control to the subdomains {Ω̄k}
4
k=1. In recognition of the fact

that the long-time OTD eigenvalues for Ω̄3 and Ω̄4 are all negative, we substitute diag[−(λ̄i + ζ)H (λ̄i)] for diag(−ζ)
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in (32), so that damping is applied to each of the OTD directions. If we were to use (32) for Ω̄3 and Ω̄4, the controller
would be idle at long times because all the µ̄j ’s would be negative, and stabilization would therefore be impossible. As
in §III B, we assume that the trajectory initially evolves on the limit cycle and activate OTD control at t = 100. For
r = 8 and ζ = 0.4, figure 11a shows that the localized OTD controller is able to stabilize we globally for Ω̄1, Ω̄2 and
Ω̄3 (cf. movie 6 [30]). These are cases in which the control domain extends over flow regions that are “relevant” to
the overall dynamics. By contrast, for the poorly selected domain Ω̄4, OTD control fails to stabilize we. For the three
subdomains for which stabilization is achieved, figures 11a,b show that the approach to we is faster when the control
subdomain is larger. The input energy Ec normalized by the size of the control domain is found to be 8.04× 10−4,
2.24× 10−3 and 2.46× 10−3 for Ω̄1, Ω̄2 and Ω̄3, respectively. These numbers suggest that use of a localized controller
does not necessarily lead to a reduction in power requirement, largely because the approach to we is slower for the
localized controllers considered here (cf. figure 11a).

(a) (b)

FIG. 11. For flow past a cylinder at Re = 50 subject to localized OTD control with r = 8, ζ = 0.4 and the control subdomains
Ω̄k shown in figure 10b, (a) time series of ‖w − we‖, and (b) detail of the time series for CL. Control is idle in the interval
0 ≤ t < 100 and active for t ≥ 100.

The results in table I and figures 11a,b suggest that to achieve stabilization, the OTD control subdomain should
cover a portion of the computational domain that is relevant to the instability mechanism. Here, “relevance” of a
subdomain Ω̄ can be characterized by the leading time-averaged OTD eigenvalue µ̄1 (cf. table I). The closer µ̄1 is to
the actual Lyapunov exponent µ1, the more efficient the OTD controller should be. Of course, the values reported in
table I suggest that a larger control subdomain is more efficient, since µ̄1,Ω̄2

is much closer to µ1 than µ̄1,Ω̄3
. However,

the fact that OTD control in Ω̄3 also leads to stabilization shows that this criterion is best used for comparing two
candidate subdomains of identical dimensions, rather than to decide on the absolute “worthiness” of a subdomain.
In light of this, it is natural to ask whether a strategy can be proposed for optimally selecting the control subdomain,

given a particular subdomain size. To this end, we consider a subdomain Ω̄ with fixed dimensions, and systematically
study how varying the location of Ω̄ affects the leading eigenvalue µ̄1. Specifically, we consider a square subdomain
extending 2D in the streamwise and cross-stream directions (with the sidewalls parallel to the y-axis), and vary the
location of its center (xc, yc). Here, we do not attempt to solve the full optimization problem, but rather consider
15 combinations of xc and yc, with xc/D ranging from 1 to 5 in increments of 1, and yc/D ranging from -1 to 1
in increments of 1. Figure 12 shows that, of the 15 (xc, yc) pairs considered, those for which the subdomain is not
symmetric about the midplane (i.e., those with yc 6= 0), and those for which the subdomain is located several diameters
downstream of the cylinder center, are associated with smaller values of µ̄1 than otherwise. The combination of xc

and yc for which µ̄1 is the largest is (xc, yc) = (2D, 0), corresponding to a subdomain located immediately behind the
cylinder rear stagnation point (this domain is actually Ω̄3). For this (xc, yc) pair, figures 11a,b and movie 6 [30] showed
that OTD control was able to stabilize we. The results in figure 12 thus suggest a strategy for selecting the location
of the OTD controller when the size of the control subdomain is prescribed: the optimal subdomain is the one for
which µ̄1 is largest. Interestingly, the optimal control subdomain for the (xc, yc) pairs considered in figure 12 nearly
coincides with the control volume used by Tadmor et al. [40] for the same flow. These results also suggest possible
connections between the optimal OTD control subdomain and flow regions in which the flow is most “receptive” or
“sensitive” [10, 48, 49]. We leave exploration of this issue to future investigation.
Finally, we apply the above methodology to flow past a NACA 0012 airfoil with α = 10◦ and Re = 1000, and

computational parameters identical to those used in §III C. We consider a square control subdomain with fixed
dimensions (0.5Lc in the streamwise and cross-stream directions), and 10 combinations of (xc, yc) for the location
of its center, with xc/Lc ranging from 1.25 to 2.25 in increments of 0.25 and yc/Lc ranging from -0.2 to 0.05 in
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µ̄1 =−1.382 µ̄1 =−1.077 µ̄1 =−1.117 µ̄1 =−1.227 µ̄1 =−1.304

µ̄1 =−0.532 µ̄1 =−0.462 µ̄1 =−0.475 µ̄1 =−0.552 µ̄1 =−0.634

µ̄1 =−1.382 µ̄1 =−1.077 µ̄1 =−1.117 µ̄1 =−1.227 µ̄1 =−1.304

FIG. 12. For flow past a cylinder at Re = 50, leading time-averaged OTD eigenvalue µ̄1 computed with r = 8 on various
subdomains extending 2D in the streamwise and cross-stream directions (black bounding boxes). The spanwise vorticity
distribution of we is shown in the background.

increments of 0.25. Figure 13 shows that the leading OTD eigenvalue µ̄1 follows a similar trend as in the cylinder
flow. In particular, µ̄1 is larger for subdomains located immediately behind the airfoil and encompassing the two
recirculation bubbles. For the optimal (xc, yc) pair considered in figure 13 (xc = 1.5Lc and yc = 0.05Lc), figure 14
shows that OTD control stabilizes the flow with no difficulty, at a cost of Ec = 0.716. When normalized by the size of
the control subdomain, this cost becomes 2.864. (For a controller with the same parameters but acting in the entire
domain, the normalized cost is found to be 2.56× 10−3.)

µ̄1 =−1.510 µ̄1 =−1.043 µ̄1 =−1.100 µ̄1 =−1.546 µ̄1 =−2.050

µ̄1 =−4.232 µ̄1 =−3.621 µ̄1 =−3.378 µ̄1 =−4.348 µ̄1 =−4.142

FIG. 13. For flow past a NACA 0012 airfoil with α = 10◦ at Re = 1000, leading time-averaged OTD eigenvalue µ̄1 computed
with r = 8 on various subdomains extending 0.5Lc in the streamwise and cross-stream directions (black bounding boxes). The
spanwise vorticity distribution of we is shown in the background.

V. CONCLUSIONS

In this work, we investigated stabilization of unsteady flows by a reduced-order control algorithm based on the
optimally-time dependent modes, a set of evolving modes that naturally track with directions of transient and persis-
tent instabilities along a given trajectory. OTD control had already been used to suppress transient and asymptotic
instabilities of a fixed point of the governing equations in [15], but the results presented therein pertained to small-
amplitude disturbances and, hence, relied on the assumption that the dynamics of the system approximately obeyed
the linearized equations. Thus, it was not clear how robust the proposed control algorithm was to disturbances with
larger amplitude. Moreover, the authors in [15] assumed the OTD controller to be omniscient and omnipotent, which
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FIG. 14. For flow past a NACA 0012 airfoil with α = 10◦ at Re = 1000, detail of the time series of CL for a trajectory
initialized on the limit cycle and subject to localized OTD control with r = 8 and ζ = 3.4 acting in the optimal subdomain
identified in figure 13 (xc = 1.5Lc and yc = 0.05Lc). Control is idle for t < 100 and active for t ≥ 100.

is rarely the case in practice. They noted that one possible improvement to their approach would be to formulate
an OTD control law that only acts in part of the physical domain. The present work aimed to address these two
questions, namely, robustness and confinement of the control.

We began with an investigation of robustness of the control law proposed in [15]. Rather than considering small-
amplitude perturbations, we assumed that the trajectory had already been ejected from the unstable fixed point, and
was evolving on a long-time unsteady attractor. We applied OTD control to determine whether it was possible to
annihilate the attractor and steer the trajectory towards the fixed point, notwithstanding that the latter may lie quite
far from the attractor on which the trajectory initially evolves. We considered a low-dimensional system mimicking
transition to turbulence, and three high-dimensional fluid flows for which the temporal regularity of the attractor in
the absence of control ranged from time-periodic to chaotic. In all these cases, we found that OTD control was able to
destroy the attractor and drive the trajectory towards the target fixed point. For the low-dimensional system and the
time-periodic fluid flows, stabilization was achieved using the smallest possible OTD subspace as predicted by linear
theory. For the chaotic system, however, we had to include a number of OTD modes larger than that prescribed by
linearized theory. In passing, we proposed a modification of the original control law by Blanchard et al. [15] that
eliminated temporal discontinuities in the control force.

We went on to formulate an OTD control law in which the OTD modes were computed in a subdomain of the
physical domain of interest. This was done in recognition of the fact that computing the OTD modes in a subdomain
yields a control force that is localized in space, which makes the approach more attractive from the standpoint of
experiments. Computation of the OTD modes in a localized domain required specification of boundary conditions,
and we argued that homogeneous Dirichlet boundary conditions were appropriate to perform comparison between
various control subdomains. We also showed that the long-time average of the leading instantaneous OTD eigenvalue
is a good indicator for selecting the location of the control subdomain once the extent of the latter has been decided.
Interestingly, for the two bluff-body flows investigated, this indicator suggested that the control subdomain should
be located in the near wake, no more than a few characteristic lengths behind the object. For these flows, localized
OTD control was able to steer the trajectory towards the fixed point and stabilize the wake. Possible improvements
of the localized OTD control strategy include state and OTD modes reconstruction using sparse measurements, and
actuation on the object surface in the form of time-dependent boundary conditions.

We conclude with a few remarks on potential applications of OTD control in fluid flows, besides stabilization of a
fixed point of the Navier–Stokes equations. First, we recall that the OTD modes have been used as precursors for
extreme events in turbulent flows [22]. In principle, they could also be incorporated into control algorithms designed
to suppress these extreme events, which would be a first step towards taming turbulence. One approach could be
to transpose the control strategy proposed here to situations in which OTD control could prevent the system from
executing large excursions from the mean state of the turbulent attractor. Second, we note that in the majority of
flow control applications, it is not the whole state of the system that is of interest, but rather some observable, such
as drag, lift or skin friction. In its current manifestation, the OTD framework applies to the phase space, but it could
presumably be extended to the space of observables, merging with ideas from Koopman theory. This could lead to
the formulation of reduced-order algorithms that specifically target instabilities of some observable without having
to compute or reconstruct the full state. Such algorithms would pave the way for design of efficient and practical
controllers for drag reduction in turbulent flows.
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