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The role of parasitic modes in nonlinear closure via the resolvent feedback loop
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We use the feedback formulation of McKeon & Sharma (2010), where the nonlinear term in
the Navier-Stokes equations is treated as an intrinsic forcing of the linear resolvent opera-
tor, to educe the structure of fluctuations in the range of scales (wavenumbers) where linear
mechanisms are not active. In this region, the absence of dominant linear mechanisms is
reflected in the lack of low-rank characteristics of the resolvent and in the disagreement
between the structure of resolvent modes and actual flow features. To demonstrate the pro-
cedure, we choose low Reynolds number cylinder flow and the Couette equilibrium solution
EQ1, which are representative of very low-rank flows dominated by one linear mechanism.
The former is evolving in time, allowing us to compare resolvent modes with Dynamic Mode
Decomposition (DMD) modes at the first and second harmonics of the shedding frequency.
There is a match between the modes at the first harmonic but not at the second harmonic
where there is no separation of the resolvent operator’s singular values. We compute the
self-interaction of the resolvent mode at the shedding frequency and illustrate its similarity
to the nonlinear forcing of the second harmonic. When it is run through the resolvent
operator, the ‘forced’ resolvent mode shows better agreement with the DMD mode. A
similar phenomenon is observed for the fundamental streamwise wavenumber of the EQ1
solution and its second harmonic. The importance of parasitic modes, labeled as such since
they are driven by the amplified frequencies, is their contribution to the nonlinear forcing
of the main amplification mechanisms as shown for the shedding mode, which has subtle
discrepancies with its DMD counterpart.

1 Introduction

The resolvent framework of McKeon & Sharma (2010) can be used for low-order modeling (e.g. Rosenberg,
2018) and reconstruction of flows from limited measurements (e.g. Gómez et al. , 2016; Symon, 2018).
Unlike data-driven methods such as dynamic mode decomposition (DMD), which require snapshots of
the fluctuating flow fields, only knowledge of the mean velocity profile is needed to form the resolvent
operator which maps nonlinear terms, or forcing, to velocity fluctuations. One of the primary reasons
for its success is the tendency for the resolvent operator to be low-rank at energetic frequencies. Under
such conditions the optimal mode, which can be obtained via a singular value decomposition (SVD)
of the operator, is significantly more amplified than its suboptimal counterparts and hence the flow
structure can be approximated without precise knowledge of the nonlinear forcing. Effectively, then,
mode structure is obtained by approximating the (action of the) resolvent operator.

Sharma et al. (2016) and Towne et al. (2018) have noted a correspondence between resolvent modes,
DMD, and spectral Proper Orthogonal Decomposition (SPOD) modes. In particular, Towne et al. (2018)
noted that resolvent modes are equivalent to SPOD modes when the nonlinear forcing is uncorrelated
in space and time. When the nonlinear forcing is not white noise, resolvent modes deviate from their
data-driven counterparts and this is particularly evident at frequencies where the amplification of the
optimal mode is not sufficiently higher than the suboptimal modes.

The objective here is to take advantage of the feedback loop described in McKeon & Sharma (2010) and
McKeon et al. (2013) and determine under what conditions mode shapes can be obtained by the action
of the full resolvent on nonlinear forcing computed from resolvent modes, i.e. when it is appropriate to
approximate the forcing rather than the resolvent, and how well these modes compare from data-driven
approximations. In this respect, this study will share similarities to weakly nonlinear analyses (Herbert,
1983; Sipp & Lebedev, 2007) in the sense of considering a limited set of finite-amplitude perturbations
and their interactions. However, while weakly nonlinear analyses typically consider the neutral stability
of a base flow and expansions in the vicinity of a critical Reynolds number, here we will consider the
neutral stability of a mean flow and make no restriction on the Reynolds number range. The flows
analyzed herein are cylinder flow and the EQ1 equilibrium solution of Couette flow. Both flows exhibit
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strong amplification at a single frequency/spatial wavenumber which is linked to the neutral stability
of the temporal mean profile in the case of the cylinder (Barkley, 2006) and the streamwise-averaged
mean in the case of EQ1 (Hall & Sherwin, 2010). Mantič-Lugo et al. (2014) leveraged this property
to develop a self-consistent model for the cylinder where the Reynolds stresses are approximated by the
most amplified mode whose amplitude is adjusted until the flow is neutrally stable. In a similar vein, the
choice of EQ1 is motivated by previous work analyzing the emergence of streamwise-constant streaks,
the scale interactions which give rise to them, and their connections to the self-sustaining process of
turbulent shear flows (Farrell & Ioannou, 2012; Hall & Sherwin, 2010; Waleffe, 1997).

2 Approach

We consider the incompressible Navier-Stokes equations (NSE) and decompose the velocity field into
a mean component u (which is different from the base, laminar flow in each case) and fluctuating
component u′. In the case of the cylinder, we use a temporal mean with u = [u(x, y), v(x, y), 0]T and
for EQ1 we use a temporal and streawise-averaged mean with u = [u(y, z), v(y, z), w(y, z)]T . While the
base/equilibrium states of the flows studied herein are linearly unstable, the operators associated with
the corresponding mean flows are not (additional analysis would be required if they were, e.g. Jovanović
(2004). The resulting equations for the fluctuations are

∂tu
′ + u · ∇u′ + u′ · ∇u+∇p′ −Re−1∇2u′ = −u′ · ∇u′ + u′ · ∇u′, ∇ · u′ = 0. (1)

Following McKeon & Sharma (2010), we define f ′ = −u′ · ∇u′ + u′ · ∇u′ and treat f ′ as an unknown
forcing. Upon Fourier transforming in the appropriate directions, we can recast equation 1 as

û = C(iωI −L)−1Bf̂ = H(k)f̂ , (2)

where H(k) is the resolvent operator for a particular wavenumber/frequency vector k, L is the linear
Navier-Stokes operator associated with the mean, and B,C are operators which define the inputs and
outputs; a complete mathematical definition of these operators for these flows is found in Symon (2018),
Rosenberg (2018). It should be noted for the cylinder flow that k is simply defined by the temporal
frequency ω and in the case of the EQ1 by the streamwise wavenumber kx (and temporal frequency
ω = 0, as it is an equilibrium solution). Subsequently, we will analyze the resolvent operators H(ω) and
H(kx) for the two flows respectively. For generality and to facilitate comparisons between the flows going
forward, we will maintain the notation H(k).

The resolvent operator relies on the mean velocity profile u as an input and acts as a transfer function
from nonlinearity f̂(k) to velocity fluctuations û(k) in Fourier space. A singular value decomposition
(SVD) of the resolvent operator

H(k) =
∑
p

ψ̂p(k)σp(k)φ̂
∗
p(k), (3)

leads to optimal sets of orthonormal singular response and forcing modes, or ψ̂p(k) and φ̂
∗
p(k), respec-

tively. The modes are ranked by the forcing-to-response gain σp(k) under the L2 norm. When the first
singular value is much larger than the second one, i.e., σ1(k) � σ2(k), the velocity response may be
approximated as

û(k) ≈ ψ̂1(k)σ1(k)χ1(k) = ψ̂1(k)σ1(k)
〈
φ̂1(k), f̂(k)

〉
(4)

where the angle brackets denote the projection of f̂(k) onto φ̂1(k). In cases where the singular values
are not sufficiently separated and/or the forcing is highly structured, Equation 4 will not accurately
reproduce the velocity fluctuations at a given k.

One course of action is to consider suboptimal resolvent modes (p > 1) and project the nonlinear forcing
f̂(k) onto the resolvent forcing modes to determine the complex weights χp associated with each resolvent
response mode. Here we approximate the structure of the fluctuations when the resolvent operator is not
low-rank by considering the feedback loop introduced by McKeon et al. (2013), where the nonlinearity
is formed by triadic interactions of the velocity modes, i.e.,

f̂(k3) =
∑

k1+k2=k3

−û(k1) · ∇û(k2) (5)
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The associated nonlinear forcing, consequently, is given by triadically consistent resolvent response modes
obtained from the previous singular value decompositions

f̂(k3) =
∑

k1+k2=k3

∑
a

∑
b

−σa(k1)σb(k2)χa(k1)χb(k2)
[
ψ̂a(k1) · ∇ψ̂b(k2)

]
. (6)

All terms on the right-hand side of Equation 6 can be determined by approximation of the resolvent with
the exception of χa and χb, which may be obtained only under special circumstances, which we investigate
here. In such cases, the forcing from Equation 6 can then be used to obtain better approximations of
the velocity fluctuations for the non-low rank case.

We compare the mode shapes arising from a rank-one approximation of the resolvent operator with those
from approximation of the forcing for two flows. Both have a strong physical mechanism underlying a
dominant coherent structure in a narrow band of scales even though energetic activity is not limited to
that band.

A direct numerical simulation (DNS) of two-dimensional cylinder flow is performed in FreeFem++ (Hecht,
2012) using the same mesh, boundary conditions, and discretizations as those in Symon et al. (2018)
at Re = UD/ν = 100, based on cylinder diameter D, inlet velocity U , and kinematic viscosity ν. The
time-step is ∆t = 0.02 and the mean is obtained after time-averaging over 25 vortex shedding cycles
once the flow achieves a steady limit cycle. The linear operators needed for resolvent analysis are formed
in FreeFem++ around the two-dimensional mean flow, and resolvent modes are computed using the
procedure outlined in Sipp & Marquet (2013). The DNS snapshots are analyzed using DMD (e.g Rowley
et al. , 2009; Schmid, 2010) to isolate the true structure of the flow at individual frequencies.

The Couette equilibrium solution EQ1 (Gibson et al. , 2009; Nagata, 1990) is considered under the same
domain and discretization as outlined in Gibson et al. (2009) with Reynolds number of Re = u†h

ν = 1000
where u† is half the relative velocity of the moving walls and h is the channel half-height. The discrete
spatial operators needed to form the resolvent utilize Chebyshev and Fouier differentation matrices in
the wall-normal and spanwise directions respectively (Weideman & Reddy, 2000).

3 Approximation of Cylinder Flow & Exact Coherent State

Let us denote kh as the frequency/wavenumber of the first energetic harmonic for these two flows,
i.e. the shedding frequency ωs and the fundamental streamwise wavenumber kxf

respectively. Symon
et al. (2018) showed that low-rank behavior for cylinder flow at Re = 100 is limited to a bandwidth
of frequencies in the vicinity of kh. The singular values for kh are plotted in Figure 1(a), which shows
σ1(kh) is two orders of magnitude larger than the rest. While progress can be made with this assumption,
the forcing is, in fact, structured and influences the streamwise decay of the resolvent modes. This can
be seen in Figure 1(b-c), which compares the streamwise component of the resolvent and DMD modes.
The overall agreement is good although the mode shapes begin to diverge around x = 5.

Similar observations can be made for EQ1. Figure 1(j) indicates very low-rank behavior for kh and, just
like the cylinder case, the resolvent accurately predicts the mode shape as seen in Figure 1(k-l) where
the u-component of the first resolvent mode is compared to the true solution.

When the resolvent is not low-rank, such as at k = 2kh, as seen in Figure 1(d,m), respectively, the leading
mode from a SVD is unlikely to predict the structure of the velocity fluctuations. Consequently, there
is no agreement between the resolvent and DMD modes, which are plotted in Figure 1(e-f), respectively,
for the cylinder. The unusual shape of the resolvent mode shares similarities to the case of a backward
facing step (Dergham et al. , 2013). The resolvent mode and true velocity fluctuations for EQ1 in Figure
1(n-o), respectively, also disagree.

In both cases, there is no linear mechanism active at 2kh. The analysis of Turton et al. (2015) can
be extended to argue which scale interactions are needed in Equation 6 to recover f̂(2kh) (note also
the similarities with weakly nonlinear analysis of flow near a critical Reynolds number, subject to the
differences identified in the Introduction). The linearized NSE are rewritten as

iqkhû(qkh) = Lû(qkh) +N (qkh), (7)
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Figure 1: Rows (1-3): cylinder results. (a) The leading singular values computed for kh, (b) the u-component
of the optimal response mode ψ̂1(kh), and (c) the corresponding DMD mode. (d) The leading
singular values computed for 2kh, (e) the u-component of the optimal response mode ψ̂1(2kh),
and (f) the corresponding DMD mode. (g) The self-interaction of ψ̂1(kh) compared to the true
nonlinear forcing f̂(2kh) in (h), and (i) the forced resolvent mode (u- component) for 2kh. Rows
(4-6): EQ1 results. As in (a)-(i) but for EQ1.
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N (qkh) =
∑
r 6=0,q

N (û(rkh), û((q − r)kh). (8)

For ‖û(qkh)‖ ∼ ε|q|, ε � 1, as it must be for large singular values (Figures 1 (a,j)), and considering
q = 2,

2ikhû(2kh)︸ ︷︷ ︸
O(ε2)

= Lû(2kh)︸ ︷︷ ︸
O(ε2)

+N (û(kh), û(kh))︸ ︷︷ ︸
O(ε2)

+N (û(3kh), û(−kh))︸ ︷︷ ︸
O(ε4)

+N (û(−kh), û(3kh))︸ ︷︷ ︸
O(ε4)

+ · · · . (9)

Retaining O(ε2) terms results in

û(2kh) ≈ H(2kh)N (û(kh), û(kh)) ≈ û(2kh) ≈ −σ2
1χ

2
1H(2kh)(ψ̂1(kh) · ∇ψ̂1(kh)), (10)

where Equation 4 is used to approximate û(kh). Terms with the subscript 1 are associated with the
wavenumber vector kh.

Approximating the forcing f̂(2kh) by the self-interaction of ψ̂1(kh) leads to a reasonable comparison
with the true forcing for both the cylinder (Figures 1(g-h)) and EQ1 (Figures 1(p-q)). The modes excited
by these forcings, ûf (2kh) = H(2kh)f̂(2kh) show much improved agreement with the true response at
2kh (Figures 1(i,r).)

The EQ1 structures in Figures 1(r) and 1(o) are nearly identical. While there is significant improvement
in the mode shape for the cylinder, the agreement between Figure 1(i) and the DMD mode in Figure 1(f)
is not perfect. The residual discrepancy for the cylinder is likely due to the fact ψ̂1(kh) 6= û(kh) and
only one triad was considered. Nevertheless, the forced resolvent mode captures the correct symmetries
and is much more representative of the fluctuations at 2kh.

The mode at 2kh can be considered ‘parasitic’ in that it is driven by the dominant linear mechanism at
kh and emerges from the resolvent operator being forced by the kh velocity modes. It plays a role in the
nonlinear forcing of the kh mode. Setting q = 1 in Equation 7 results in

ikhû(kh)︸ ︷︷ ︸
O(ε)

= Lû(kh)︸ ︷︷ ︸
O(ε)

+N (û(2kh), û(−kh))︸ ︷︷ ︸
O(ε3)

+N (û(−kh), û(2kh))︸ ︷︷ ︸
O(ε3)

+ · · · . (11)

It was argued by Turton et al. (2015) that the ε3 terms could be neglected resulting in L containing
a marginally stable eigenvalue as discovered by Barkley (2006). Retaining those terms and substituting
equations 4 and 10, we can express the forcing as

f̂(kh) = χ1|χ1|2
{[
σ2

1H(2kh)(ψ̂1 · ∇ψ̂1)
]
· ∇

[
σ1ψ̂

∗
1

]
+

[
σ1ψ̂

∗
1

]
· ∇

[
σ2

1H(2kh)(ψ̂1 · ∇ψ̂1)
]}

= χ1|χ1|2f̂
′
(kh),

(12)

where notably f̂
′
(kh) can be computed from the resolvent with only knowledge of the mean. From

Equation 4 we can solve for the amplitude as

|χ1| =

 1〈
φ̂1(kh), f̂

′
(kh)

〉
1/2

. (13)

From Equation 11, retaining terms at O(ε) and treating the higher-order terms as an unknown forcing,
the resolvent operator can be formulated and used to compute the spatial structure of the mode ψ̂1(kh).
Consequently, after cascading down the nonlinear interactions, at O(ε3) an equation can be derived for
the corresponding amplitude of the mode, in close analogy to a weakly-nonlinear analysis. For EQ1
at Re = 1000, this approximation of |χ1| has a relative error with respect to the true value computed
directly from the solution of less than 1%. As Equation 12 and the subsequent calculation of |χ1| relies
on ψ̂1(kh) closely approximating the true spatial structure, the agreement in the case of the cylinder
is not as good. However if the DMD modes, which are the true velocity fluctuations at kh and 2kh,
are used, they can almost exactly reproduce f̂(kh) (Symon, 2018), confirming the dominance of this
interaction in the full flow. Moreover, if H(kh) is driven by this forcing, it results in a forced resolvent
mode which very accurately approximates the DMD mode in Figure 1(c). Thus it is possible to improve
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Figure 2: The top of the schematic illustrates a variation of the self-sustaining process as viewed through the
lens of resolvent analysis. The mean profile, fed into the resolvent operator, generates a highly
amplified mode (obtained via the SVD) which self-interacts to generate the Reynolds stresses
needed to sustain the mean and close the cycle. The saturated amplitude of the mode is obtained
by considering the nonlinear interactions which give rise to higher harmonics and their subsequent
feedback on the system, as shown in the bottom of the schematic.

predictions from resolvent analysis, even when the operator is low-rank, by approximating the nonlinear
forcing.

The results for the circular cylinder and EQ1 can be summarized in Figure 2. A SVD of the resolvent
operator at kh yields a highly amplified mode which interacts nonlinearly with its complex conjugate to
produce the Reynolds stresses that sustain the mean profile. It also interacts with itself to produce the
forcing at 2kh. When H(2kh) is driven by this forcing, it results in a ‘parasitic’ mode which nonlinearly
interacts with the −kh mode to produce the structured nonlinear forcing for kh. Thus in the case of
the cylinder, where there is a greater mismatch between the resolvent mode and the DMD mode, the
original ψ1(kh) can be iteratively improved using the feedback loop in Figure 2.

We hypothesize that the separation of singular values of the resolvent can be used to determine when to
approximate the forcing instead of the resolvent for a flow about which there is not a priori information
about the dominant physical mechanisms, although further work is required to identify a precise threshold
on separation, and this is likely to be flow-specific.

4 Summary

Resolvent analysis was used to identify the linear mechanisms and dominant nonlinear interactions re-
quired to provide a self-consistent description of low-Reynolds number cylinder flow and the Couette
equilibrium solution EQ1. It was demonstrated that the leading resolvent mode, obtained by approxi-
mation of the resolvent in a region where it is low-rank, is able to correctly capture the spatial structure
of the most energetic mode. Considering the relevant scale interactions, i.e. approximating the forcing
and leveraging the low rank nature of the energetic mode generates improved approximations of the
second harmonic, here termed a parasitic mode because of its link to the interactions of the energetic
mode and the lack of low-rank behavior of its resolvent. These ideas can be consolidated to provide a
means to determine the amplitude of the dominant energetic mode, and hence effectively close the sys-
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tem, using knowledge of only the mean profile, in cases where the resolvent is not low-rank for all scales.
The precise closure and the metric for its success is likely to depend on the specific flow in question, as
can be observed in the difference between the cylinder and EQ1 results shown here, because it will rely
on the relative importance of the harmonics and other wavenumbers through the weights, χj . However
the interactions sketched in Figure 2 were shown to give excellent agreement between the computed and
actual mode weights for closure of the EQ1 example. It is hypothesized that this framework may also
have relevance for flows with multiple linearly dominant energetic modes. We note that data-driven
input/output techniques have been utilized to estimate flow features, for instance in turbulent channel
flow (Illingworth et al. , 2018) and boundary layers (Sasaki et al. , 2019). The hope would be to use the
resolvent operator to obtain low-dimensional representations of the important linearly-amplified struc-
tures, which are hypothesized to correspond to identifiable physical mechanisms, and use the notion of
parasitic modes to provide an accurate representation of the weakly energetic but nonlinearly relevant
scales.

The support of ONR under grants N00014-17-1-2307 and N00014-17-1-3022 is gratefully acknowledged.
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