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We derive precursors of extreme dissipation events in a turbulent channel flow. Using a recently
developed method that combines dynamics and statistics for the underlying attractor, we extract a
characteristic state that precedes laminarization events that subsequently lead to extreme dissipation
episodes. Our approach utilizes coarse statistical information for the turbulent attractor, in the
form of second order statistics, to identify high-likelihood regions in the state space. We then search
within this high probability manifold for the state that leads to the most finite-time growth of the
flow kinetic energy. This state has both high probability of occurrence and leads to extreme values
of dissipation. We use the alignment between a given turbulent state and this critical state as a
precursor for extreme events and demonstrate its favorable properties for prediction of extreme
dissipation events. Finally, we analyze the physical relevance of the derived precursor and show its
robust character for different Reynolds numbers. Overall, we find that our choice of precursor works
well at the Reynolds number it is computed at and at higher Reynolds number flows with similar
extreme events.

I. INTRODUCTION

Turbulent fluid flows have been the most challenging paradigm of chaotic behavior with signatures
of persistent and intermittent (i.e. over finite-times and at arbitrary time instants) instabilities
leading to nonlinear energy transfers between scales. These nonlinear energy transfers are responsible
for both the broad band character of the spectrum but also for the non-Gaussian statistics. More
specifically, while non-zero third order statistics are primarily responsible for the persistent non-linear
energy transfers (turbulent cascades) and the shape of the spectrum [38, 39], intermittent events,
such as dissipation bursts, are primarily responsible for the heavy tail characteristics [17, 32, 33].

Here we are interested in the formulation of precursors for predicting these extreme events. These
are important in problems related to atmospheric and climate science, fluid-structure interactions,
and turbulent fluid flow control, just to mention a few. We present our analysis on a standard
configuration of a turbulent fluid flow, namely the channel flow, that exhibits extreme events in the
form of large dissipation episodes occurring in random times [28]. These extreme events rise out of a
high-dimensional turbulent attractor essentially without any clear warning. They have the form of a
short-time excursion towards laminarization of the flow and a subsequent burst of turbulent kinetic
energy which leads to a large dissipation episode pushing the flow away from the laminar state.
Many aspects of these intermittent bursts remain elusive primarily because of the intrinsic

high dimensionality of the underlying turbulent attractor that limits the applicability of existing
mathematical approaches [15, 18]. In particular, extreme events due to their rare character cannot
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be ‘seen’ effectively by energy-based methods, such as Proper Orthogonal Decomposition (POD).
Even if one tries to consider conditional POD modes during extreme events these will not necessarily
give the modes related to the triggering of the extreme events, as these do not necessarily obtain
high energy, even during the extreme event.
A different class of methods focus on the spectral analysis of the underlying Koopman operator

[31, 36], and strive to extract unstable modes associated with certain observables of the system.
Such unstable modes are typically estimated by Dynamic Mode Decomposition (DMD) [6, 40, 43].
This analysis, however, can only detect modes associated with long-term instabilities which do not
seem to explain short-term intermittent events observed in turbulent flows [2, 16]. Other variants,
however, such as multi-resolution DMD [29] have been demonstrated to work well in systems with
relatively low-dimensional attractors.
Extreme events in complex dynamical systems have also been analyzed recently using Large

Deviation Theory (LDT), e.g. in nonlinear water waves [10]. The basic idea is to search the phase
space for initial conditions associated with a given magnitude of the objective function (observable of
interest) and then from those pick the one with the highest probability of occurrence. However, these
efforts have shown to work well in systems where the core of the attractor has Gaussian statistics.
For different cases there is no rigorous foundation for LDT to operate. Even in the Gaussian case,
the resulting optimization problem has very high dimensionality to be practically solvable for an
application like the one considered here – see [37] for a detailed discussion.

Here we apply a recently developed framework for the discovery of precursors to extreme events
[17]. This framework formulates the precursors as solutions to a constrained optimization problem
(note that a formally similar approach was presented in [35] to identify small perturbations of the
laminar flow for transition to turbulence). In contrast to LDT, in the present approach we consider a
set of high probability initial conditions, based on a rough approximation of the attractor, and then
search within this set for the initial state that has the highest growth for the quantity of interest.
An adjoint solver is employed to compute the gradient of the objective function. Because the search
is constrained within a low-dimensional (but high-probability) set, the feasibility set, the resulted
optimization problem is computationally tractable. The solution provides with an initial state that
has high probability to occur and leads to rapid growth of the objective function (in our case the
kinetic energy). We discuss the physical relevance of the derived critical state in the context of the
turbulent channel flow and use the alignment with this critical state as a scalar precursor for the
prediction of future extreme events. We measure the effectiveness of the precursor through direct
numerical experiments and examine its robustness over different Reynolds numbers. The success of
our approach to an intermittently turbulent channel paves the way for studying transitional flows,
such as bypass transition of boundary layers.
This paper is organized as follows. In Section II we described the minimal channel flow used in

this work and discuss various aspects of the problem. The optimization problem for discovering
the precursor to extreme events is presented in Section III. In Section IV we present a statistical
analysis quantifying the predictive power of the optimal precursor. Finally, our concluding remarks
are presented in Section V.

II. TURBULENT CHANNEL FLOW - PHENOMENOLOGY

A. The minimal flow unit for channel flows

Turbulent channel flow has been a staple of numerical studies of turbulence for many years [28].
The chaotic nature of these simulations makes it difficult to analyze local spatiotemporal events and



3

physical mechanisms in them, such as the formation and destruction of individual hairpin vortices in
the near-wall region. To isolate these physical mechanisms and others, work has been done to find
“minimal flow units” for various regions of the channel. Jimenez and Moin [24] found the minimal
flow unit for near wall turbulence for several low Reynolds number flows by considering turbulent
channel flow simulations with domains that were considerably smaller than conventional channel
flow simulations. These smaller domains eliminate larger scale turbulent structures but accurately
resolved the near-wall turbulent flow, matching turbulent flow statistics from experiments and prior
numerical studies up to 40 wall units in the wall-normal direction.

Various minimal flow units have been used in a range of different studies because of its isolation
of a few physical mechanisms and its relatively low computational cost. Carlson and Lumley used
the minimal flow unit to study flow control strategies for turbulent boundary layers [4]. Minimal
flow units have also been used to study near-wall and log-layer turbulence [19, 25, 26]. These studies
use forcing functions to achieve turbulent flows in half-channels, and to selectively damp larger scale
flow structures. Recently, near-wall minimal flow units have been used to study and characterize
the effects of wall-roughness on wall-bounded flows and to build models of wall roughness effects
[7, 30]. The near-wall minimal flow unit has also been used to demonstrate shadowing-based adjoint
sensitivity analysis [3].

In addition, the near-wall minimal flow unit simulations routinely show highly intermittent behavior
which is of interest for the purposes of our study. In certain low Reynolds number simulations, the
flow on one wall exhibits turbulent behavior while the other remains laminar. The flow on both
walls transitions at seemingly random intervals: the laminar wall would become turbulent, and then
the turbulent wall would become laminar. Turbulent flow in the near-wall minimal flow unit is
itself intermittent when it occurs. Time series of wall shear stress show that turbulence undergoes a
cycle where it proliferates rapidly or “bursts”, then decays slowly. This observation led to numerous
subsequent studies into the intermittent nature of near-wall turbulence using minimal flow units
(see Refs [22, 23], for comprehensive reviews).

B. Flow Solver

In this study we consider near-wall minimal flow units similar to those considered in Ref. [24]. We
use a Discontinuous-Galerkin spectral-element method (DGSEM) framework to simulate the minimal
flow unit with the compressible Navier-Stokes equations [8]. The DGSEM framework has been
successfully applied to a range of different flows including channels flows and the near-wall minimal
flow unit [9, 12, 20]. Also, it has an adjoint capability [5] that has been validated for the near-wall
minimal flow unit in Ref. [3]. A detailed description of the discretization and implementation of this
solver is available in Refs. [11] and [13].
We run a direct numerical simulation (DNS) of the channel flow with the compressible Navier-

Stokes equations with a constant forcing in the axial direction to drive the channel. Since the
Mach number is low, the effective governing equations reduce to the incompressible Navier–Stokes
equations

∇ · u = 0, (1a)

∂tu+ u ·∇u = f0

ρ
e1 −

1
ρ

∇p+ ν∆u, (1b)
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u(x, 0) = u0(x) (1c)

where u = (u, v, w) denotes the three-dimensional velocity field with streamwise component u,
wall-normal component v and spanwise component w. The constant forcing in the streamwise
direction is denoted by f0 and e1 = (1, 0, 0) is the unit vector in the streamwise direction. The
boundary conditions are no-slip at the walls so that u(x,±δ, z, t) = 0, and periodic in the spanwise
and streamwise directions. Here, the channel height in the wall-normal direction is 2δ.

C. Numerical experiment set-up

The case we consider has a domain size of πδ × 2δ × 0.34πδ in the streamwise, wall-normal, and
spanwise directions, respectively. The channel half-height δ was set to 1.0. The flow considered is at
Reynolds number Re = 2200 (corresponding to the friction Reynolds number Reτ = 110 ) unless
stated otherwise. The Reynolds number Re is defined as Re = ρUδ/µ where ρ is the fluid density,
U is the centerline velocity of a laminar flow with the same mass flow rate (as in Ref. [24]), and µ is
the dynamic viscosity. As in Ref. [3], U was chosen so that the Mach number of the flow was under
0.3 and therefore the flow is nearly incompressible. Note that the Reynolds number corresponding
to bulk velocity for this case is roughly 1500.

The friction Reynolds number Reτ is defined as Reτ = ρuτδ/µ where uτ =
√
τw/ρ is the friction

velocity and τw is the average shear stress at the wall. The channel constant forcing f0 is set to
balance the mean shear stress of the walls, so it is set by the choice of Reynolds number Re, and
the friction Reynolds number Reτ as follows

f0 = τw
δ

= Re2
τ

Re
ρU (2)

The domain is discretized with a 4× 16× 2 mesh with 8th order spatial elements, resulting in a
32× 128× 16 distribution of nodes (65536 total), similar to the mesh used in Ref. [24]. The choice
of Reτ = 110.0 results in grid resolutions of ∆x+ ≈ 11 and ∆z+ ≈ 7 wall units per node, where
x+ = uτx/ν , y+ = uτy/ν, and z+ = uτz/ν.
The wall-normal spacing corresponds to ∆y+ ≈ 0.6 for the nodes closest to the walls, which

ensures that the simulations are well resolved. We used space-time elements that were 4th order
in time and the time slab (temporal element) was ∆t = 0.05te, where te = δ/U denotes the eddy
turnover time, the time scale associated with the largest possible eddy in the channel.
The DGSEM flow solver used here has been validated for the minimal flow unit at Re = 3000

(equivalent to bulk velocity Reynold number of 2000) [3] and we carried out a similar validation
study for the Re = 2200 case. Note that the statistics at Re = 2200 were only computed over time
intervals when both walls had turbulent flow, as was done in Ref. [24] for low Reynolds number
cases. This was necessary because the Re = 2200 flow exhibited intermittent behavior similar to
that observed in previous studies of minimal flow units.
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FIG. 1: Time evolution of the kinetic energy (a) and the energy dissipation rate (b) for the
near-wall minimal flow unit at Re = 2200

D. Extreme events

The intermittent behavior of the flow at Re = 2200 can be seen in Fig. 1 from the spikes in kinetic
energy E(t) and dissipation Z(t). We define the kinetic energy,

E(t) =
∫∫∫

Ω
ρu · udx dy dz, (3)

where Ω is the flow domain. Note that this is the total kinetic energy, comprised of both the mean
and turbulent kinetic energy of the flow. Energy dissipation rate Z(t) is defined as

Z(t) =
∫∫∫

Ω
tr(τ∇u)dxdy dz, (4)

where τ denotes the stress tensor, defined as τ = µ(∇u+∇u>) for an incompressible flow.
Fig. 1 shows that large increases in E(t) are followed by spikes in Z(t) and a subsequent decrease

in E(t). These large spikes in kinetic energy occur when there is laminar flow near one wall, and
nearly laminar flow near the other wall. Laminar flows correspond to higher kinetic energy E(t)
because the channel is driven by a constant body force in the axial direction. This body force acts
as a fixed axial pressure gradient. The body force and wall shear stress balance one another when
the flow is in an equilibrium state where we have

µ
∂u

∂n
= δ

∂p

∂x
, (5)

where n is the wall-normal direction. For a given centerline velocity, a laminar flow will exert less
shear stress µ ∂u∂n on the walls than a turbulent flow, so for a given wall shear stress µ ∂u∂n the laminar
flow will have a larger centerline velocity than a turbulent flow.
Therefore, the large spikes in E(t) are the result of a flow laminarization event. Of course, the

flow never completely reaches the laminar state, though it gets very close it. Figs. 2 and 3 show an
example of a typical laminarization event where the flow undergoes the following stages.
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FIG. 2: Time evolution of E(t) and Z(t) during the first laminarization event shown in Fig. 1. The
vertical lines indicate the times that snapshots in Fig. 3 correspond to. The first and last snapshot

correspond to the start and end of the time horizon shown above.

1. The flow on the bottom wall becomes laminar (Fig. 3(b)).

2. The flow on the top wall becomes nearly laminar (Fig. 3(c)).

3. As the entire channel becomes nearly laminar, the axial velocity increases.

4. The higher velocities make the effective Reynolds number of the flow larger. This increases the
likelihood of turbulent burst occuring since the flow is less stable to perturbations at a larger
Reynolds number.

5. A turbulent burst occurs on the top wall, which causes Z(t) to increase rapidly (Fig. 3(d)).

6. The bottom wall transitions to turbulence (Fig. 3(e)).

7. The turbulent flow on both walls causes E(t) to decrease as it returns to the equilibrium mean
turbulent flow profile (Fig. 3(f)).

These flow laminarization events, and the resulting bursts of energy dissipation rate, are the
extreme events we will consider in this paper.

III. OPTIMAL STATES FOR EXTREME EVENTS

We now describe the constrained optimization problem whose solutions determine the most likely
triggers of extreme events. The method is presented in detail in Ref. [17] and is reviewed here for
completeness. We describe the optimization problem in the context of the channel flow, outline the
numerical method for obtaining its solutions and present our numerical results.
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(a) t = 500te (b) t = 725te (c) t = 800te

(d) t = 868te (e) t = 925te (f) t = 1000te

FIG. 3: Snaphots of Q-criterion colored by axial velocity and wall shear stress. The axial velocity
lies in the interval [0, 0.3] and the wall shear stress lies in [0, 4× 10−4].

A. High-Likelihood triggers of extreme events

We seek initial states u0 that after a given integration time τ realize the largest possible energy
growth. More precisely, we seek initial states u0 such that E(u(τ)) − E(u0) is maximized. This
is a PDE-constrained optimization problem, since the velocity field u(t) is required to satisfy the
channel flow (1).

In addition to this PDE constraint, we also enforce a feasibility constraint, by requiring the initial
state u0 to belong to the system attractor. This second constraint is essential in order to guarantee
that the optimal solution is probabilistically relevant. As in many dissipative PDEs, the channel
flow has an attractor towards which the solutions converge asymptotically after an initial transient.
We are interested in the self-sustained and recurrent extreme events on this attractor as opposed to
transient extreme events off the attractor that may occur but are not recurrent. In order to prevent
the optimizer from considering such transient events, we enforce a feasibility constraint which is
further elucidated in section III B.
With this prelude, the optimization problem can be formulated as

max
u0∈U

[
E(u(τ))− E(u0)

]
, (6a)
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FIG. 4: A sketch of the proper orthogonal decomposition of the turbulent data. The attractor is
approximated as an ellipsoid in the subspace spanned by the POD modes {v1, · · · ,vn}. The origin

is the mean flow u.

u(τ) satisfies equation (1) with u(0) = u0, (6b)

u0 ∈ A ⊂ U , (6c)

where τ > 0 is a prescribed time, related to the growth time scale of a typical extreme event. The
constraint (6b) implies that u(τ) is a solution of the channel flow. Constraint (6c) ensures that the
optimizer belongs to the attractor A and is therefore probabilistically relevant. In the next section,
we describe the method used to approximate the attractor A.

B. Feasibility constraint and proper orthogonal decomposition

The attractors of dissipative dynamical systems are often very complex sets. Their estimation has
been the subject of many studies (see e.g. [21]). Here, we approximate the attractors via Proper
Orthogonal Decomposition (POD) of longterm simulations of the channel flow (this method is also
known as the Principal Component Analysis). The POD approximation assumes that the attractor
has a Gaussian distribution with mean u(x) and covariance matrix C(x,x′) where

u(x) = lim
T→∞

1
T

∫ T

0
u(x, t)dt, (7a)

C(x,x′) = lim
T→∞

1
T

∫ T

0
(u(x, t)− u(x))⊗ (u(x′, t)− u(x′))dt. (7b)
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Let the vector fields vi : Ω→ R3 denote the eigenfunctions of the covariance tensor, so that∫
Ω
C(x,x′)vi(x′)dx′ = λivi(x), i ∈ N (8)

where λi ∈ R are the corresponding eigenvalues. The eigenvectors are ordered such that λ1 ≥ λ2 ≥ · · · .
Since the covariance tensor is symmetric and positive definite, the eigenvalues are real-valued and
non-negative, and furthermore the eigenfunctions are orthogonal with respect to the L2 inner product,
i.e., 〈vi,vj〉L2(Ω) = δij . We refer to the eigenfunctions vi as the POD modes.

In the POD approximation, any state on the attractor is approximated as

u(x, t) = u(x) +
n∑
i=1

ξi(t)vi(x), (9)

which is a finite-dimensional truncation to the first n POD modes. Each component of the vector
ξ = (ξ1, · · · , ξn) ∈ Rn is given by ξi(t) = 〈u(t)− u,vi〉L2(Ω).

With this POD approximation of the attractor, the optimization problem (6) can be written more
explicitly as

max
ξ∈Rn

[
E(u(τ))− E(u0)

]
, (10a)

u(x, τ) satisfies equation (1) with u(x, 0) = u0(x), (10b)

u0(x) = u(x) +
n∑
i=1

ξivi(x), (10c)

n∑
i=1

ξ2
i

λi
≤ r2

0 (10d)

where r0 ∈ R is a prescribed parameter that is set equal to 1.0 in this study. Note that the form of
the constraint essentially restricts our optimization within states that have the highest probability,
given second-order statistics for the attractor. Constraint (10c) enforces that the mean-zero initial
condition u0 − u belongs to the subspace spanned by the first n POD modes. Constraint (10d),
which describes an ellipsoid in the subspace span{v1, · · · ,vn}, ensures that the initial conditions
are not two far from the mean flow u (see Fig. 4).
Although the initial condition u0 is constrained to the subspace spanned by the first n POD

modes, the final state u(τ) may not belong to this subspace. This is because the POD decomposition
is only an approximation of the attractor, which represents initial states for our analysis, and not
the exact invariant attractor. However, we take n large enough so that only an insignificant fraction
of the energy content of the states on the attractor are neglected. More precisely, in the following,
we set n = 50 so that the truncation of the turbulent states to these POD modes contain at least
90% of the kinetic energy, as shown in Fig. 5.

As discussed in section IID, previous studies of the minimal flow unit have shown that intermittent
bursts of the flow originate from the near-wall activities. In light of these observations, we modify the
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FIG. 5: The energy content of the POD modes. (a) Energy content of each POD mode. (b)
Cumulative energy content of the POD modes. POD was computed with 1000 snapshots at

Re = 2200.

computation of the POD modes by multiplying the zero-mean velocity fields by a weight function
that emphasizes the near-wall contribution of the flow. More precisely, we compute the weighted
velocity fields

uε,h(x, t) = (u(x, t)− u(x)) qε,h(y), (11)

by multiply the original velocity fields u (after removing the mean u) with the weight function

qε,h(y) = 1
2

{
2 + tanh

[
1
ε

(
y − (δ − h)

)]
− tanh

[
1
ε

(
y + (δ − h)

)]}
. (12)

For ε � h � δ, the weight function qε,h vanishes near the center of the channel and approaches
unity near the walls at y = ±δ (see figure 6). The parameter h is the width of the near-wall region
that we would like to emphasize and the small parameter ε determines how quickly the function qε,h
decays to zero far from the walls.

We note that the weighting (11) is a linear operation on the velocity field, L(u−u) := (u−u)qε,h,
where the linear operator L is the multiplication by the weight qε,h. It is straightforward to verify that
L is a self-adjoint operator with respect to the L2(Ω) inner product so that 〈L(u1−u),L(u2−u)〉L2 =
〈(u1 − u),L2(u2 − u)〉L2 for all square integrable functions u1,u2 ∈ L2(Ω). Therefore, introducing
the weight function (11) is equivalent to replacing the L2 inner product 〈·, ·〉L2 withe ‘weighted’
inner product 〈·,L2 ·〉L2 .
In practice, the POD modes are computed through the equations (7) and (8) except that in

computing the covariance (7b) instead of the terms u(x, t)− u(x), we use the mean-zero weighted
velocity uε,h(x, t). In the following, we set ε = 0.1 to keep the decay smooth. We selected h = 25δ/110
to emphasize the near-wall flow up to ignore any flow above y+ ≈ 50, where the minimal flow
unit does not capture all length scales. This modified POD not only emphasizes the near-wall
contributions, but also speeds up the convergence of the numerical optimization of problem (10).

The POD modes were computed using 1000 snapshots taken from flows computed from 10 different
randomly chosen, initial conditions. The snapshots were taken at intervals of 50 eddy turnover
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FIG. 6: A sketch of the weight function qε,h defined in (12).

(a) Mode 1 (b) Mode 3 (c) Mode 11

FIG. 7: Contours and isosurfaces of axial velocity u for several POD modes. Isosurfaces are defined
at u = ±0.01. Mode indicies are defined as in Fig. 5.

times to minimize any correlation in time. Fig. 5 shows the energy and cumulative energy of the
POD modes. Almost 80% of the energy is captured by the first six modes, indicating that near-wall
dynamics emphasized by our weight function are low dimensional.

Fig. 7 shows a few of these modes. The shape of the most energetic modes is dominated by long
axial streaks which are know to be a main feature of the near-wall region [22]. The more energetic
modes such as modes 1 and 3 contain wider streaks, while less energetic modes such as mode 11
contain thinner, less coherent streaks that meander slightly.
Finally, we point out that an energy-maximizing optimization similar to (6) was used in [35] in

the context of subcritical transition to turbulence from the laminar state in the pipe flow. It is
important to emphasize that the problem of extreme events discussed here is different from the
subcritical transition to turbulence. Specifically, despite the formal similarities to the constrained
optimization presented in [35], the optimal states relevant to extreme events are not lying in small
neighborhoods around the laminar state. In fact, we do not utilize the existence of a laminar state,
since we employ information for the full turbulent attractor, in contrast to [35] where all the analysis
is formulated around the laminar state. The present study demands that the initial states belong to
the turbulent attractor as enforced through the constraint (6c) and implemented numerically in this
section. In particular, our constraint is a hyper-ellipsoid around the statistical mean u (see equations
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(10c)-(10d)). This set is not necessarily small and its extent is dictated by the flow dynamics (i.e.,
the eigenvalues λi of the covariance matrix).
Similarly, Farano et al. [14] investigated the observed bursts in a turbulent flow similar to our

channel flow. However, they only require that the energy of the optimal state is prescribed, i.e.,
E(u0) = E0 for a prescribed energy level E0. This does not necessarily imply that the optimal state
belongs to the attractor and therefore unphysical optimizers are not ruled out.

C. Numerical implementation

The optimization problem, equation (10), was solved using the Python package scipy [27]. Specif-
ically, the “optimize” package was used and the optimization was carried out using Sequential
Least SQuares Programming (SLSQP). The first constraint, (10b), is implicitly satisfied by the
flow solver, which is called from Python using the “multiprocessing” module. The second and third
constraints (10c)–(10d) and their gradients are implemented directly in Python. The convergence
tolerance for the objective function was set to 10−7. Otherwise the default convergence criterion were
used. An adjoint solver was used to minimize the cost of computing the gradient of the objective
function (10a). The DGSEM solver has a dual consistent, discrete adjoint formulation, details of
which are discussed in Refs. [5, 8]. This adjoint solver allows us to compute the gradient at a
computational cost similar to solving the primal, which is much cheaper than using finite differences
to compute the gradient with respect to all n = 50 POD modes.

Since we use a gradient-based optimization, SLSQP seeks the local optimizers. Since the problem
is highly non-convex, we are unaware of optimization methods that can provably guarantee the
convergence to the global optimizer. Therefore, we run the SLSQP algorithm from several initial
guesses u0 in the constraint set A and retain the local optimizer that corresponds to the largest
energy growth among them.

D. Optimization results

The optimization was run from five different initial guesses u0 and with three different integration
times of τ = 52.5te, τ = 105te, and τ = 210te. The integration times correspond to roughly 1/8,
1/4, and 1/2 of the time scale of laminarization event similar to the one shown in Fig. 2. All five
optimizations with τ = 52.5te and τ = 105te computed very similar optimal solutions u∗0. All these
optimizers belong to the interior of the constraint set (10d), i.e. they satisfy

∑
i ξ

2
i /λi < 1. This does

not imply that the constraint was not employed. On the contrary, the constraint was utilized during
the optimization process to prevent the convergence to an optimal solution outside the constraint
set. The optimization with an integration time of τ = 210te failed to converge because the adjoint
grew very large in magnitude, and the gradient caused the optimizer to consider a non-physical
solution in the ensuing line search.

Fig. 8 shows the convergence history of a typical optimization for τ = 52.5te. The corresponding
POD mode weights for the initial guess and optimal solution are shown in Fig. 9. The two largest
POD modes in the optimal solution are modes 6 and 26, shown in Fig. 10. Together, these modes
create the axial velocity deficit in the near wall region shown in Fig. 11. The maximum velocity
deficit occurs roughly y+ = 18 units from each wall, and decays to zero roughly y+ ≈ 55 units from
the wall.
The region in which the velocity deficit occurs is known to have a major impact on near-wall

turbulence. In [25] it was observed that damping axial velocity streaks or quasi-streamwise vortex
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FIG. 9: POD mode weights for the initial guess and optimal solution.

structures between y+ ≈ 20 to y+ ≈ 60 led to laminarization of the near wall region. It appears
that our optimal solution modifies the lower portion of this range. The relative uniformity of the
axial velocity deficit results in the absence of axial velocity streaks and quasi-streamwise vortex
structures. This is in contrast with the flow snapshots in Fig. 3, where the presence of low- and high-
axial velocity streaks can be inferred from streaks in the wall shear stress, and quasi-axial structures
are revealed by the q-criterion iso-contours. Without the axial velocity streaks and quasi-streamwise
vorticity, the “streak-cycle” mechanism for the regeneration of near-wall turbulent fluctuations is
broken and the flow laminarizes.
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FIG. 10: Contours, isosurfaces, and spatially averaged profiles of axial velocity for the two most
energetic POD modes in the optimal solution to Eq. (10). Isosurfaces are defined at u± 0.01.

Therefore, although the optimal solution u∗0 is turbulent, the absence of axial velocity streaks and
quasi-streamwise vortices make it a precursor for a flow laminarization. By tracking how close a
given state is to u∗0, we can determine if a laminarization event is likely to occur or not.

Although we can compute the precursor for the relatively low Reynolds number flows considered
in this paper, the adjoint growth issue encountered for τ = 210te suggests that this approach will
not scale well with Reynolds number. The adjoint grows exponentially in time at a rate roughly
equal to the largest Lyapunov exponent of the flow [41]. The maximum Lyapunov exponent grows in
turn as the Reynolds number increases [34]. As a result, computing the optimal solution at higher
Reynolds numbers by a straightforward adjoint optimization may face numerical instability issues.
Approaches like least squares shadowing have been shown to eliminate exponential growth of the
adjoint for time-averaged objective functions [42], but to the authors’ knowledge no such approach
exists for transient objective functions like that in our optimization problem (6).
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FIG. 11: Optimal solution u∗0 to equation (10). (a) Q criterion isosurface for Q = 0.0005, colored by
the streamwise velocity (b) Spatially averaged streamwise velocity profile with the mean axial
velocity profile. (c) Spatially averaged streamwise velocity profile difference. Red shaded boxes

indicate regions from y+ = 20 to y+ = 60 units away from the wall.
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FIG. 12: Time evolution of the indicator λ(t) with E(t) and Z(t) over the same time horizon as
shown in Fig. 2. The horizontal lines indicate the mean (X̄) and the mean plus one standard

deviation (X̄ + σ(X)) of E(t) and Z(t). The vertical lines indicate the times that snapshots in Fig.
3 correspond to. The first and last snapshot correspond to the start and end of the time horizon

shown above.

IV. PREDICTING EXTREME EVENTS

Figure 12 shows a close-up of the evolution of energy E and dissipation Z together with the
indicator

λ = 〈u− u,u∗0 − u〉
‖u− u‖2‖u∗0 − u‖2

, (13)

at Re = 2200. Large values of energy and dissipation are proceeded with relatively large values of
the indicator. This behavior turns out to be generic and not specific to this time window. As a result,
one can use the indicator λ to predict the upcoming extreme events in the channel flow. In order
to quantify these predictions, we first review some statistical tools in Section IVA. Subsequently,
in Section IVB, we apply these tools to longterm simulations of the channel flow and report the
results.

A. Statistical preliminaries

In this section, we show that the trigger state obtained previously can be used for the prediction
of the extreme events in the channel flow. In order to make quantitative statements, we use joint
and conditional statistics between the trigger mode and the energetic observables of the turbulent
flow, namely kinetic energy and energy dissipation rate.

For a given random variable Xt, we would like to find an indicator Yt (another random variable)
whose values signal an upcoming extreme event of Xt. We identify extreme events of Xt as any
instant where Xt > xe for a prescribed extreme value threshold xe. First we define the maximum
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value of the random variable Xt over a future time interval [t+ t0, t+ t0 + ∆t] for some t0,∆t ≥ 0,

X̃t(t0,∆t) = max
s∈[t+t0,t+t0+∆t]

Xs (14)

The maximum X̃t(t0,∆t) is a new random variable which depends on the parameters t0 and ∆t. At
any time t, X̃t(t0,∆t) measures the maximum value that Xt will take over the future time interval
[t+ t0, t+ t0 + ∆t]. For notational simplicity, we omit the parameters t0 and ∆t and simply write X̃t.
The joint probability distribution of the pair (X̃t, Yt) is defined by

FX̃t,Yt
(x, y) = P(X̃t ≤ x, Yt ≤ y)

=
∫ x

−∞

∫ y

−∞
pX̃t,Yt

(x, y)dxdy, (15)

where pX̃t,Yt
is the probability density associated with the probability distribution FX̃t,Yt

. Roughly
speaking, the quantity pX̃t,Yt

(x, y)dxdy measures the probability that at time t we observe x <
X̃t < x+ dx and y < Yt < y + dy.
The conditional probability of X̃t = x given that Yt = y is defined through the Bayes’ formula

pX̃t|Yt
=
pX̃t,Yt

pYt

, (16)

where pYt is the probability density associated with the random variable Yt. We use the conditional
PDF pX̃t|Yt

to quantify the extent to which the behavior of Yt is indicative of the extreme events of
Xt over the future time interval [t+ t0, t+ t0 + ∆t]. More precisely, given an extreme event threshold
xe, we define the probability of upcoming extreme events by

Pee(y) =
∫ ∞
xe

pX̃t|Yt
(x, y)dx. (17)

This quantity measures the probability of an extreme event over the future time interval [t+ t0, t+
t0 + ∆t] given the current value of the indicator Yt = y.
For a reliable indicator, Pee should be monotonic so that the probability of upcoming extreme

events increases with y. More precisely, Pee should be nearly zero for small values of y and increase
monotonically towards 1 as y increases. We predict an upcoming extreme only if Pee > 0.5. This
defines an extreme event threshold ye for the indicator Yt where Pee(ye) = 0.5. If Yt > ye an
upcoming extreme event is predicted and conversely if Yt < ye it is predicted that no extreme events
will occur over the future time interval [t+ t0, t+ t0 + ∆t].

This classification leads to four possible prediction outcomes in terms of the indicator value Yt
and the future observable values X̃t:

Correct Rejection (CR): X̃t < xe given Yt < ye,

Correct Prediction (CP): X̃t > xe given Yt > ye,

False Negatives (FN): X̃t > xe given Yt < ye,

False Positive (FP): X̃t < xe given Yt > ye. (18)

Therefore, the skill of an indicator for predicting upcoming extreme events can be quantifies as
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(a) (b) (c)

FIG. 13: Probability densities at Re = 2200. (a) Joint PDF of the kinetic energy E, energy
dissipation Z and the indicator λ. (b) Conditional PDF pE|λ. (c) Conditional PDF pZ|λ.

follows

Rate of successful predictions = CP
CP + FN

=
∫∞
xe

∫∞
ye
pX̃t|Yt

(x, y)dydx∫∞
xe

∫∞
−∞ pX̃t|Yt

(x, y)dydx
(19a)

Rate of successful rejections = CR
CR + FP

=
∫ xe

−∞
∫ ye

−∞ pX̃t|Yt
(x, y)dydx∫ xe

−∞
∫∞
−∞ pX̃t|Yt

(x, y)dydx
(19b)

A skillful indicator is one that returns relatively small percentage of false negatives (respectively,
false positives) compared to the number of correct predictions (respectively, correct rejections). In
the following, we use the statistical quantities introduced above to quantify the predictive skill of
the indicator (13).

B. Prediction results

We first present the joint and conditional statistics for the energy E, dissipation rate Z and the
indicator λ. In this first step, we do not include any time shifts, thus setting t0 = ∆t = 0 so that
X̃t = Xt in equation (14). Figure 13 shows the joint and conditional PDFs of the indicator versus
energy E and the energy dissipation Z at Re = 2200. This figure is generated from an ensemble of
longterm simulations with data recorded every one eddy turnover time collecting a total of 106, 063
data points.

The shape of the conditional PDFs pE|λ and pZ|λ shows that the extreme values of the indicator
λ correlate strongly with relatively large energy and large dissipation episodes (see Fig. 13(a,b)).
We also note that that the correlation is much stronger for dissipation and that λ tends to increase
monotonically with the dissipation Z.

The next step is to introduce a time lag in order to investigate whether the large indicator values
precede the extreme episodes of energy and dissipation. This is clearly the case in figure 12 where
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TABLE I: The prediction skill of the indicator λ at two Reynolds numbers. The rate of successful
rejections (RSR) and the rate of successful predictions (RSP) are reported for the energy dissipation

rate Z. The parameters t0 and ∆t denote the prediction time parameters defined in (14).

Re t0/te ∆t/te RSP RSR

2200
1 10 86.9% 94.7%
2 10 86.7% 94.3%
3 10 86.4% 93.8%

3000
1 5 79.4% 91.7%
2 5 75.4% 92.6%
3 5 74.9% 92.2%

the peak of the indicator precedes the extreme values of energy (and energy dissipation) by about
50 to 100 eddy turnover times. Below we show that this is generally the case during the longterm
simulations. We point out, however, that figure 12 depicts an unusual extreme event in that the
prediction time t0 is very long. On average the prediction times are much shorter (on the order of a
few eddy turnover times).

Figure 14 shows the conditional PDFs pẼ|λ and pZ̃|λ where the future maxima Ẽ and Z̃ are
computed with t0 = te and ∆t = 10te (see equation (14)). The extreme value threshold Ee
(respectively, Ze) are set as the mean of energy (respectively, dissipation) plus one standard
deviation. Figure 14 also shows the corresponding Pee computed from equation (17). The extreme
event threshold according to the indicator λ is the point at which Pee(λe) = 0.5.

As the prediction time t0 increases, we expect the prediction skill of the indicator to deteriorate.
This is shown in figure 15 where the conditional PDF pZ̃|λ are shown for increasing prediction times
t0. For prediction times as large as t0 = 10te the prediction skill of the indicator is still reasonably
satisfactory. However, as the prediction time increases to close t0 = 25te the predictor returns
significant amount of false positives and false negatives, thus losing its predictive value. The rates of
successful predictions and successful rejections, defined in equation (19), are reported in Table I for
a few prediction time horizons.

Similar results are observed at higher Reynolds numbers. Figure 16 shows the joint and conditional
PDFs of the indicator, energy and dissipation at Re = 3000. These PDFs resemble those of figure 13
for the lower Reynold number Re = 2200. This demonstrates clearly the robustness of the derived
indicator. Table I also contains the rates of success in predicting extreme (and non-extreme) events
at Re = 3000. We point out that the channel flow at some intermediate Reynolds numbers between
Re = 2200 and Re = 3000 did not exhibit extreme events in the time horizons we simulated.

Finally, we recall that the predictability time of chaotic systems is inversely proportional to their
leading Lyapunov exponent [1] because of the exponential growth of uncertainties (This holds for
both extreme and non-extreme events). Therefore, the prediction of extreme events is fundamentally
limited by the predictability time horizon set by the leading Lyapunov exponent. Since the Lyapunov
exponent increases with the Reynolds number, we expect the prediction time t0 to decrease at higher
Reynolds flows.
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FIG. 14: Predictive conditional probability densities. (a) Top row: Conditional PDF pẼ|λ computed
with t0 = te and ∆t = 10te where te denotes the eddy turnover time. The vertical dashed line marks
the threshold Ee of extreme events that is prescribed as the mean of E plus one standard deviation.
The horizontal dashed line marks the extreme event threshold λe according to the indicator λ.

Bottom row: The probability of upcoming extreme events Pee. The horizontal dashed line marks
Pee = 0.5 and the vertical dashed line marks the extreme event threshold λe so that Pee(λe) = 0.5.
(b) Same as panel (a) but the figure correspond to the energy dissipation Z versus the indicator λ.

V. CONCLUSIONS

We have demonstrated an original approach for the derivation of precursors of extreme events in
a challenging problem involving a turbulent channel flow. The extreme events in this case have the
form of random near-laminarization episodes that lead to bursts of the kinetic energy and the energy
dissipation rate. We formulate a constrained optimization problem that searches for initial states
with the most intense growth of kinetic energy, within a constrained set in the core of the underlying
turbulent attractor. By searching over a high probability set, we achieve a numerically tractable
optimization problem, while at the same time we exclude exotic states that may correspond to
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t0/te = 25
<latexit sha1_base64="tRu7GJVGDHEESktL2XMnImvCudw=">AAAB8HicbVBNS8NAEN34WetX1aOXYBE81aQo6kEoePFYwdhiG8JmO2mXbjZhdyKU0H/hxYOKV3+ON/+N2zYHbX0w8Hhvhpl5YSq4Rsf5tpaWV1bX1ksb5c2t7Z3dyt7+g04yxcBjiUhUO6QaBJfgIUcB7VQBjUMBrXB4M/FbT6A0T+Q9jlLwY9qXPOKMopEeMXBOMYDr+nlQqTo1Zwp7kbgFqZICzaDy1e0lLItBIhNU647rpOjnVCFnAsblbqYhpWxI+9AxVNIYtJ9PLx7bx0bp2VGiTEm0p+rviZzGWo/i0HTGFAd63puI/3mdDKNLP+cyzRAkmy2KMmFjYk/et3tcAUMxMoQyxc2tNhtQRRmakMomBHf+5UXi1WtXNffurNpoFGmUyCE5IifEJRekQW5Jk3iEEUmeySt5s7T1Yr1bH7PWJauYOSB/YH3+AJhmj74=</latexit><latexit sha1_base64="tRu7GJVGDHEESktL2XMnImvCudw=">AAAB8HicbVBNS8NAEN34WetX1aOXYBE81aQo6kEoePFYwdhiG8JmO2mXbjZhdyKU0H/hxYOKV3+ON/+N2zYHbX0w8Hhvhpl5YSq4Rsf5tpaWV1bX1ksb5c2t7Z3dyt7+g04yxcBjiUhUO6QaBJfgIUcB7VQBjUMBrXB4M/FbT6A0T+Q9jlLwY9qXPOKMopEeMXBOMYDr+nlQqTo1Zwp7kbgFqZICzaDy1e0lLItBIhNU647rpOjnVCFnAsblbqYhpWxI+9AxVNIYtJ9PLx7bx0bp2VGiTEm0p+rviZzGWo/i0HTGFAd63puI/3mdDKNLP+cyzRAkmy2KMmFjYk/et3tcAUMxMoQyxc2tNhtQRRmakMomBHf+5UXi1WtXNffurNpoFGmUyCE5IifEJRekQW5Jk3iEEUmeySt5s7T1Yr1bH7PWJauYOSB/YH3+AJhmj74=</latexit><latexit sha1_base64="tRu7GJVGDHEESktL2XMnImvCudw=">AAAB8HicbVBNS8NAEN34WetX1aOXYBE81aQo6kEoePFYwdhiG8JmO2mXbjZhdyKU0H/hxYOKV3+ON/+N2zYHbX0w8Hhvhpl5YSq4Rsf5tpaWV1bX1ksb5c2t7Z3dyt7+g04yxcBjiUhUO6QaBJfgIUcB7VQBjUMBrXB4M/FbT6A0T+Q9jlLwY9qXPOKMopEeMXBOMYDr+nlQqTo1Zwp7kbgFqZICzaDy1e0lLItBIhNU647rpOjnVCFnAsblbqYhpWxI+9AxVNIYtJ9PLx7bx0bp2VGiTEm0p+rviZzGWo/i0HTGFAd63puI/3mdDKNLP+cyzRAkmy2KMmFjYk/et3tcAUMxMoQyxc2tNhtQRRmakMomBHf+5UXi1WtXNffurNpoFGmUyCE5IifEJRekQW5Jk3iEEUmeySt5s7T1Yr1bH7PWJauYOSB/YH3+AJhmj74=</latexit><latexit sha1_base64="tRu7GJVGDHEESktL2XMnImvCudw=">AAAB8HicbVBNS8NAEN34WetX1aOXYBE81aQo6kEoePFYwdhiG8JmO2mXbjZhdyKU0H/hxYOKV3+ON/+N2zYHbX0w8Hhvhpl5YSq4Rsf5tpaWV1bX1ksb5c2t7Z3dyt7+g04yxcBjiUhUO6QaBJfgIUcB7VQBjUMBrXB4M/FbT6A0T+Q9jlLwY9qXPOKMopEeMXBOMYDr+nlQqTo1Zwp7kbgFqZICzaDy1e0lLItBIhNU647rpOjnVCFnAsblbqYhpWxI+9AxVNIYtJ9PLx7bx0bp2VGiTEm0p+rviZzGWo/i0HTGFAd63puI/3mdDKNLP+cyzRAkmy2KMmFjYk/et3tcAUMxMoQyxc2tNhtQRRmakMomBHf+5UXi1WtXNffurNpoFGmUyCE5IifEJRekQW5Jk3iEEUmeySt5s7T1Yr1bH7PWJauYOSB/YH3+AJhmj74=</latexit>

FIG. 15: Prediction quality for varying prediction times t0. In all plots, the length of the future
maximum time window in Eq. (14) is ∆t = 10. First row shows the conditional PDF pZ̃|λ and the

second row shows the corresponding probability of future extreme events defined in Eq. (17).

(a) (b) (c)

FIG. 16: Probability densities at Re = 3000. (a) Joint PDF of the kinetic energy E, energy
dissipation Z and the indicator λ. (b) Conditional PDF of Yt = Indicator and Xt = Energy. (c)

Conditional PDF of Yt = Indicator and Xt = Energy Dissipation.

intense growth of energy but have very low probability to occur if we are close to the attractor.
The derived precursor is demonstrated to successfully capture extreme dissipation episodes several

eddy turnover times before the event. We have discussed its physical relevance and have demonstrated
its robustness as the Reynolds number of the flow changes. Because the developed scheme utilizes the
full nonlinear equations and not linearized approximations, it has the potential to be extended to more
complex flows. However, one should exercise caution in using adjoint-based optimization at higher
Reynolds numbers. As we mentioned in section IIID, the straightforward backward integration of the
adjoint equation at high Reynolds numbers is often unstable and therefore alternative optimization
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methods should be considered.
Nonetheless, the success of the presented approach to an intermittently turbulent channel flow

implies the potential of the method for studying transitional flows, such as bypass transition of
boundary layers. Our future endeavors include the utilization of these precursors for the control and
suppression of extreme events in these systems.
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