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Abstract

Free-shear-flow turbulence with sufficiently fast advection speeds radiates Mach waves, with

steepened and skewed pressure profiles. These form within about a mixing layer thickness and

dominate the sound field. Their generation and propagation is investigated through comparison

of numerical simulations of a temporally developing mixing layer with a series of model-flow sim-

ulations designed to isolate physical mechanisms. The first of these are numerical simulations

of nonlinearly saturating instability waves, which despite being much simpler than corresponding

turbulence, reproduce key features of the sound. Motivated in part by this agreement, instability

analysis is used to motivate the inclusion of artificial sources in turbulence simulations that are

designed to induce specific alterations to the turbulence structures, leaving most of its broadbanded

spectrum unchanged. Comparisons show how insensitive the radiation is to the particular struc-

ture. To assess how strongly the near-field sound is coupled to the turbulence, a high dilatational

dissipation is imposed to suppress the waves. This significantly reduces radiated pressure intensity,

but little changes the Reynolds stresses (< 8%), which supports a source-plus-sound perspective.

Given this, a low-dimensional nonlinear gas-dynamic mechanism is proposed for the generation

and near-field propagation of the waves. The analysis uses a second-order wavy-wall asymptotic

solution, and it reproduces the key observations: the sound-field structure, pressure skewness, and

even the radiated pressure levels to within a factor of two.
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I. INTRODUCTION

High-speed shear-flow turbulence is well-known to radiate intense directional sound, which

has consequences. Near jet engines, such as those currently on some military aircraft,

it causes hearing loss for personnel. Furthermore, spurious sound radiated by supersonic

boundary layers has long been known to potentially mask mechanisms in studies of turbu-

lence transition [1]. Unlike at subsonic speeds, the near field is dominated by shock-like

waves with fronts approximately perpendicular to the direction of peak sound intensity [2–

4]. For jets, this angle θ is typically between 30◦ and 50◦ from the jet axis, depending

on the speed. It can be anticipated that the character of acoustic radiation should indeed

change when the turbulence structures advect at supersonic speeds, which provides them a

wavenumber–frequency make-up that can directly couple to propagating solutions of a scalar

wave equation, with the implication that they can be particularly efficient acoustic sources

[5, 6]. In contrast, at lower speeds, it is the more subtle changes to the energetic structures

that couple with propagating waves [6, 7]. Phillips [8] anticipated ‘eddy Mach waves’ at an-

gles near the Mach angle anticipated based on the speed of advecting turbulence structures.

Based on a linear model, such waves should orient with the outgoing characteristics angle

θ = sin−1

(
c∞

U1 − Uc

)
, (1)

which for advecting turbulence is based on the relative advection speed U1 − Uc > c∞ for

free-stream (or jet) velocity U1 and the nominal eddy velocity Uc. Murray and Lyons [9]

measured the distribution of wave orientations for jets and used (1) to infer the corresponding

distribution of source speeds, finding agreement with measurements [10, 11]. Similarly, direct

numerical simulations (DNS) of temporally developing mixing layers also show a range of

compression wave orientations near the turbulence [12]. The distribution of wave angles (and

wave strengths) lead to nonlinear interactions; distinct waves merge as they propagate [12].

Figure 1 (a, c, and e) shows an example from a Mach M = 2.5 temporally-developing free-

shear turbulent flow we study. These have Reynolds number up to Reδm = 2100 and Mach

numbers M = 0.9 and 2.5, based on the difference of the free-stream velocities ∆U = U1−U2,

the momentum thickness δm, and ambient speed of sound c∞. They were initialized with

random perturbations to a laminar profile, which grows to be 35 times its initial thickness

δom in a spanwise- and streamwise-periodic computational domain (Lx = 1536 δom and Lz =

512 δom ), with absorbing far-field boundary conditions at ±Ly/2 = 800 δom. After an initial
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transient, during which the turbulence becomes approximately statistically stationary, we

analyze data from δm(t) = 10 δom to 35 δom. Many details of the methods and results from

these simulations are reported elsewhere [12, 13]; here we are considering some specific new

questions. The sound field appears, as expected, to be dominated by thin shock-like features

oriented at approximately the expected Mach angle [14, 15], as previously analyzed for this

configuration [12]. Still, it includes additional peculiarities. For M & 2.5, the pressure is

positively skewed, often with skewness Sk & 0.4 [12], matching that commonly measured near

round jets [4, 16, 17]. These both suggest that nonlinear mechanisms underlie the generation

and affect the propagation of these waves. Past analysis of this flow shows that near the

M = 2.5 turbulence, nonlinear effects are significant in the transport budget of Sk within y .

20 δm from the source, where δm is the momentum thickness of the shear layer [12]. Though

the basic mechanism of Mach-wave generation and propagation is understood for idealized

flows [18], the sound generated by turbulence has additional complexity, particularly its

intricate three-dimensional pressure field with significant Sk.

Wavepacket models, which are motivated by the growth and decay phenomenology of

instability waves, have been proposed to provide mechanistic models of noise sources in

free-shear flows [19–21], and they are successful. The far-field sound intensity of supersonic

advecting wavepackets, in particular, follows the expected high-speed M3 scaling [19], which

is consistent with general theoretical results [5] and data [22, 23]. Unlike subsonically ad-

vecting wavepackets, whose sound is strongly sensitive to the space–time details of the wave

packet, the radiation efficiency for supersonic advection depends mainly on the Mach number

and not on the wavepacket structure per se [24], though a weak dependence on structure has

been observed [25]. Despite the reasonable success of linear wavepackets to predict the levels

and peak radiation direction [26–29], discrepancies in the intensity remain unresolved. On

top of their limitations in describing turbulence, they also do not form shock-like waves and

skewed pressure statistics, so prominent in observations. This suggests a role of nonlinear

mechanisms, such as has been studied in detail for two-dimensional mixing layers, where it

was found to be important [28]. For a broadbanded input, there are significant differences

between solutions of the linearized equations and of the full equations, even for modes that

contribute most to sound levels near jets, for which linear theory might be expected to be

most successful [30]. The strength of the pressure waves radiated by high-speed flows is

also strong enough that nonlinearity could alter its propagation [18, 31, 32], which has been
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FIG. 1. Iso-surfaces (iso.) of pressure (piso.−p∞ = −0.027 ρ∞∆U2) when δm/δ
o
m = 10: (a) M = 2.5

and (b) M = 0.9. (c,d) Corresponding pressure at y/δm = 4 with p = p∞±0.4 ρ∞∆U2 for M = 2.5

and p∞ ± 0.1 ρ∞∆U2 for M = 0.9. Positive perturbations are red. (e,f) Dilatation at y/δm = 4

with ∇ · u = ±0.1 ∆U/δm for M = 2.5 and (f) ±0.001 ∆U/δm for M = 0.9. Compressions are

black. Only a small part (one-eighth) of the simulation domain in the y-direction is shown.

quantified for turbulent jets [33, 34]. Here we consider that finite-amplitude effects may also

potentially be coupled to the underlying turbulence as it is generated.

Another partial description of Mach-wave radiation from turbulence is based on a wavy-

wall flow analogy, where the flow speed and wall perturbation wavelength are taken to

correspond to instability waves [15, 35]. This can be seen as replacing the turbulence (or

wavepacket) by a kinematic boundary condition that radiates into the domain. As with

the wavepacket models, this linear description is also limited in that it cannot reproduce

some prominent features of the sound. However, within this framework, and in conjunction
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with turbulence DNS, we augment it to include additional nonlinear mechanisms. The

first involves the finite displacement of the flow, which is modeled by the wall streamline

in the wavy-wall model. In the corresponding asymptotic solution, second-order terms in

the boundary conditions introduce harmonics [36–38]. The second is a consequence of the

Navier–Stokes equations involving both nonlinear convection and equation of state effects.

Convection mechanisms, involving (u · ∇u)-like terms, are well understood to steepen waves

as they propagate, leading to a standard N-wave [18]. However, this description is incomplete

since, unlike for turbulence, the waves have antisymmetric positive and negative peaks and

thus zero skewness (Sk = 0), so additional mechanisms must be responsible for radiating

skewed pressure signals. Supersonic wavepackets simulated in a uniform flow (supplying

a finite-amplitude of p ≈ 0.06 p∞ perturbation along the streamwise axis) do reproduce

features like those observed in the sound radiated by a high-speed jet: large skewness (Sk >

0.4) and wave steepening [39]. However, it remains unclear if the essential nonlinearity

arises from finite-fluid displacement, convection mechanisms, the equation of state, or some

mix of these. The objective of this paper is to further examine nonlinear mechanisms of

sound generation in high-speed flows, specifically their importance to sound radiation by

turbulence. In particular, we seek to differentiate the nonlinear mechanisms that might lead

to Sk = 0 N-waves from those that yield the Sk & 0.4 waves observed near turbulence.

Turbulence simulations provide a specific point of reference between the model mechanisms

and turbulence sound sources.

In section II, we simulate the sound and onset of nonlinearity from saturating instabil-

ity modes. Their nascent sound with Sk > 0 is similar to that from turbulence. These

simulations provide the connection between the flow speed, mode structure, and the effect

of increasing nonlinearity on the radiated sound field. These observations are used in sec-

tion III to design source terms in auxiliary simulations that alter the turbulence structure

of a M = 2.5 mixing layer to assess its role on the sound strength p′rms and Sk. Section IV

considers nonlinearity associated with the gas properties by modifying them. In particular,

the gas is stiffened to assess the importance of the pressure–density nonlinearity in the equa-

tion of state. Similarly, the strength of two-way coupling between the strong sound and the

turbulence is assessed using simulations with significantly increased dilatational dissipation.

With this information, in section V we introduce a weakly nonlinear wavy-wall model flow,

informed by DNS, and use it to illustrate the nonlinear gas dynamics leading to behaviors
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observed for turbulence. As for high-speed flow turbulence, the model’s radiation has Sk > 0

and depends mainly on the Mach number and perturbation amplitude, and it is relatively

insensitive to spatial structure. Section VI provides a summary of the results.

II. ACOUSTIC RADIATION FROM NONLINEARLY SATURATING INSTABIL-

ITY WAVES

Before considering turbulence in the following section, the simulations in this section are

designed to assess the onset of nonlinear source and sound mechanisms, before subsequent

nonlinear effects obscure them. Linear theory is used to select initial conditions for these

model-flow DNS. The Mach number range, 0.9 ≤ M ≤ 3.5, was chosen to match the

corresponding turbulence DNS [12] to facilitate subsequent comparisons. Figures 2 (a) and

(b) illustrate the basic behavior for such an instability for M = 2.5, with details of the setup

following in this section. In this case, because of its cp < 0 phase velocity, the selected linearly

amplifying mode radiates mostly above the shear layer (y > 0) at the anticipated Mach angle

(1). However, the pressure waves, which are initially harmonic with Sk ≈ 0 (figure 2 b),

become increasingly positively skewed (peaks higher than the troughs) in figure 2 (d). As

the perturbation intensity

Mt(t) =
(u′iu

′
i)

1/2

c∞
, (2)

based on u′i velocity perturbations to the base flow measured at y = 0, increases exponentially

in time (figures 3 a and b), the Sk increases approximately linearly with Mt. This is true both

at y = 0 and in the sound field, as shown in figures 3 (c) and (d). By t = 1000δom/c∞, a shock

is nearly formed (figure 2 d) by standard wave steepening (e.g. [31]). Yet, its tendency to

also form positive Sk is not universal to wave steepening and requires additional explanation.

The stability of flows of this kind has been extensively analyzed [40–42], and further

documentation of this specific configuration and the corresponding simulations are reported

elsewhere [13]. The perturbations we consider have the usual form

~q(x, t) = ε ~Q(y) exp[i(αx+ βz − ωt)], (3)

where ~q = [u′, v′, w′, ρ′, p′]T and ~Q = [û, v̂, ŵ, ρ̂, p̂]T. In the simulations, the initial amplitude

is ε = 10−3, which is sufficiently small for initial amplification to match growth predicted by

the imaginary component ωi of the eigenvalue ω = ωr + iωi. The corresponding phase speed

6



0.0900

−0.0879

0 40 80

−0.1

0

0.1

x/δom

p
′ /
ρ
∞

∆
U

2

(b)

−1.54

2.97

0 40 80
−4

−2

0

2

4

x/δom

p
′ /
ρ
∞

∆
U

2

(d)

y/δom = 20; 40; 60

0 40 80

-40

0

40

x/δom

y
/δ

o m

(a)

0 40 80

-40

0

40

x/δom

y
/δ

o m

(c)

×10−2

×10−2

FIG. 2. Direct numerical simulation of the unstable mode with (α, β) = (0.289, 0)/δom, where

δom = δm(t = 0), for M = 2.5: (a,b) δm = 1.25δom and (b,d) δm = 1.5δom; (a,c) show dilatation

(grays: |∇ · u| < 0.1 ∆U/δm) and vorticity (color: ∇ × u < 0.5 ∆U/δm) fields and corresponding

streamwise pressure in (b,d) at the indicated y locations.

is cp = ωr/α, whose difference from the free-stream, U1 − cp, defines a nominal structure

relative speed

Uc = (U1 − cp) cosφ, (4)

where cosφ = α/
√
α2 + β2. A similar relation has been used to explain the acoustic in-

efficiency of oblique subsonic modes with Uc < c∞ [43]. In figures 2 (a) and (c), we see

Mach-like waves with θ ≈ 39◦, which correspond to the instability eigenvalue. However,

below the shear layer (y < 0), the relative speed is subsonic |(U2 − cp) cos(φ)| < c∞, pre-

cluding Mach waves, though of course there are corresponding cp > 0 modes that could

co-exist with these and that would radiate predominantly into the y < 0 region. Saturat-

ing two-dimensional instabilities radiate more intensely with larger Sk than φ > 0 oblique
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FIG. 3. (a,b) Growth of Mt (2) at y = 0 for the discrete modes of appendix table III: (a) M = 0.9

and (b) M = 2.5. For reference, the horizontal lines indicate the approximately stationary Mt

from corresponding turbulence DNS [12]. (c,d) Dependence of pressure skewness on disturbance

amplitude Mt: (c) y = 0 and (d) y = 20 δm.

modes. Contributions to Sk transport in turbulence DNS support a similar observation:

three-dimensional (in-plane) contributions to Sk were not significant [12].

Subsonic flow behavior is counter to this: the most unstable mode has β = 0 and, also

similar to developed turbulence, they have negative Sk inside the shear layer, as seen in

figure 3 (c). The pressure decreases exponentially for small |y| (not shown), consistent with

evanescent radiation, and waves with Sk ≈ 0 (figure 3 d) persist to larger |y|, consistent with

those near mixing layer turbulence [12]. Likewise, figure 4 (a) shows that for the modes we

consider (summarized in table III in the appendix), the radiated sound-field intensity shows

both U8 and U3 scaling, consistent with theoretical considerations [5, 7] and observations for

turbulence [12]. Along with increasing intensity, the corresponding skewness also increases

with U (figure 4 b), consistent with trends observed in the turbulence. However, the relation

of U to advection speed of turbulent structures is not necessarily simple, especially in high-
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Mach-number flows, for which turbulence structures are less correlated across the mixing

layer. To anticipate its impact, we consider a range of possible advection speeds based on

the local mean flow speed at y = 0, ±δm and ±2δm. These reflect the turbulence advection

speeds based on their y-dependent space-time correlations (see appendix III). This y-range

includes the most intense velocity fluctuations (see figure 6), and corresponding velocities

also encompass linear instability phase velocities. These observations, confirming multiple

similarities between radiation from saturating instabilities and turbulence, motivate the

following section, which examines the effect of a narrowband forcing of linear-mode-like

structures in the turbulence to assess sensitivity of radiated sound to structure. In doing

this, we particularly assess the role of the oblique (φ 6= 0) stability modes, which are most

amplifying yet have subsonic velocity Uc < c∞, versus the supersonic φ = 0 modes.
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FIG. 4. Comparison of saturating instabilities and turbulence based on relative free-stream speeds:

(a) pressure intensity and (b) pressure skewness at y/δm(t) = 20. For saturating instabilities, the

relative velocity U = Uc is defined using (4). For turbulence, an anticipated range of advection

velocities are based on y-location mean speed u(y) (see text). The results are shown for U =

∆U/2−u(y): y = 0 (symbol), y = ±1δm (inner bar), and y = ±2δm (outer bar). Solid and dashed

curves in (a) are ∝ U8 and ∝ U3, respectively, as labeled.

III. MODIFIED LARGE-SCALE TURBULENCE STRUCTURE

The saturating instabilities of the previous section radiate sound with signatures of non-

linear mechanisms similar to fully-developed turbulence at similar conditions, depending on

their relative speed. The visualizations for M = 2.5 and 0.9 in figure 1 also support a link

to their structure, with the high-speed turbulence and its corresponding sound appearing

more three-dimensional than the corresponding lower-speed flow. However, the results also

indicate that for fixed M the near-field pressure depends primarily on the mode’s relative

Mach number. Larger pressure fluctuations come from higher U/c∞ and less oblique (more

two-dimensional) modes, which are not the most amplified by linear mechanisms in higher

10



speeds.

To quantify the role of structure itself on the radiated sound, we introduce an artificial

source that reallocates perturbation energy between different types of structures, with the

goal of otherwise minimally disrupting the flow. Similar modifications to the flow equations

have been used, for example, to study the maintenance of wall turbulence [44]. Similarly, ex-

periments with near-nozzle shear-layer excitation have probed noise generation mechanisms

of large-scale structures, though with far less control over the specific excitation [45, 46].

Here, energy is extracted from the most unstable oblique Fourier components, as predicted by

linear theory, by a source added to the N(~q) = 0 flow equations (for ~q = [ρu, ρv, ρw, ρ, ρe]T):

N(~q) = −AωiW (y)




ρ(u− ut) + u(ρ− ρt)
ρ(v − vt) + v(ρ− ρt)
ρ(w − wt) + w(ρ− ρt)

(ρ− ρt)
(p−pt)
(γ−1)

+ ρui(ui − uti) + 1
2
uiui(ρ− ρt)




, (5)

where A is a strength parameter, ωi the growth rate of the most unstable mode from (3),

and W (y) restricts its support to |y| . 1
2
δ99(t):

W (y) =
1

2

{
tanh

[
5

δm(t)

(
y +

δ99(t)

2

)]
− tanh

[
5

δm(t)

(
y − δ99(t)

2

)]}
. (6)

In (6), δ99 is the distance between the y-locations having 99% of ambient flow speeds. Each

q component of ~q is discrete Fourier transformed in the periodic x and z directions (see

figure 1):

q̂kxkz(y) =
1

NxNz

Nz−1∑

m=0

Nx−1∑

n=0

qnm(y) exp

[
−2πikxn

Nx

]
exp

[
−2πikzm

Nz

]
. (7)

The superscript t in (5) indicates the target field, with corresponding transform

q̂tkxkz =





0, kx = k1, kz = |k2| ← damps oblique

q̂kxkz

√
E1,0+E1,2+E1,−2

E1,0
, kx = k1, kz = 0 ← excites β = 0

q̂kxkz , otherwise ← leave others unchanged.

(8)

The mode energy is Ei,j = q̂kikj q̂
?
kikj

, where the ? indicates complex conjugate. The wavenum-

ber pair (k1,±k2) is the most linearly amplified mode-pair (supported by the discretization
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FIG. 5. Effect of source strength A on the y = 0 pressure spectra when δm(t)/δom = 10: (a)

streamwise and (b) spanwise directions. The dashed lines indicate the initial and final modulated

target wavenumbers.

at the time forcing is initiated). For the M = 2.5 case, it is (k1,±k2) = (0.289,±0.537) δm(t),

with corresponding growth rate ωi = 0.096 ∆U/δm(t). The coefficients in (8) are designed

to conserve
∑
Ei,j. We note that the unstable linear mode depends on the momentum

thickness, which grows approximately linearly in time; k1 and k2 change in time to track

this dependence.

Any source terms such as in (5) can potentially generate sound directly, which is confirmed

by an acoustic analogy formulation [6] in appendix II to be less consequential than the direct

turbulence sound sources. Thus, changes in the sound are due to changes in the turbulence

caused by the forcing, not the forcing itself.

The numerical methods for (5) are standard high-order finite-difference methods and

reported in full elsewhere [13]. The domain of size Lx×Ly×Lx = 1536 δom×800 δom×192 δom

is discretized with Nx × Ny × Nz = 1536 × 801 × 192 uniformly spaced mesh points. The

turbulence, initialized from broadbanded velocity fluctuations [47] develops naturally until

δm(t) = 5 δom. By design, forcing the turbulence to the two-dimensional target state increases

the z correlations [13]. However, we emphasize that the effect on the overall range of

turbulence scales is modest: the near-field pressure spectra in figure 5 appear unchanged

aside from the depletion in energy near k = k1 due to (8), which is more pronounced for

larger A. Otherwise, there is a broad range of scales similar to the baseline case.

Since the energy is removed from the most amplified mode, it is anticipated that the

shear layer growth rate will be suppressed, though this too is modest. Between times with
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FIG. 6. Effect of the source strength A on the Reynolds stresses: (a) u′u′, (b) v′v′, (c) w′w′, and

(d) u′v′.

δm = 5 δom to 10 δom, growth rate decreases from δ̇m = 0.0066 ∆U for A = 0 in (5) to

0.0042 ∆U for A = 2. The Reynolds stresses shown in figure 6 (a-d) and mean u-velocity

(not shown) are similarly insensitive for A . 1 [13].

However, despite these modest changes to the turbulence intensity and structure, figure 7

shows that the sound fundamentally changes for A = 1. Spanwise correlated pressure waves

are obvious, yet they are only modestly more intense and skewed than for A = 0. Figure 8 (a)

shows that the intensity increases by only a factor of two even for the most strongly forced

A = 2 case. That spanwise correlation might increase acoustic efficiency is not unexpected,

especially based on the instability mode sources in section II. There it was shown that β = 0

modes have U/c∞ > 1, which leads to larger pressure fluctuations and Sk > 0.

Despite the change in structure and intensity, there is only a 7% increase in Sk (figure 8 b)

within the turbulence, and Sk is insensitive to A beyond y/δm > δ99. The metric

Sk |y|>δ99 =
1

Ly − δ99

∫ Ly

|y|>δ99
Sk dy (9)
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FIG. 8. Effect of source strength A on the pressure (a) intensity and (b) skewness for conservative

forcing by (8) and non-conservative forcing by (10).

only varies from Sk |y|>δ99 = 0.456 for A = 0 to Sk |y|>δ99 = 0.485 for A = 2, despite the

increase in the turbulence intensities (figure 6, especially for A = 2). The results of simply

depleting (A = 1) and enhancing (A = −1) the energy in the three-dimensional unstable

modes, without corresponding reallocation of the energy, which is accomplished by the source

q̂tkxkz =





0, kx = k1, kz = |k2| ← damps oblique

q̂kxkz , otherwise ← leave others unchanged,
(10)

are also shown in figure 8. For energy removal with A = 1, the pressure intensity at all y is

less than its corresponding A = 1 reallocation using (8), though Sk is essentially unchanged.

This result also shows that further departures from strict conservation of N(~q) = 0 using
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(10) versus (8) has similar radiation as the baseline A = 0. When the energy is added

(A = −1), we observe little change in intensity and Sk up to y < 10δm. Beyond y & 10δm,

however, the trends diverge. The excited three-dimensional modes, which have subsonic

advection speeds, support mainly evanescent disturbances and thus lower intensity further

from their source. This is consistent with the instability modes of section II.

The saturating instabilities of section II show that intensity and skewness are particularly

sensitive to Uc defined in (4). So, as an additional experiment, we deplete energy in modes

based on their orientation-dependent speeds using

q̂tkxkz =





0, ∆U
2

α√
α2+β2

> 1 ← damps supersonic modes

q̂kxkz , otherwise ← leave others unchanged,

(11)

and

q̂tkxkz =





0, ∆U
2

α√
α2+β2

< 1 ← damps subsonic modes

q̂kxkz , otherwise ← leave others unchanged.

(12)

Figure 10 confirms that changes to the Reynolds stresses are similar to the conservative (8)

forcings. Likewise, the radiated pressure intensity shows little change and Sk & 0.4.

Overall, altering the turbulence structure has little influence on the radiated pressure

intensity and Sk. Unlike the saturating instabilities, on which the forcing was based, these

high-speed flows still possess broadband, finite-amplitude turbulence fluctuations and sound

with approximately the same characteristics is radiated. We next consider more directly

the influence of gas-dynamic mechanisms on the radiated pressure by altering the gas itself.

This leads to the wavy-wall model of section V, which further isolates mechanisms leading

to the sound intensity and its Sk, independent of structure.
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FIG. 9. Effect of the advection-based sources on the Reynolds stresses: (a) u′u′, (b) v′v′, (c) w′w′,

and (d) −u′v′.
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FIG. 10. Effect of the advection-based source modification on the pressure (a) intensity and (b)

skewness.

IV. MODIFIED GAS PROPERTIES

The insensitivity of the Mach waves to turbulence structure suggests that their key fea-

tures are more closely linked to the gas and its dynamics, which we alter by adjusting the
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Description M ∆U ps c∞ ρ∞
∂p
∂ρ|so 1

2
∂2p
∂ρ2
|so

baseline 0.9 0.9 0.0 1.0 1.0 1.0 0.2

stiffened 0.9s 2.5 4.8 2.8 1.0 7.7 1.5

baseline 2.5 2.5 0.0 1.0 1.0 1.0 0.2

relaxed 2.5s 0.9 −0.6 0.4 1.0 0.1 0.03

TABLE I. Simulation parameters for stiffened equation of state.

gas stiffness. Similarly, we assess the influence of the waves on the turbulence by strongly

damping them with a significantly increased bulk viscosity µb.

To adjust gas stiffness, we take

p = ρe(γ − 1)− γps, (13)

which recovers an ideal gas for ps = 0. This is a standard stiffened-gas model, which is

typically parameterized first with a ps that matches some shock speed then a γ to match

the sound speed

c2 ≡ ∂p

∂ρ

∣∣∣∣
s

=
γ(p+ ps)

ρ
. (14)

We adjust ps to either ‘stiffen’ (increase sound speed at fixed temperature) or ‘relax’ the

gas, keeping γ = 1.4. The parameters used, which are summarized in table I were selected

based on air-like M = 0.9 and M = 2.5 cases. For one new case, the gas for M = 0.9 is

stiffened, which is anticipated to augment any contribution of equation of state nonlinearity

to the observed pressure intensity and skewness. Similarly, a M = 2.5 case is simulated with

a relaxed gas, which is more easily compressed. The specific ps and γ are selected such that

the stiffened M = 0.9 (case 0.9s) free-stream momentum flux ρ∆U2 matches the baseline

M = 2.5 case. Likewise, the free-stream momentum flux of the relaxed-gas M = 2.5 (case

2.5s), matches that of the baseline M = 0.9 case.

Within the turbulence, the effect of gas stiffening is obvious in figure 11 (a). Relative to

the perfect gas limit, the stiffened gas has decreased density fluctuations for the same range

of pressure fluctuations, and vice versa for the relaxed gas in figure 11 (b). Of course, in

turbulence, the distributions do not collapse exactly along any p′ ∼ ρ′ line, due to entropy

fluctuations [48].
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FIG. 11. Effect of gas-stiffness on the joint pressure and density distribution at y = 0 when

δm/δ
o
m = 20 for (a) M = 0.9 and (b) M = 2.5. Iso-levels range from 1% to 90% and are filled

for the baseline case (ps = 0) and shown with just lines otherwise. For reference, isentropic

approximations to the gas laws are provided: linearized (dashed) and full (solid).

Despite these changes to the pressure–density distribution, figure 12 shows that the Reynolds

stresses for the same Mach numbers are essentially unchanged from the perfect gas limit.

The radiated pressure, quantified in figures 13 (a) and (b), also show relative independence

from gas stiffness, both for intensity and Sk, respectively. Even upon changing γ, figures 13

(c) and (d) show little change to pressure statistics beyond y & δ99.

The relatively small effect of significant gas stiffness on nonlinear dynamics is consistent

with the expansion of pressure for uniform entropy,

p(ρ) = p(ρ∞) + (ρ− ρ∞)
∂p

∂ρ

∣∣∣∣
so

+
1

2
(ρ− ρ∞)2∂

2p

∂ρ2

∣∣∣∣
so

+O[(ρ− ρ∞)3], (15)

where the linear- and quadratic-term coefficients are listed in table I for the cases considered.

Though (15) is approximate, the orientation (slope) of pressure-density distributions in

figure 11 confirm that this is a reasonable model. However, significant curvature is not

apparent, meaning that there is only a slight deviation from the linearized version of (15)

in figure 11 (b), and the nonlinearity of (15) is inconsequential. Other gas-dynamic effects

are more important for Sk and intensity.
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FIG. 12. Effect of gas-stiffness on the Reynolds stresses: (a) u′u′, (b) v′v′, (c) w′w′, and (d) −u′v′.
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FIG. 13. Effect of gas-stiffness on pressure (a) intensity and (b) skewness, and the effect of γ on

the pressure (c) intensity and (d) skewness.
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Gas stiffness is not a compressibility effect per se since it does not directly affect ∇ · u,

and indeed figure 14 (a) confirms its negligible effect on dilatation for the M = 2.5 relaxed-

gas case. To confirm that the intense near-field pressure waves do not couple strongly back

into the turbulence dynamics of the source, we suppress them by increasing the dilatational

dissipation via the bulk viscosity µb in the viscous stress tensor

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
+ µbδij

∂uk
∂xk

from its standard-case value µb = 0 up to 100µ. Though ideal gases are thought to have

large ranges of µb (µb/µ = 0 to 1000 [49]), and its effect has been studied for turbulence

dynamics in relatively extreme conditions [50, 51], the present numerical experiments use

µb simply as a means to assess the suppression of ∇ · u on the turbulence.

Despite strong damping of the radiation (figure 14 a through d) the turbulence stresses

are virtually unchanged, with maximum change of +8% for u′u′. This is consistent with

observations that the turbulence intensity is insensitive to compressibility per se; instead

it depends mostly on finite speed of sound effects, which in turn depend on the Mach

number M [48, 52]. The radiated waves remain directional, though they are obviously

thicker and weaker, especially for µb = 100µ. For |y| & 5 δm, the bulk viscosity decreases

the sound intensity and also its Sk, though Sk remains constant over the propagation range.

For the same M and Mt(y = 0), Sk is reduced for µb & 10µ supporting a link between the

Sk and sound intensity via gas-dynamic compressibility.
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FIG. 14. (a) The effect of µb on the average dilatation intensity across the mixing layers. (b–d)

Dilatation visualization at z = Lz/2 when δm/δ
o
m = 10: (b) µb/µ = 0, (c) 10, and (d) 100. The
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FIG. 15. Effect of bulk viscosity on the pressure (a) intensity and (b) skewness.

V. GAS-DYNAMIC MECHANISMS

Sections III and IV showed that the signatures of nonlinear wave dynamics in the radi-

ated pressure are insensitive to the turbulence structure and gas thermodynamic properties.

Suppressing fluid dilatation significantly suppressed the radiation and near-field velocity
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divergence, but it did not alter the turbulence intensities. Together, these observations sug-

gest that the wave features, including Sk, originate from nonlinear mechanisms distinct from

turbulence hydrodynamics.

To isolate the underlying mechanisms, we appeal to the established simple case of steady

supersonic flow adjacent to a wavy wall [36], which has been previously used in regard to

sound generation by turbulence [15], and now include quadratic nonlinearities. Figure 16

shows the basic configuration. The irrotational steady supersonic flow over a wavy wall at

y = εg(x, z) in figure 16 (a) has the boundary condition

u · ∇S = 0, (16)

where S(x) = y − εg(x, z) = 0. To order-ε at y = 0, this boundary condition is [36, 37]

ϕy = (1 + ϕx)εgx + ϕzεgz − ϕyyεg, (17)

where ϕ is a velocity potential such that u = U∞∇(x+ ϕ). The corresponding first-order

potential solution of the isentropic two-dimensional Euler equations is [18, 36, 53]

ϕ = − ε√
(M2
∞ − 1)

g
(
x− y

√
(M2
∞ − 1)

)
, (18)

and its normal velocity perturbations ϕy at the wall are proportional to the local slope of the

wall εgx. The bumps and depressions in the wall streamline generate disturbances that ra-

diate along their characteristics with constant strength at the Mach angle θ = sin−1(1/M∞).

Van Dyke [36] carried this analysis to order-ε2 using (17), which yields

p′

ρ∞U2
∞

=
εgx√

(M2
∞ − 1)

+
(γ + 1)M4

∞ − 4(M2
∞ − 1)

4 (M2
∞ − 1)2 (εgx)

2. (19)

The solution, interpreted as a y = 0 boundary condition on v per (17), is visualized in

figure 16 (b) and provides the analogy we analyze. In particular, we recognize in (19) that

the pressure has stronger p′ > 0 peaks for gx > 0 than corresponding p′ < 0 for gx < 0 and

thus Sk > 0. This is quantified (relative to the linear solution) in figure 16 (c) for M∞ = 1.75

free-stream velocity. The DNS data, also shown in figure 16 (c), tracks this behavior closely.

Of course, the DNS is not exactly isentropic as is the model. Still it all falls within a band,

tracking the wavy-wall model. This band thickness matches the observed entropy extrema

in the data (∆s = 2.5× 10−2 c?p). This value from the DNS is used to anticipate the bounds

displayed for the corresponding linear and order-ε2 wavy-wall results.
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FIG. 16. Uniform flow adjacent to a (a) wavy wall and (b) a corresponding v-velocity distribution

along y = 0. (c) The deviation of the boundary pressure distribution from the linear theory (p′l) for

the two-dimensional wavy wall M = 1.75 shown in (a,b). Modifications to the model formulation

for entropy change, ∆s = 2.5 × 10−2 c?p, is shown for reference (c?p is the constant-pressure heat

capacity).

An extension of the weakly nonlinear solution to three dimensions has not been found,

so direct simulations are used, with turbulence-based velocities providing boundary data.

The specific configuration is shown in figure 17 and solved using the same high-order finite-

difference methods as for the corresponding turbulence DNS [12]. The computational domain

is periodic in x and z with Lx × Ly × Lz = (34.8 × 20 × 12.8) δm and discretized with

Nx × Ny × Nz = 1536 × 801 × 512 uniformly spaced mesh points. For vw = ϕy in (17),

we use the y = 0 velocity from the turbulence DNS shown in figures 17 (b–d). The v′

component defines the effective shape of the wall g to order-ε, then with g, the y = 0 values

for u′ and w′ and the normal derivative of v′ form the remaining terms of the right side

of (17). Though not shown here, the sound is insensitive to spatial structure of the wall,

consistent with section III and shown in more detail elsewhere [13]. Within this model, we

can independently adjust both vw perturbations and the free-stream momentum flux ∝ U∞

to examine their respective roles in the near-field sound radiation.

For the free stream, the most obvious choice is U∞ = ∆U/2. However, this implies that

the Mach waves are generated just at y = 0, although the advection of the average velocity

perturbations follow closely to the local mean flow (with appropriate y-dependence) [54],

which is also shown in appendix III for the current shear-layer configuration. Based on
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FIG. 17. (a) Computational domain of supersonic flow adjacent to a plane of cross stream velocity

fluctuations. Spatial distributions of vw from (b) M = 1.5, (c) M = 2.5, (d) M = 3.0, and (e)

M = 3.5 DNS of mixing layers colored from −0.3 < vw/∆U < 0.3 velocities.

observed wave angle and the Mach-angle formula (1), we deduce an advection speed that

is faster than would be anticipated for M/2 (or ∆U/2) [12], similar to the observations

of Oertel [14] in shear-layer turbulence. In those experiments, the speed of the structures

correlated with

Mc =
1

2

(∆U + c∞)

c∞
, (20)

which also agrees with average wave angles near turbulence [12]. Thus, the free-stream Mach

M∞ is set using (20) for each mixing layer M as listed in table II. Additional simulations

are designed to assess sensitivity to this choice of M∞ and implications for how this might

influence the intensity and Sk. The vw boundary condition at y = 0 is implemented using

a standard simultaneous-approximation-term (SAT) approach designed for (17) [55]. The

boundary at y = Ly has a typical damping region that suppresses reflections into the domain

[13]. The initial transient solution is integrated to steady state with a standard fourth-order

Runge–Kutta scheme.

Figure 18 (a-b) shows that this kind of boundary condition and uniform advection pro-

duces an array of waves at Mach angle (θ ≈ 35◦) associated with the M∞ = 1.75 used for this

flow. The nominally linear field, shown in figure 18 (a), computed by the same methods but

with a factor of 10−4 reduced amplitude at y = 0, shows similar directional waves though
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M∞ Figure 17 frame vrms/c∞ of vw

1.25 (b) 0.150

1.75 (c) 0.255

2.00 (d) 0.296

2.25 (e) 0.343

TABLE II. Simulations of supersonic flow adjacent to wall-like disturbances.

these lack the shock-like structure of their nonlinear counterpart (b). The compressions

and expansions in this linear case also have approximately the same amplitude so Sk ≈ 0.

The waves in the DNS (figure 18 c) are similarly directional, but as expected, due to the

finite-time correlation of the turbulence, are finite along the wavefront. There are also ad-

ditional perturbations between the obvious compressions due to the turbulence character of

the source. Normal to the streamwise flow, figure 19 shows that the model also reproduces

the three-dimensional Mach-wave structure from turbulence, with arched waves that cross

one another. From this view, the limiting linear field (figure 19 a) little resembles the tur-

bulence DNS (figure 19 c). The qualitative similarities between the nonlinear model and the

turbulence DNS is partly due to large-scale eddies being long lived compared to the acoustic

time scales, which makes them more like stationary bumps. Turbulence integral time scales

(appendix III) relative to the acoustics confirms its slow evolution. Furthermore, perturba-

tions in high-Mach-number flow are more acoustically efficient than in subsonic flow, and

their radiation is relatively insensitive to the time dependence of their source [24, 56], which

facilitates further comparison between the turbulence and the steady-flow model to examine

its mechanisms.

In figure 18 (d), the p′ peaks of the linear-limiting case have similar magnitude and

rounded shape as the troughs; however, the nonlinear model flow reproduces the steep

compressions followed by shallower, rounded expansions seen in the DNS. This figure also

includes data from a Mach 2 jet [57], showing the similarity with the computed pressure

traces. The sharp compressions reach ≈ 4 p′rms, consistent with measurements [4, 58, 59] and

simulations [60] of jets. The domain average Sk,

〈Sk〉 =
1

Ly − w

∫ Ly−w

y=0

Sk(y) dy, (21)

neglecting the absorbing-sponge region (w = 5 δm), is shown in figure 20. Like the turbulence
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FIG. 18. Dilatation |∇ · u| < 0.1U∞/δm at z = Lz/2 for the M∞ = 1.75/M = 2.5 case: (a)

linear, (b) nonlinear, and (c) turbulence DNS. The dashed line at 35◦ from the x-axis indicates the

nominal Mach angle. The colormap in (c) correspond to |∇ × u| < 0.5 ∆U/δm. The dilatation in
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jet [57] at r/Dj ≈ 61 (based on the jet diameter Dj and jet velocity Uj).
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FIG. 19. Streamwise view of dilatation |∇ · u| < 0.1∆U/δm at z = Lz/2 for the steady M = 1.75

(a) linear and (b) nonlinear model and (c) y > 0 from the DNS M = 2.5. The colormap in (c)
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DNS, it increases approximately linearly with p′rms and also with M∞. The trend and

magnitude of Sk for 1.25 .M∞ . 2 also agrees with those observed in the turbulent mixing

layers. On the other hand, for the M = 3.5 turbulence, the model underpredicts Sk using

advection speed (20). This might suggest that larger advection speeds in the M = 3.5

turbulence are causing larger Sk, which is possible since Mach-like waves were observed at

even shallower angles than those corresponding to speeds in (20) [12].
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FIG. 20. Domain average skewness dependence on the (a) acoustic intensity at |y| = 20δm and (b)

the flow velocity U . The dotted lines in (a), ∝ (p′)2
1/2

, are separated by a factor of two in the

pressure intensity. In (b), for the wavy-wall model, the U/c∞ = M∞ are listed in table II. For

turbulence, an anticipated range of advection velocitiesare based on y-location mean speed u(y)

(see section II). The results are shown for U = ∆U/2 − u(y): y = 0 (symbol), y = ±1δm (inner

bar), and y = ±2δm (outer bar).

Both the two-dimensional (19) and the three-dimensional model flows show that Sk can

arise from both finite-fluctuation amplitudes ∼ (εgx)
2 and the free-stream momentum flux

∼ M∞. These are shown separately in figure 21. The Sk increases with M∞, up to Sk ≈
0.4 for M∞ & 1.5 in figure 21 (a). Rescaling vw at fixed M∞ shows the 〈Sk〉 < 0.4 for

vrms/c∞ < 0.2 so turbulence-like fluctuation levels are necessary to support the nonlinearity

producing the observed Sk. The approximate linear growth of Sk in figure 21 (b) with vrms

for 0 < vrms/c∞ < 0.2 is also consistent with instability amplitude dependence in figures 3 (c)

and (d). Dissipation mechanisms suppress Sk in the sound field [12], which likely contributes

to the leveling off of Sk for the more intense waves, while for the inviscid model (19), Sk

would increase with M∞.
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FIG. 21. Two routes to increasing Sk in the model flow: (a) due to mean flow M∞ and (b) due

to fluctuation intensity vrms/c∞. Filled symbols indicate the reference case in table II, M∞ = 1.75

and vrms/c∞ = 0.255, based on a corresponding M = 2.5 turbulence case.

VI. CONCLUSIONS

The main conclusion of this paper is that the peculiarly asymmetric pressure amplitudes

with Sk & 0.4 arise from a nonlinear gas-dynamic effect near, yet only one-way coupled, to

the turbulence source. A second-order extension of a wavy-wall model shows this in two

dimensions; a three-dimensional direct numerical simulation with a boundary condition in

the same asymptotic limit and based on a frozen turbulence field reproduces all the key

features: Sk values, Mach waves in x–y planes, curved and intersected shock-like waves in

z–y planes, and intensity to within a factor of two. The root of the Sk behavior is the non-

linearity intrinsic in gas dynamics. The usual assumption that sound does not significantly

affect the turbulence, which is a lynchpin of analysis of aerodynamic sound at lower speeds

[6, 7], is needed to make this statement, and this was confirmed by strongly suppressing the

amplitude and shock-like character of the radiation with elevated bulk viscosity. Similarly,

the turbulence was insensitive to the gas stiffness, so long as the momentum fluxes were set

to match the baseline flows. We similarly confirm that the key observations coincide with

the nonlinear saturation of linear instabilities, and simulations with source terms designed

to alter the turbulence structure show that it is not of primary importance for the observa-

tions. It is instead a consequence of finite-amplitude disturbances with relative supersonic

advection speed.
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I. APPENDIX: SUMMARY OF INSTABILITY–SATURATION SIMULATIONS

The results presented in section II summarized the main results from many simulations.

The parameters of these simulations are shown in table III for reference and completeness.
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M α β θ ωi ωr/α Uc/c∞

0.9 0.78 0.00 0 0.28 0.00 0.45

0.9 0.78 0.26 18 0.27 0.00 0.43

0.9 0.78 0.49 32 0.25 0.00 0.38

0.9 0.78 0.62 38 0.23 0.00 0.35

0.9 0.78 0.69 41 0.22 0.00 0.34

0.9 0.78 0.90 49 0.18 0.00 0.30

1.5 0.55 0.01 2 0.16 0.00 0.75

1.5 0.55 0.04 5 0.16 0.00 0.75

1.5 0.55 0.10 11 0.16 0.00 0.74

1.5 0.55 0.15 15 0.17 0.00 0.72

1.5 0.55 0.20 20 0.17 0.00 0.71

1.5 0.55 0.25 24 0.17 0.00 0.68

1.5 0.55 0.33 31 0.17 0.00 0.65

1.5 0.55 0.39 35 0.18 0.00 0.61

1.5 0.55 0.48 41 0.18 0.00 0.56

1.5 0.55 0.57 46 0.17 0.00 0.52

1.5 0.55 0.67 51 0.16 0.00 0.48

1.5 0.55 0.79 55 0.15 0.00 0.43

1.5 0.55 0.94 60 0.13 0.00 0.38

1.5 0.55 1.22 66 0.08 0.00 0.31

2.5 0.29 0.01 2 0.02 −0.27 1.51

2.5 0.29 0.11 21 0.02 −0.22 1.37

2.5 0.29 0.16 29 0.02 −0.18 1.25

2.5 0.29 0.19 34 0.02 −0.14 1.16

2.5 0.29 0.23 38 0.02 −0.07 1.04

2.5 0.29 0.24 40 0.03 0.00 0.96

2.5 0.29 0.28 44 0.06 0.00 0.90

2.5 0.29 0.31 47 0.07 0.00 0.86

2.5 0.29 0.33 49 0.08 0.00 0.82

M α β θ ωi ωr/α Uc/c∞

2.5 0.29 0.37 52 0.08 0.00 0.78

2.5 0.29 0.40 54 0.09 0.00 0.73

2.5 0.29 0.43 56 0.09 0.00 0.70

2.5 0.29 0.46 58 0.09 0.00 0.67

2.5 0.29 0.48 59 0.10 0.00 0.64

2.5 0.29 0.52 61 0.10 0.00 0.61

2.5 0.29 0.56 63 0.10 0.00 0.57

2.5 0.29 0.59 64 0.10 0.00 0.55

2.5 0.29 0.61 64 0.09 0.00 0.54

2.5 0.29 0.64 66 0.09 0.00 0.51

2.5 0.29 0.68 67 0.09 0.00 0.49

2.5 0.29 0.72 68 0.09 0.00 0.46

2.5 0.29 0.74 69 0.09 0.00 0.45

3.5 0.23 0.04 9 0.01 −0.45 2.17

3.5 0.23 0.13 31 0.01 −0.38 1.84

3.5 0.23 0.22 44 0.01 −0.30 1.48

3.5 0.23 0.25 48 0.01 −0.26 1.35

3.5 0.23 0.29 52 0.01 −0.21 1.22

3.5 0.23 0.33 56 0.01 −0.15 1.07

3.5 0.23 0.31 54 0.01 −0.18 1.14

3.5 0.23 0.32 54 0.01 −0.17 1.12

3.5 0.23 0.36 58 0.01 0.00 0.93

3.5 0.23 0.37 59 0.03 0.00 0.90

3.5 0.23 0.39 60 0.03 0.00 0.88

3.5 0.23 0.41 61 0.04 0.00 0.85

3.5 0.23 0.42 62 0.04 0.00 0.82

3.5 0.23 0.44 63 0.05 0.00 0.79

3.5 0.23 0.46 64 0.05 0.00 0.77

3.5 0.23 0.48 65 0.05 0.00 0.74

TABLE III. Simulation parameters of unstable modes.
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II. APPENDIX: SOUND SOURCES FROM ARTIFICAL SOURCE TERMS

For the simulations of section III, to which sources are added to alter the turbulence

structure, it is important to assess the direct consequences of these artificial additions as

direct acoustic sources. To do this we rearrange the governing equations, following the usual

approach of formulating an acoustic analogy [6], to form

∂2ρ

∂t2
− a2

o

∂2ρ

∂xi∂xi
=

∂2Tij
∂xi∂xj

+
∂M
∂t
− ∂Fi
∂xi

, (22)

where M and F are the effective mass and momentum sources due to the additional term,

and Tij = ρuiuj−σij +(p−a2
oρ)δij is the usual Lighthill stress. Of course, the added sources

also alter Tij, so T oij designates the corresponding Lighthill stress for unforced turbulence,

with M = 0 and Fi = 0. The space–time average of the sources in (22) are shown in

figure 22. Unlike low-Mach-number flow, we are not in a compact-source regime, and there

is no expectation of a quadrupolar (or similar cancelling polar character), which would

significantly suppress the efficiency of Tij as a sound source, so we simply make a direct

comparison. The acoustic sources due to the added mass and momentum sources are small

compared to the Reynolds stresses in Tij. For y . 5δm, the | (Tij)ij −
(
T oij
)
ij
| > | (M)t | +

| (Fi)i | result suggests that any change in the sound arises from turbulence Tij modifications,

which results in section III confirm do not change significantly.

S =

y
=

1 2
� 9

9

0 2 4 6

0

1

|y|/�m

S
� �o m

2
/�

U
2
⇢
1
�

�
T o

ij

�
ij

(Tij)ij

(M)t

(Fi)i

⇥10�4

FIG. 22. The effect of turbulence modification for A = 2 on acoustic sources.
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III. APPENDIX: TURBULENCE ADVECTION SPEED

To examine advection velocities in high-speed free-shear turbulence, we use the space-time

correlation of streamwise velocity perturbations

Cxt(∆x,∆t, y) =
u′(x, y, z, t)u′(x+ ∆x, y, z, t+ ∆t)

u′(x, y, z, t)u′(x, y, z, t)
, (23)

some of which are shown in figure 23 (a) for M = 2.5. Figure 23 (b) shows an integral

space–time scale defined by

L(U , y) =

∫
Cxt(U∆t,∆t, y) d∆t, (24)

which is parameterized by velocity U = ∆x/∆t. The U that maximizes (24), Uxt, is con-

firmed to agree with the orientation of correlation contours in figure 23 (a). Due to the

symmetry of the flow, the same space–time advection velocities, with opposite sign, are

found for y < 0. Shown in figure 23 (c), this deduced turbulence speed at discrete y is close

to the local mean streamwise velocity profile, Uxt ≈ u, which is similar to behavior observed

in simulated boundary layer turbulence [61]. Similar results confirm that this behavior holds

for the range of 0.9 .M . 3.5 of interest here.
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FIG. 23. (a) Space-time correlations of streamwise velocity perturbations for M = 2.5 between

0 ≤ y/δm ≤ 3. Five levels indicate normalized correlations from 0.5 ≤ Cxt ≤ 0.9 and dashed

lines indicate the direction along the maximum integral space-time scale shown in (b) with the

maximum indicated by triangles. (c) The advection velocity based on the direction of maximum

integral space-time correlation compared to the mean streamwise velocity.
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