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Abstract

We simulated two particle-based fluid models, namely multiparticle collision dynamics and dis-

sipative particle dynamics, under shear using reverse nonequilibrium simulations (RNES). In cubic

periodic simulation boxes, the expected shear flow profile for a Newtonian fluid developed, con-

sistent with the fluid viscosities. However, unexpected secondary flows along the shear gradient

formed when the simulation box was elongated in the flow direction. The standard shear flow

profile was obtained when the simulation box was longer in the shear-gradient dimension than the

flow dimension, while the secondary flows were always present when the flow dimension was at least

25% larger than the shear-gradient dimension. The secondary flows satisfy the boundary conditions

imposed by the RNES and give a total flow field with a lower rate of viscous dissipation than the

corresponding unidirectional flows. This work highlights a previously unappreciated limitation of

RNES for generating shear flow in simulation boxes that are elongated in the flow dimension, an

important consideration when applying RNES to complex fluids like polymer solutions.
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I. INTRODUCTION

The reverse nonequilibrium simulation method (RNES) developed by Müller-Plathe [1, 2]

is a well established technique for computing transport coefficients of particle-based fluid

models. It was initially proposed as a method to determine thermal conductivity [1] and

was later extended to the shear viscosity [2]. RNES has been used to calculate the thermal

conductivity of simple liquids [1, 3], salts [4], carbon nanotubes [5, 6], and silicon [7]; to

study the Ludwig–Soret effect [3, 8]; and to measure the shear viscosities of simple fluids [9],

polymer solutions and melts [10–12], ionic liquids [13], alcohols [14], and water [15]. RNES

has also been successfully applied to more complex systems under shear, including colloidal

suspensions of nanoparticles [16–20], surfactant solutions [21], and asphalt [22]. More re-

cently, RNES was used not only to compute transport properties, but also to investigate

dynamic phenomena like the shear-induced reorientation of diblock-copolymer lamellae [23]

and the aggregation of patchy particles in flow [24].

The underlying idea of RNES is to impose an “effect” on a system in an unphysical way

and measure the “cause”. In many nonequilibrium simulation techniques, a gradient (cause)

is imposed and a flux (effect) is measured [25], but RNES reverses this picture. For example,

in RNES, stress can be generated by an unphysical transfer of momentum between particles

[2], driving the system out of equilibrium and resulting in a physical momentum flux. The

stress gives rise to a corresponding flow profile that can be measured. Given an imposed

flux and measured gradient, the relevant transport coefficient (e.g., shear viscosity) can be

extracted within the linear-response regime.

RNES possesses many desirable properties of a nonequilibrium method [1, 26]. It is

quickly convergent compared to equilibrium methods, such as the Green–Kubo relations

[27], to determine transport coefficients. RNES is compatible with a multitude of different

particle-based models. It also does not require a specific simulation box geometry and ac-

commodates periodic boundary conditions, which eliminates artificial wall effects that could

cause measured fluid properties to differ from the bulk in small, wall-bounded simulation

boxes [28]. Additionally, RNES can be made to conserve momentum and energy and acts

as its own thermostat [26], avoiding the challenges of applying an external thermostat out

of equilibrium [29]. Because of its straightforward implementation and flexibility, RNES

is widely used and is implemented in many simulation packages, including LAMMPS [30],
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FIG. 1. Streamlines in the xz-plane for the flow induced by RNES in (a) a cubic box (80 a×80 a×

80 a) and (b) an orthorhombic box (125 a × 80 a × 80 a). Color indicates the x-component of the

velocity, vx. Gray horizontal lines mark the exchange slabs of width w = 1 a at z = ±20 a.

HOOMD-blue [31], OPENMD [32], and ESPResSo [33].

Despite these many positive attributes, we have uncovered a previously unappreciated

limitation of RNES for simulating shear flow. We applied RNES to two different model

fluids in various simulation box geometries. Unexpectedly, we obtained not only standard

shear flow (Fig. 1a), but also more complicated flow patterns (Fig. 1b) in certain non-cubic

boxes with periodic boundary conditions. In those cases, the flow had significant secondary

components along the shear gradient, and the shear stress did not have constant magnitude

throughout the system. Such flows are undesirable because they severely complicate the

calculation of the shear viscosity using RNES.

In this article, we systematically interrogate the flow field, stress, and viscous dissipation

in RNES as functions of the simulation box geometry and the shear rate to determine why

and when RNES does not generate the expected shear flow. We show that the secondary

flows emerge due to the periodic boundary conditions and are not specific to the fluid model

or the RNES algorithm, suggesting a hydrodynamic instability inherent to the flow and

geometry. The rest of the article is organized as follows. The RNES algorithm and its

known properties and features are explained in Sec. II. The simulation details and fluid

models are described in Sec. III. Our results are presented and discussed in Sec. IV and are

followed by our conclusions in Sec. V.
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II. RNES ALGORITHM

We first summarize details of the RNES algorithm for simulating shear flow and its known

features and limitations. The simulation box is defined to be of size Lx × Ly × Lz, with

x being the direction of flow and z being the direction of the shear gradient (Fig. 2). The

box is periodic in all three dimensions. In the RNES algorithm [2], two exchange slabs

of width w are constructed at z = ±Lz/4. At regular intervals ∆t during the simulation,

pairs of particles are selected from the slabs and their momenta are swapped. The particle

with the most negative momentum in the flow direction, p−x , is selected from the upper

slab, while the particle with the most positive x-momentum, p+x , is chosen from the lower

slab. An unphysical swap move exchanges p−x and p+x , resulting in a transfer of momentum

∆px = p+x − p−x . The exchange of momentum generates a physical momentum flux with a

corresponding shear stress, τzx, at steady state [2]:

τzx =
〈∆px〉

2LxLy∆t
. (1)

Here, 〈∆px〉 denotes the average amount of momentum exchanged during the interval ∆t,

and the factor of 2 is due to the periodic boundary conditions. If both particles in the

swapped pair have the same mass, the total momentum and kinetic energy of the system

are conserved during the momentum transfer.

The imposed stress is expected to generate a flow field v. Assuming the steady, in-

compressible flow of a Newtonian fluid, the standard continuity equation and momentum

balances governing the flow are [34]

∇ · v = 0 (2)

ρv · ∇v = −∇p+∇ · τ , (3)

where ρ is the density, p is the pressure, and τ = µ(∇v + (∇v)T ) is the viscous stress tensor

with µ being the shear viscosity. We approximate the exchange procedure by a constant

shear stress τzx at the center of the exchange regions (z = ±Lz/4) and a uniform pressure,

which implies that there is no flow in y or z. Applying the periodic boundary conditions of
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FIG. 2. Sketch of the simulation box of dimensions Lx × Ly × Lz, where x is the flow direction

and z is the gradient direction. The two exchange slabs of width w are located at −Lz/4 (bottom,

blue) and +Lz/4 (top, red). Unphysical momentum swaps between pairs occur in the top and

bottom slab, driving a shear-induced physical momentum flux back (green). The expected velocity

field given by eq. 4, vx(z), is sketched in blue.

the simulation box gives the steady-state shear flow field, vx(z),

vx(z) =


γ̇(−Lz/2− z), z < −Lz/4

γ̇z, |z| < Lz/4

γ̇(Lz/2− z), z > Lz/4

, (4)

where γ̇ = τzx/µ is the shear rate in this geometry. This flow field is illustrated in Fig. 2.

Note that due to the periodic boundary conditions, the standard Couette flow (|z| < Lz/4)

is extended outside the exchange regions, resulting in an overall triangular profile. In RNES,

the width of the exchange regions w should be as small as possible to minimally disturb this

expected flow field [23], while still keeping the regions large enough to contain a sufficient

number of swapping pairs.

The imposed shear stress can be used to determine the shear viscosity µ from the measured

flow field within the linear-response regime,

τzx = µ

〈
∂vx
∂z

〉
=

 µγ̇, |z| < Lz/4

−µγ̇, |z| > Lz/4
. (5)

The shear rate γ̇ can be varied by tuning the momentum exchange rate to change τzx, and

µ is usually extracted from a series of measurements at different γ̇. RNES has technical
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limitations at both very low and very high shear rates. For low shear rates, infrequent

momentum swaps may not lead to a steady flow profile [35, 36]. Analogous problems have

been reported for the determination of thermal coefficients using RNES [7]. As suggested

in Ref. 36, this issue can be partially alleviated with a weaker, more frequent exchange of

momentum, e.g., by choosing pairs with momenta close to a target value instead of the

maximum [35]. This modification allows the flow rate to be tuned more precisely [35, 37],

and also leads to a weaker system-size dependence and better convergence of the measured

viscosity [37]. For high shear rates, the velocities in the exchange regions deviate from the

expected Boltzmann distributions [35]. The velocity distribution in the lower slab develops a

shoulder towards lower values, whereas the distribution in the upper slab develops a shoulder

towards higher values because the imposed momentum transfer exceeds the system’s ability

to thermalize. In this case, RNES significantly underpredicts viscosities relative to other

computational methods [35]. The numerical bounds on the accessible shear rates depend on

the fluid model and must be determined carefully by trial and error.

The RNES algorithm does not specify a box size or shape, and different geometries have

been chosen by different authors. For example, Müller-Plate [1] originally used a box that

was three times longer in the gradient direction than in the flow direction (Lz = 3Lx).

Nikoubashman and Howard chose Lz = Lx to simulate polymer solutions in shear [11], while

Schneider et al. utilized boxes with Lz ranging from 2Lx to 4.6Lx to study reorientation of di-

block copolymers melts [23]. Generally, and as is standard in molecular simulations [38], the

simulation box must be large enough in all dimensions to avoid unphysical self-interactions

through periodic boundaries, particularly between macromolecules like polymers. Since

many macromolecules align and stretch with the flow [39], the simulation box can similarly

be expanded along the flow dimension to match the expected deformation (Lx > Lz). This

geometry reduces the overall computational cost of the simulation compared to expanding

the box in all dimensions. However, as we will show in Sec. IV, elongating the box in the

flow dimension has previously unknown and undesirable consequences for RNES.

III. SIMULATION MODELS

We applied RNES to simulate shear flow for two fluids, one modeled using multiparticle

collision dynamics (MPCD) [40, 41] and the other using dissipative particle dynamics (DPD)
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[42–44]. Both MPCD and DPD are particle-based mesoscale models that faithfully resolve

hydrodynamic interactions and incorporate the effects of thermal fluctuations [45]. These

models were chosen for their computational efficiency, but we were able to obtain similar

results with a more computationally demanding Lennard-Jones fluid model using RNES

with conventional molecular dynamics simulations [2]. In this article, we will describe the

model parameters and our results using a as the unit of length, ε as the unit of energy, and

m as the unit of mass. In this system of units, τ =
√
ma2/ε is the unit of time.

The MPCD fluid consisted of point-like particles of mass m. The particle positions and

velocities were propagated in alternating streaming and collision steps [40, 41]. Particles

moved ballistically during the streaming step and were subsequently binned into cubic cells

of size a. The particle coordinates were collectively shifted by a random value between

±a/2 during binning to ensure Galilean invariance [46, 47]. In the ensuing collision step,

the particle velocities relative to the cell-average velocity were rotated by a fixed angle α

around an axis randomly chosen from the unit sphere for each cell. This collision procedure,

also called stochastic rotation dynamics, conserves linear momentum in each cell and so also

globally.

The properties of the MPCD fluid are controlled by the particle number density, the

rotation angle, the temperature, and the time between collisions [40, 41, 48]. We chose

the density as ρ = 5 a−3 and the rotation angle as α = 130◦, and performed a collision

every 0.1 τ . We additionally applied a Maxwell–Boltzmann rescaling thermostat [49, 50]

to each cell to maintain a constant temperature T = 1.0 ε/kB throughout the fluid, where

kB is Boltzmann’s constant. Since a thermostat is not required in RNES, we confirmed

that removing the thermostat did not qualitatively change our results. The viscosity µ can

be estimated for the MPCD fluid using kinetic theory [51], giving µ = 3.96 ετ/a3 for our

parameters.

The DPD fluid [42, 52] was also represented by particles of mass m. A conservative force,

a dissipative force, and a random force acted between pairs of particles within a distance

rc of each other. The dissipative and random forces were consistent with the fluctuation–

dissipation theorem and conserved local momentum. Details of the functional forms of the

DPD interactions can be found in Ref. 44. We employed standard parameters: a maximum

conservative force of 25 ε/a, a drag coefficient of 4.5m/τ for the dissipative force, a cutoff

of rc = 1 a, and an integration time step of 0.01 τ [44]. The particle number density was
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ρ = 3 a−3 [44, 53], and the temperature was T = 1.0 ε/kB.

We determined the viscosity of the DPD fluid for our parameters using RNES in cubic

boxes with edge lengths ranging from 25 a to 65 a, finding µ = 0.87 ετ/a3. We independently

validated the RNES measurement using the periodic Poiseuille flow method [54]. We divided

the simulation box into two domains with z < 0 and z ≥ 0 and applied a constant body

force with equal magnitude but opposite direction (±x) between the regions. We extracted

the viscosity by fitting the velocity profile to the expected parabolic form [54]. The obtained

value of µ = 0.87 ετ/a3 was in good agreement with the RNES measurement and values

reported elsewhere [55].

All simulations were performed on graphics processing units using HOOMD-blue (modi-

fied version 2.3.0) [31, 56–58] with our own implementation of RNES [59]. We additionally

reproduced selected results for the MPCD fluid using another implementation [60] and for

the DPD fluid using LAMMPS (11 Aug 2017) [30, 61]. An example LAMMPS script for

simulating the DPD fluid is included as supplemental material [62].

IV. RESULTS AND DISCUSSION

We first simulated the MPCD fluid in two boxes: a cubic box of size 80 a × 80 a × 80 a

and an orthorhombic box, elongated along the flow direction, of size 125 a×80 a×80 a. The

slab exchange width was w = 1 a, and the swapped particles were chosen to have momenta

closest to a target value of ±0.5ma/τ . We swapped 202 pairs in the cubic box and 316 pairs

in the orthorhombic box (0.6% of particles in the exchange regions) every step, resulting in

the same imposed stress (τzx = 0.158 ε/a3) for both boxes. The cubic box developed the

expected triangular velocity profile (eq. 4) with extrema in the exchange regions (Fig. 1a).

No flows occurred in either of the other directions (vy = vz = 0). We extracted a viscosity

of µ = 3.95 ετ/a3 from the measured flow field using eq. 5, in quantitative agreement with

the viscosity estimated from kinetic theory.

We expected that applying the RNES method in the orthorhombic box should result

in the same velocity profile because the same stress was applied; surprisingly, a markedly

different flow field developed (Fig. 1b). The average velocity in the exchange regions was

still along x as expected, but substantial flows along the shear gradient (z) were also ob-

tained, giving an overall two-dimensional flow field (vy remained zero). A movie of the

8



three-dimensional streamlines as they develop from a quiescent fluid can be found in the

supplemental material [62]. The resulting streamlines exhibited two vortices and two stag-

nation points, with one of each between the exchange slabs. The vortices and stagnation

points were stationary during the accessible simulation time. The DPD fluid under shear

had the same qualitative behavior as the MPCD fluid, indicating that this surprising flow

field is not specific to the MPCD model. We have extensively tested and verified that the

momentum exchanged between the slabs is in agreement with the expected value in all sim-

ulated systems and that all flow fields satisfy the continuity equation (eq. 2). An example

of this calculation can be found in Fig. S1 [62].

One possible explanation for the presence of vortices in the flow could be the emergence

of turbulence in the Couette flow. To estimate this effect, we defined a Reynolds number

Re = ρULz/4µ based on the maximum velocity in the exchange slabs U and the half-width

between the exchange slabs, Lz/4. It has been shown that the transition from laminar to

turbulent flow in planar Couette flow can occur for Reynolds numbers as low as Re ≈ 300

[63–65]. For Fig. 1a, the Reynolds number is Re ≈ 20, which is well-below the laminar–

turbulent transition for the classical Couette flow. Expanding the box along x does not

change Re, and so turbulence based on the flow is not expected for the orthorhombic box

either. To exclude possible finite-size effects, we performed a simulation in a box of size

125 a× 80 a× 125 a at Re = 20 as well as at Re = 50 and obtained only flows like Fig. 1a.

As an additional stability test, we introduced two vortices and two stagnation points

into a cubic box (80 a × 80 a × 80 a) and followed the evolution of the flow. The vortices

dissipated completely after 70000 τ and the flow returned to the expected triangular flow

profile. This shows that the expected shear flow is not metastable with respect to the vortices

for the cubic box. Likewise, we initialized the expected shear flow in an orthorhombic box

(125 a × 80 a × 80 a) and observed the emergence of vortices from the triangular flow on a

similar timescale. The final steady state was independent of how the fluid was initialized

for both box shapes.

One of the benefits of using the RNES method is the ability to readily compute the shear

viscosity from simulations from a simple shear flow profile (eq. 5). The secondary flows in

the orthorhombic box effectively prevent this calculation and are undesirable for simulating

simple shear. In the next sections, we investigate the local shear stress (Sec. IV A), the effect

of boundary conditions (Sec. IV B), and the viscous dissipation in the fluid (Sec. IV C) to
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FIG. 3. Local shear stress τzx/µ in the fluid in (a) a cubic box and (b) an orthorhombic box for

the flow fields of Fig. 1. The expected values based on eq. 5, τzx/µ = ±0.04 τ−1, are indicated by

arrows on the color bar.

understand when and why the secondary flows appear so that they can be avoided.

A. Shear Stress

In deriving the expected shear flow field (eq. 4), we assumed that the shear stress in

the exchange regions was constant and equal to the value imposed by RNES. In order

to test this assumption, we computed the viscous stress tensor τ from the measured flow

fields. Fig. 3 shows the shear stress, τzx, corresponding to the flows in Fig. 1. The cubic box

(Fig. 3a) exhibited the expected step function behavior (eq. 5), τzx/µ = ±0.04 τ−1. Only the

exchange regions of width w = 1 a at z = ±20 a deviated from the expected values, showing

a shear stress close to zero. This is not surprising because the stress in the fluid should vary

continuously. In contrast, the shear stress in the orthorhombic box (Fig. 3b) was strongly

position dependent. The shear stress was lower near the vortices and stagnation points, but

exhibited localized areas of significantly higher stress close to the exchange regions.

In order to confirm that the width of the exchange region w did not significantly affect

the viscous stress, we systematically decreased w for both the MPCD and DPD fluids. Since

the number of possible pairs to swap decreased with w, we chose a lower target shear stress

than in Fig. 3, using τzx = 0.068 ε/a3 for MPCD and τzx = 0.015 ε/a3 for DPD, which gives

an expected shear rate of γ̇ = 0.0172 τ−1 for both fluids. The computed shear stress was

averaged over x to give the average stress, 〈τzx〉, as a function of z.

For the cubic box (Fig. 4a), 〈τzx〉 was again a step function for both fluids outside the

exchange regions, as expected, regardless of the width, but some deviations were observed
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FIG. 4. Average shear stress 〈τzx〉 in (a) a cubic box (80 a×80 a×80 a) and (b) an orthorhombic box
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from 0.2 a to 1.0 a as indicated in the legend. The expected step function, τzx/µ = ±0.0172 τ−1, is

shown as a dashed line.

near the exchange regions. The stress profile for the MPCD fluid was rounded and increased

in steepness with decreasing w, whereas the shear stress in the DPD fluid overshot the

expected value close to the exchange region by an amount that increased with decreasing

w. The overshoot in shear stress corresponds to the velocity being larger than expected

near the exchange region, which is consistent with previous simulations of DPD models [23].

The rounded stress profile for the MPCD fluid is similarly consistent with rounding of the

velocity profile in the exchange region that has been reported elsewhere [19].

For the orthorhombic box (Fig. 4b), both fluids showed a significant reduction in 〈τzx〉
outside the exchange regions compared to the cubic box. As for the cubic box, the exchange

region width again did not influence the value of the stress in these regions. Also consistent

with the cubic box, the DPD fluid had stress overshoot in the exchange region, whereas the

MPCD fluid had a rounded profile. Most significantly, we note that 〈τzx〉 in the exchange

regions was essentially indistinguishable between the cubic and orthorhombic boxes. Al-

though the shear stress in the exchange regions of the orthorhombic box was not constant,

the RNES algorithm still imposed the same average stress in the exchange regions for both
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simulation boxes.

B. Boundary Conditions

Our shear stress measurements suggest that the RNES method imposes boundary con-

ditions that are inconsistent with the assumptions used to derive eq. 4: namely, a constant

shear stress τzx at z = ±Lz/4 and a unidirectional flow (vy = vz = 0). In the previous sec-

tion, we showed that RNES imposes the average shear stress in the exchange regions. This

is a weaker boundary condition than a constant stress and does not enforce that vz = 0.

Clearly, vz 6= 0 for the orthorhombic box (Fig. 1b).

To test the influence of including the condition that vz = 0 in RNES, we inserted two

smooth, hard walls into the orthorhombic box just outside the exchange regions, effectively

simulating half of the system (|z| < Lz/4). We performed this test only for the MPCD fluid,

which does not exhibit local structuring near a wall. The MPCD particles were reflected

from the hard wall using bounce-back reflections for a slip boundary condition. The walls

enforce that vz = 0 since the fluid cannot penetrate the hard surface, but the slip boundary

condition does not modify the flow tangent to the surface. We then applied the RNES

momentum exchange procedure to the fluid. We found that only the expected shear flow,

vx(z), formed between the exchange regions, even in boxes with Lz > Lx, as shown in Fig. 5b.

From this test, we conclude that secondary flows only form in RNES for fully periodic boxes

that are subject to an average stress boundary condition but do not constrain vz = 0.

Because the previous test restricted the flow field to only one half of the RNES with

periodic boundary conditions, we also inserted two smooth, hard no-slip walls at z = ±Lz/2,

effectively replacing the periodic boundary condition in one dimension while keeping the rest

of the system unchanged. We included virtual MPCD particles [66, 67] at random positions

in the walls with velocities drawn from the Maxwell-Boltzmann distribution to help enforce

the no-slip condition. In this case, the entire flow field given by eq. 4 is recovered, as shown

in Fig. 5c. To test possible finite size effects, we repeated the simulation in a box twice as

big in the x and z dimensions and did not observe a difference in flow behavior.

Because the RNES algorithm chooses particles to swap based on their momenta in the

flow direction, the distribution of the positions of the selected particles in the slabs was not

uniform once the secondary flows developed. To test the extent to which the secondary flows
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FIG. 5. Streamlines in the xz-plane for the flow induced by RNES in (a) an orthorhombic box

(125 a× 80 a× 80 a) with periodic boundary conditions in all dimensions, (b) in the same box with

slip walls placed at z = ±20.5 a, and (c) in the same box with no-slip walls placed at z = ±40 a.

Color indicates the x-component of the velocity, vx. Gray horizontal lines mark the exchange slabs

of width w = 1 a at z = ±20 a.

depend on this RNES-specific momentum exchange procedure, we considered an alternative

nonequilibrium scheme for generating shear flow. We applied constant, opposite body forces

to all particles in the exchange regions instead of the usual RNES momentum swaps. (Each

particle in the upper slab experienced a force +∆f in the x-direction, while particles in the

lower slab had a force −∆f in the x-direction.) Although the method of generating the flow

was different, the resulting flow profiles and stress distributions were identical to the ones

obtained by the RNES swaps when the average stress was matched. Together, these tests

reveal that the emergence of the secondary flow is not unique to the reverse nonequilibrium

method by which the flow was created, but rather appears to be an effect of the periodic

boundary conditions with the targeted flow field.

C. Viscous Dissipation

We have demonstrated that the unexpected secondary flows generated by RNES for

simulation boxes that are elongated in the flow dimension are consistent with the continuity

equation and average momentum flux imposed by RNES and appear to form due to the

periodic boundary conditions in certain boxes. However, it is still unclear when and why

a certain flow field is realized for a given simulation box. We use the total rate of viscous

dissipation, Φ, [34]

Φ[v(r)] =

∫
dr τ [v(r)] : ∇v(r), (6)
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as an order parameter to detect the transition from the expected shear flow to the regime

containing secondary flows. (Other choices like the maximum value of vz are possible if

the direction of the secondary flow is known in advance.) The rate of viscous dissipation

is directly proportional to the rate of entropy production in an isothermal, incompressible

flow [34, 68]. The expected viscous dissipation for the flow field given by eq. 4, Φ0, can be

computed analytically as Φ0/V = µγ̇2, where V = LxLyLz is the volume of the simulation

cell.

To test if the rate of viscous dissipation detects the different flow profiles, we simulated

the MPCD and DPD fluids in rectangular boxes with aspect ratios varying from Lx/Lz = 0.5

to 2.7. We performed the simulations at both a fixed shear stress and a fixed maximum

velocity according to eq. 4. For the fixed shear stress simulations for the MPCD fluid, we

varied Ly = Lz from 80 a to 125 a, and kept the area A = LxLy of the exchange region

constant at A = 1002 a2. The DPD fluid simulations at fixed shear stress were performed in

boxes with a exchange slab area of A = 502 a2 and varied Lz from 30 a to 65 a. For the fixed

maximum velocity simulations we picked boxes with Lx = Ly = 100 a and varied Lz from

50 a to 125 a for the MPCD fluid. Similarly, the DPD fluid simulations were performed in

boxes with Lx = Ly = 50 a and Lz from 28 a to 60 a. Averaged velocity profiles 〈vx〉 and

〈vz〉 can be found in Figs. S2 and S3 [62].

We then computed the total viscous dissipation Φ from the measured flow fields using

eq. 6. As demonstrated in Sec. IV A, the simulated flow field deviated from the theoretically

expected profile near the exchange slabs even when no secondary flows occurred. To better

facilitate comparison between the simulations and theory, we excluded the exchange slabs

of size w = 1 a from both the theoretical and numerical calculations of Φ. We confirmed

that neglecting these regions did not qualitatively change our findings, although it did lead

to a small, constant shift of at most 5% in the reported values of Φ.

We calculated the total viscous dissipation Φ for both the MPCD and DPD fluids for

various different box aspect ratios Lx/Lz at a constant average shear stress (Fig. 6a) and

a constant maximum velocity, resulting in a varying shear stress (Fig. 6b). The viscous

dissipation measured from the velocity gradients agreed with the theoretical predictions

for all cases where the box aspect ratio was smaller than approximately Lx/Lz < 1.05.

Above a critical value of approximately Lx/Lz > 1.25, the total viscous dissipation dropped

significantly, concomitant with the emergence of secondary flows. The flow field that is
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FIG. 6. (a) Total viscous dissipation Φ as function of box shape for fixed average shear stress of

τzx/µ = 0.04 τ−1 for the MPCD fluid and τzx/µ = 0.0688 τ−1 for the DPD fluid. (b) Total viscous

dissipation for fixed maximum velocity in the exchange regions. Note that dissipation in the RNES

exchange regions has been excluded from Φ in both the numerical and theoretical calculations.

realized in the simulation appears to minimize the total viscous dissipation. The maximum

value of vz showed a similar step-like behavior, increasing with respect to Lx/Lz, indicating

that it is also a viable order parameter when the secondary flows in z are known to exist.

We subsequently investigated the shear rate dependence of the secondary flows using Φ

as a parameter to identify the two different flow field types. We simulated both fluids at

different momentum exchange rates in various box sizes and calculated Φ (Fig. 7). We found

that the system showed significant hysteresis effects for box aspect ratios Lx/Lz between

1.05 and 1.25. We initialized two simulations for each box geometry and shear rate: one with

a flow field given by eq. 4 and the other with two vortices superimposed by an additional

component vz(x) ∼ cos (2πx/Lx). For lower shear rates, the two different flows quickly

converged to the same viscous dissipation and the same flow profile. For the higher shear

rates, the two systems did not converge during the length of the simulation run of 600 000 τ

for MPCD and 70 000 τ for DPD. We therefore report both measured values of the viscous

dissipation in those cases.

For both fluids and all shear rates, secondary flows formed when Lx/Lz > 1.25. The drop

in the viscous dissipation was most pronounced for the biggest perturbations, even when

scaled relative to Φ0. The viscous dissipation varied only weakly for the lowest perturbation,

but weak secondary flows still developed in the elongated boxes, as shown in Fig. S4 [62].

We were unable to detect a lower critical shear rate to avoid secondary flow within the

simulation accuracy, although the the secondary flows must vanish, along with the expected

15



1.00 1.25
Lx/Lz

0.2

0.4

0.6

0.8

1.0

Φ
/Φ

0

τzx/µ

(a)

0.04
0.03
0.02
0.015
0.01

1.00 1.25
Lx/Lz

0.2

0.4

0.6

0.8

1.0

Φ
/Φ

0

τzx/µ

(b)

0.069
0.046
0.023
0.012

FIG. 7. Ratio of measured to expected viscous dissipation, Φ/Φ0, for the (a) MPCD fluid and (b)

DPD fluid in simulation boxes of varied aspect ratio, Lx/Lz, and expected shear stress, τzx/µ. The

shear rates are indicated in the legends.

shear flow, when τzx/µ goes to zero.

Because of the hysteresis, it was difficult to estimate a precise box aspect ratio for the

emergence of the secondary flows. As visible in Figs. 6 and 7, boxes which were cubic

or elongated in the gradient dimension (Lx ≤ Lz) always developed the expected shear

flow. In contrast, simulations in boxes with Lx/Lz > 1.25 always converged to a flow

profile containing secondary flows. Since it can be challenging to detect the secondary flows

without careful sampling of the three-dimensional velocity field, we advocate applying the

RNES method for generating shear flow only when Lx ≤ Lz.

V. CONCLUSIONS

In this work, we showed that the RNES method for simulating shear flow can generate

unexpected secondary flows, which do not allow a reliable calculation of the shear viscosity,

in simulation boxes that are elongated in the flow dimension. We demonstrated these flows

occurred over a range of box sizes and shear stresses for two different fluid models, revealing

that the effect is general. Indeed, we were also able to reproduce the same trends for a

Lennard-Jones fluid using RNES with classical molecular dynamics simulations, which we

have omitted from this article for brevity. Although it was challenging to precisely identify

the box geometries leading to secondary flows due to hysteresis effects, we showed that no

secondary flows formed during the accessible simulation time for aspect ratios, Lx/Lz, below

1.05, while they always occurred for ratios above 1.25. Weak secondary flows were obtained
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even for very low shear rates, indicating that there was no detectable lower threshold within

the accuracy of the simulations.

The flow fields in both the cubic and elongated boxes were shown to be consistent with the

same boundary condition on the average stress imposed by RNES. However, this boundary

condition did not constrain the velocity along the shear gradient, vz. When the RNES

boundary conditions were augmented by hard walls to obligate vz = 0, the secondary flows

were suppressed and the expected Couette flow profile was recovered. This test demonstrated

that the periodic boundary conditions of the simulation box were needed to obtain the

secondary flows. For elongated simulation boxes, the fact that the RNES algorithm is

compatible with periodic boundary conditions turns out to not be a feature, but rather the

origin of the undesired behavior.

We measured the velocity fields to calculate the stresses and viscous dissipation. We

showed that the viscous dissipation is a good predictor for the emergence of secondary

flows, with the total viscous dissipation dropping significantly compared to the theoretically

expected value when the secondary flows occurred. The amount of reduction in viscous

dissipation depended on the shear rate, with a greater reduction relative to the expected

value at higher shear rates. We speculate this behavior may be due to an underlying hydro-

dynamic instability with respect to the boundary conditions in this particular geometry and

flow. The stability analysis of the Navier–Stokes equations for RNES is left as an intriguing

subject of future work.

This study reveals a previously unappreciated limitation of the RNES method. We found

that only boxes which are approximately cubic or elongated in the shear-gradient dimension

can be reliably used to simulate standard shear flow, especially for higher shear rates. This

has important implications for recent applications of RNES to study flow behavior of complex

fluids like colloids [19, 20, 24] nanoparticles [16–18], or polymers [11, 21, 23]. Both of the

fluids tested here are frequently used as background solvents in these simulations. Although

it may be tempting to extend the simulation box in the flow dimension for computational

efficiency, we recommend using only boxes with Lx ≤ Lz to reliably generate the expected

shear flow.
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