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Abstract

We investigate, both by way of theory and by experiments, the mechanically forced Faraday

instability in immiscible three-fluid systems, that is two-interface fluid layers. The theoretical

model suggests that two-interface fluid layers offer underlying physics quite distinct from the typical

single interface system due to the coupling of the fluid interfaces, resulting in alternating double-

tongued stability curves. This allows for the possibility of unique co-dimension points unattainable

in traditional two-fluid systems. In addition, the presence of a third fluid in the problem can lead

to either enhanced or delayed destabilization of the system at target frequencies. Experimental

results qualitatively support the theory, though precise agreement between the theory and the

experiment is hindered due to the sidewall damping.
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I. INTRODUCTION

Since its initial discovery in 1831 [1], the Faraday instability has been studied extensively,

both by way of theory and by way of experiments. The driving mechanism for the instability

is the resonance between an imposed oscillation frequency and a system’s natural frequency,

leading to the generation of interfacial patterns when a critical forcing acceleration is reached.

These patterns typically appear subharmonic to the forcing frequency [2], and can occur with

a large range of wavelengths depending on the system parameters [3–6].

Theoretical prediction of the stability thresholds began with Benjamin and Ursell [7], who

studied the linear stability of an inviscid system. Later research by Kumar and Tuckerman

[8] served to incorporate viscosity into the model to combat discrepancies between theory

and experiment observed by other researchers [9–11]. This model was derived from a rigorous

linear stability analysis conducted on a two-fluid laterally unbounded mechanically oscillated

system. Bechhoefer et al. [12] performed experiments and utilized the model to accurately

predict minimum stability thresholds, while Batson et al. [13] verified it further utilizing a

small cylindrical geometry with fluids that respected the assumptions of the model.

To date, most research in the field has been conducted on two-fluid systems. However,

ultimate applications of the instability, including mixing enhancement [14], atomization [15],

or intentional suppression of the instability could benefit from additional control over the

instability thresholds and modal structures. Previous research has highlighted additional

physics through many extensions of the traditional problem, including the use of flexible

boundaries [16], multiple forcing frequencies and unique forcing functions [17–19], or pre-

patterned surfaces [20]. Bestehorn and Prototsky [21] utilized a reduced order nonlinear

model to study the instability, with a third passive fluid present above two thin liquid films

and observed the occurrence of a double-minema tongue. Introducing an additional fluid,

and consequently an additional interface, to the problem could allow end users to tailor

the instability characteristics within a given system in a beneficial manner. This possibility

forms the motivation for the current work, in which the effects of adding a third fluid to the

physics of the instability are examined both experimentally and theoretically.

The examined system is mechanically oscillated with a single forcing frequency, and all

three fluids are immiscible, viscous, and contained within cylindrical geometries for experi-

ments. Through the addition of a third fluid, the instability thresholds for a given system
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can be modified in both stabilizing and destabilizing manners. Of additional interest is the

modal response within these three-fluid systems, where coupling between the interfaces can

allow for unique codimension points unobtainable with two-fluid systems under the same

forcing conditions. These responses could be of particular interest to applications where a

unique interfacial shape is sought, such as the creation of a metamaterial [22, 23].

In the current work, we first present the theoretical model, which extends the Kumar

and Tuckerman [8] theory to introduce the possibility of coupling effects between multiple

interfaces. After derivation of the model, theoretical comparison of the results to those

found for similar two-fluid Faraday instability systems is given. Distinct physics arising due

to the third fluid are explained, and test cases showing both stabilizing and destabilizing

effects are presented. Next, experimentally measured stability thresholds are compared to

the theoretical predictions for two separate cylindrical geometries. The fluids chosen for the

experiments are those used by Batson et al. [13] in addition to water, as these were found

to best satisfy all the necessary experimental requirements, including safety, immiscibility

and suitable density differences. The favorable qualitative agreement lends credibility to the

current theoretical model.

II. THEORETICAL MODEL

The theoretical model follows closely to that first derived by Kumar and Tuckerman [8].

As in their model, we opt to use unscaled variables and equations in order to make com-

parison with experiments and also because there is no particular advantage in introducing a

large number of dimensionless groups, such as property ratios, for a multi-layer system. A

linear stability analysis is performed on an initially quiescent, horizontally infinite three-fluid

system as shown in Figure 1.

The hydrodynamics in all three fluids are governed by the Navier-Stokes equations

adapted to a moving reference frame coupled with the continuity equations, given in un-

scaled form by

ρj(
∂V j

∂t
+ V j · ∇V j) = −∇Pj + µj∇2V j − ρj(g + Aω2 cos(ωt))iz (1)

and

∇ · V j = 0 (2)
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FIG. 1. Schematic of three-fluid mechanically oscillated system. The normal vectors point into

the lighter fluid at each interface. The lower interface is taken to be located at z = 0, and both

interfaces are initially flat.

where V is the fluid velocity, P is the pressure, µ is the viscosity, ρ is the density, g is

gravitational acceleration, A is the forcing amplitude, ω is the forcing frequency, and j=1,2,3

denotes the bottom, middle and top fluids, respectively. This description is completed by

the boundary conditions.

At the upper and lower walls, we have no-slip and no-penetration and at the top interface,

z = ζa(x, t), we have

[[V j · na]]a = 0 (3)

[[V j · ta]]a = 0 (4)

[[na · Tj · na]]a = γa2Ha (5)

and

[[na · Tj · ta]]a = 0 (6)

At the bottom interface, z = ζb(x, t), we have:

[[V j · nb]]b = 0 (7)
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[[V j · tb]]b = 0 (8)

[[nb · Tj · nb]]b = γb2Hb (9)

and

[[nb · Tj · tb]]b = 0 (10)

The immiscibility of the fluids requires that at each interface we have

[[ρj(V j −U a) · na]]a = 0 (11)

and

[[ρj(V j −U b) · nb]]b = 0 (12)

where [[θj]]a denotes θ3 − θ2, [[θj]]b denotes θ2 − θ1, n is the unit normal vector pointing

in to the lighter fluid, t is the unit tangent vector, U · n is the interfacial speed, γa and

2Ha are the interfacial tension and twice the mean surface curvature of the top interface,

respectively, and γb and 2Hb are the interfacial tension and twice the mean surface curvature

at the bottom interface, respectively.

The equations are linearized about a quiescent, non-deflecting base state by expanding

the dependent variables as V = V ′ and P = P0 + P ′. Similar expansions are used for the

interface variables ζ, n, t, and 2H. In the above, subscript “ 0 ” denotes the base state and

superscript “ ′ ” denotes the perturbed state. Applying these expansions yields the base

state domain equations:

∂P0j

∂z
= −ρj(g + Aω2 cosωt) (13)

and the perturbed domain equations:

ρj
∂V ′j
∂t

= −∇P ′j + µj∇2V ′j (14)
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The pressure is eliminated by first applying the double curl to (14) and then using the

continuity equation, resulting in:

ρj∂t∇2V ′j = µj∇4V ′j (15)

As in Kumar and Tuckerman [8], a Floquet expansion is used in order to separate vari-

ables, viz.

ψ(x, z, t) = eikx
∞∑

n=−∞

e(σ+i(α+nω))tψ̂n(z) (16)

where α can take the value of 0 or ω
2

to allow for harmonic and subharmonic responses

and σ is the growth rate. This results in the final perturbed domain equations and their

accompanying boundary conditions (dropping hats):

(σ + i(α + nω)− νj(
d2

dz2
− k2))( d

2

dz2
− k2)Wnj = 0 (17)

at z = −hb:

Wn1 = 0 (18)

dWn1

dz
= 0 (19)

at z = ha:

Wn3 = 0 (20)

dWn3

dz
= 0 (21)

at z = 0:

Wn1 = Wn2 (22)

dWn1

dz
=
dWn2

dz
(23)

µ1(
d2

dz2
+ k2)Wn1 = µ2(

d2

dz2
+ k2)Wn2 (24)

(σ + i(α + nω))ζ ′b = Wn2 = Wn1 (25)
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and at z = h:

Wn3 = Wn2 (26)

dWn3

dz
=
dWn2

dz
(27)

µ3(
d2

dz2
+ k2)Wn3 = µ2(

d2

dz2
+ k2)Wn2 (28)

(σ + i(α + nω))ζ ′a = Wn2 = Wn3 (29)

where Wn is the z-component of the perturbed velocity. Equation (17) is an ordinary

differential equation, whose solutions take the form:

Wnj = Anje
kz +Bnje

−kz + Cnje
qnz +Dnje

−qnz (30)

where qn =
√

σ+i(α+nω)
νj

+ k2. It should be noted that when qn = k, the solution instead

takes the form:

Wnj = Anje
kz +Bnje

−kz + Cnjze
kz +Dnjze

−kz (31)

At this point, the unknown coefficients are calculated by casting the system of equations

into a 12 by 12 matrix and solving via inversion. This results in expressions for the velocity

profiles in all three fluids in terms of ζ ′a and ζ ′b. The coupling between the two interfaces

results from the presence of the middle fluid in Equations (25) and (29). The next step is to

simplify the normal components of the stress balances at both interfaces, which ultimately

govern the stability of the entire system:

[[−(P ′j + ζ ′a
dP0

dz
) + 2µj

dWj

dz
]]a = γa∇2

Hζ
′
a at z = h (32)

and

[[−(P ′j + ζ ′b
dP0

dz
) + 2µj

dWj

dz
]]b = γb∇2

Hζ
′
b at z = 0 (33)

Taking ∇2
H of these equations, and substituting the base state pressure term given by

Equation (13) yields:
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[[−∇2
HP

′
j +∇2

H(ρj(g + Aω2 cosωt))ζ ′a + 2µj∇2
H

dWj

dz
]]a = γa∇4

Hζ
′
a at z = h (34)

and

[[−∇2
HP

′
j +∇2

H(ρj(g + Aω2 cosωt))ζ ′b + 2µj∇2
H

dWj

dz
]]b = γb∇4

Hζ
′
b at z = 0 (35)

Taking ∇H · of Equation (14) and then utilizing the continuity equation yields an expression

for ∇2
HP

′
j :

∇2
HP

′
j = (ρj

∂

∂t
− µj∇2)

∂Wj

∂z
(36)

which upon substitution into Equations (34) and (35) and expanding variables using (16)

yields:

[[ρj(σ + i(α + nω))
∂Wnj

∂z
− µj

d3Wnj

dz3
+ k2(ρj(gζ

′
a,n +

Aω2

2
(ζ ′a,n−1 + ζ ′a,n+1)))

+ 3µjk
2dWnj

dz
]]a = γak

4ζ ′a,n

(37)

and

[[ρj(σ + i(α + nω))
∂Wnj

∂z
− µj

d3Wnj

dz3
+ k2(ρj(gζ

′
b,n +

Aω2

2
(ζ ′b,n−1 + ζ ′b,n+1)))

+ 3µjk
2dWnj

dz
]]b = γbk

4ζ ′b,n

(38)

at z = h and z = 0, respectively.

Upon rearranging we obtain:

[[ρj(σ + i(α + nω) + 3µjk
2)
dWnj

dz
− µj

d3Wnj

dz3
]]a + ((ρ3 − ρ2)g − γk2)k2ζ ′a,n

= −Aω
2(ρ3 − ρ2)k2

2
(ζ ′a,n−1 + ζ ′a,n+1)

(39)
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and

[[ρj(σ + i(α + nω) + 3µjk
2)
dWnj

dz
− µj

d3Wnj

dz3
]]b + ((ρ2 − ρ1)g − γk2)k2ζ ′b,n

= −Aω
2(ρ2 − ρ1)k2

2
(ζ ′b,n−1 + ζ ′b,n+1)

(40)

where the expressions for Wnj are given by the evaluation of the solutions to Equation (30)

after application of the boundary conditions at the appropriate z-location. Upon inspection,

it can be seen that these expressions contain both ζ ′a,n and ζ ′b,n terms for all values of j due

to the coupling of the velocity profiles through the middle fluid. Therefore, the next step

in the calculation is to expand the Wnj terms and to organize the resultant equations by

collecting the ζ ′a,n and ζ ′b,n terms together. This results in two equations of the form:

ηa,nζ
′
a,n + χa,nζ

′
b,n = Aβa(ζ

′
a,n−1 + ζ ′a,n+1) (41)

and

ηb,nζ
′
b,n + χb,nζ

′
a,n = Aβb(ζ

′
b,n−1 + ζ ′b,n+1) (42)

These equations can be cast as a single eigenvalue problem with ζ ′a,n, ζ ′b,n as the eigenvector

and A as the eigenvalue, taking the form:ηa,n χa,n

χb,n ηb,n

ζ ′a,n
ζ ′b,n

 = A

βa 0

0 βb

ζ ′a,n−1 + ζ ′a,n+1

ζ ′b,n−1 + ζ ′b,n+1

 (43)

The reality conditions for the ζ ′−1 elements are given by ζ ′−1 = ζ̄ ′0 and ζ ′−1 = ζ̄ ′1 for sub-

harmonic (α = ω
2
) and harmonic (α = 0) solutions, respectively for both interfaces. This

leads to implementation of a C matrix in order to couple the appropriate ζ ′ elements, which

contains mostly ones and zeros. Since the reality conditions include the complex conjugates

of ζn, Equation (43) can again be decomposed into real and complex parts before solving,

viz.,

η̂a χ̂a

χ̂b η̂b

ζ̂a
ζ̂b

 = A

βaC 0

0 βbC

ζ̂a
ζ̂b

 (44)
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where ζ̂a and ζ̂b are column vectors of the form:

ζ̂a =



ζ ′a,0
r

ζ ′a,0
i

ζ ′a,1
r

ζ ′a,1
i

...

...

ζ ′a,n−1
r

ζ ′a,n−1
i

ζ ′a,n
r

ζ ′a,n
i



(45)

η̂a, η̂b, χ̂a, and η̂a are all diagonal matrices which follow the form:

η̂a =



η̂ra,0 −η̂ia,0 0 0 0 0 0 0 0 0

η̂ia,0 η̂ra,0 0 0 0 0 0 0 0 0

0 0 η̂ra,1 −η̂ia,1 0 0 0 0 0 0

0 0 η̂ia,1 η̂ra,1 0 0 0 0 0 0

0 0 0 0
. . .

. . . 0 0 0 0

0 0 0 0
. . .

. . . 0 0 0 0

0 0 0 0 0 0 η̂ra,n−1 −η̂ia,n−1 0 0

0 0 0 0 0 0 η̂ia,n−1 η̂ra,n−1 0 0

0 0 0 0 0 0 0 0 η̂ra,n −η̂ia,n
0 0 0 0 0 0 0 0 η̂ia,n η̂ra,n



(46)
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and the C matrix takes the form (for α = ω
2
):

C =



1 0 1 0 0 0 0 0 0 0

0 −1 0 1 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0

0 0
. . . 0 0 0

. . . 0 0 0

0 0 0
. . . 0 0 0

. . . 0 0

0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0



(47)

or (for α = 0):

C =



0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0

0 0
. . . 0 0 0

. . . 0 0 0

0 0 0
. . . 0 0 0

. . . 0 0

0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0



(48)

where n is the Fourier series cutoff. After constructing the matrices, the growth rate σ is set

to 0 and the eigenvalue problem is solved computationally yielding a set of eigenvalues and

eigenvectors. The lowest, real eigenvalue of this set is that which governs the stability of

the system, and its corresponding eigenvector gives the relative deflection between the top

and bottom interfaces. This threshold eigenvalue corresponds to the amplitude where the

instability first manifests when slowly raising the amplitude of oscillation at a given forcing

frequency.

Thus far, the system has been taken to be laterally unbounded. In order to constrain
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the system to a particular geometry, the tested wavenumbers are constrained to only those

that form 90◦ angles with the sidewalls, as outlined by Benjamin and Ursell [7]. For the

cylindrical geometries of interest to the current work, these wavenumbers are given by those

that satisfy

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂

∂θ
+ k2m)ζm = 0 (49)

subject to ∂ζm
∂r

= 0 at r = R, the solution of which shows that kl,mR is given by the mth root

of J ′l (r) where l and m are the number of azimuthal nodes and radial nodes, respectively.

The final stability curve for a constrained geometry with stress-free sidewalls is calculated

by solving Equation (44) for all the allowable wavenumbers, typically truncated at l = m = 5,

and a given frequency. The resultant lowest eigenvalues for each wavenumber are compared,

and the lowest of all is selected as the threshold amplitude for the tested frequency. The

harmonicity and waveform at the onset are given by the wavenumber and α which produced

this threshold amplitude. The calculation is then repeated over a large frequency range to

generate the final stability curve of A versus ω for comparison to experiments. As mentioned

earlier, all calculations in this study are reported unscaled in order to give a physical sense

of dimensions and the thresholds.

III. RESULTS FROM THEORY

A. Stability Thresholds and Relative Interfacial Deflections

To relate the three-fluid mechanically forced Faraday instability to the well-known two-

fluid case, the stability curves for an unbounded geometry were first examined. Figure 2(a)

shows a plot of amplitude versus wavenumber for a fluid set with properties summarized in

Table I.

Fluid
Density

(kg m−3)
Kinematic

Viscosity (cSt)
Layer

Height (mm)
Interfacial

Tension (N m−1)
A 856 1.5 5

0.007
B 1200 1.0 5

0.007
C 1880 14 5

TABLE I. Fluid properties for generation of Figure 2. These fluids and heights were chosen to

highlight the double-tongues that can be obtained when parametrically forcing a three-fluid system.
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FIG. 2. Predicted stability curve and relative interfacial deflections for a three-fluid mechanically

forced system. a) Theoretical predictions for critical amplitudes utilizing the fluid combination

summarized in Table I. Double-tongued stability curves are observed for three-fluid Faraday in-

stability systems, where each section of a tongue is dominated by one of the interfaces. Testing

frequency is 9 Hz. b) Relative interfacial deflection (φ) vs wavenumber. φ = 1 indicatess a com-

parable deflection of the interfaces. φ < 1 indicatess higher deflection on the top interface, and

φ > 1 indicatess higher deflection on the bottom interface. For example, for k = 250 m−1, the

from Figure 2(b), the subharmonic and harmonic tongues in Figure 2(a) indicate that the bottom

interface has the higher deflection and at k = 500 m−1, the upper interface has the higher deflec-

tion for the subharmonic tongue while the reverse is true for the harmonic tongue. Note that the

harmonic tongues at k = 250 m−1 and k = 500 m−1 appear at very large vibrational amplitudes

not depicted within the scale of Figure 2(a).

As can be seen in Figure 2(a), double-tongued stability curves are observed for three-

fluid systems. This is in direct contrast to the single tongues observed in two-fluid systems

[7]. The reader should note that the second lowest eigenvalue is also plotted inside each

tongue in Figure 2(a) to show the separate eigenvalue branches responsible for the double

minima. Though the tongues exhibit a double minima for this fluid system, they retain

the typical behavior of alternating between subharmonic and harmonic seen in the two-fluid

case. On any particular tongue, multiple regions can be found: those at which one interface

dominates the stability of the overall system, those where the opposite interface dominates,

and those where both interfaces contribute relatively the same amount. This may be seen by

examining the relative interfacial deflections of the interfaces as a function of wavenumber

(Figure 2(b)). For the purposes of this illustration, the amplitude of the interfacial deflection

of each interface and the relative deflection are calculated using the formulas (from Equation

(16)):
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ζ̄a =
N∑
n=0

ζ ′a,ne
i(α+nω)

ζ̄b =
N∑
n=0

ζ ′b,ne
i(α+nω)

(50)

and

φ =
ζ̄a
ζ̄b

(51)

The highest and lowest regions of relative interfacial deflection typically occur just before

two eigenvalue branches intersect, while the point where they intersect corresponds to a

relative deflection of precisely unity, denoting that the deflection ought to be comparable

at both interfaces. Though the two interfaces have differing relative deflections, it is impor-

tant to note that linear stability analysis results in only one critical amplitude for a given

wavenumber, and implies that both interfaces become unstable simultaneously. Practically,

however, if the relative deflection is very large or very small, one interface may appear to be

nearly flat while the other obviously deflects substantially.

Figure 3(a) shows the effect of middle fluid viscosity on the system stability. As expected,

the trend follows that of the two-fluid case, i.e. increased viscosity causes a shifting of the

tongues to higher wavenumber and higher critical amplitude. This behavior can cause

interesting consequences when the viscosity of the top or bottom fluid is adjusted, however,

as shown in Figure 3(b). Perhaps not surprisingly, when either the top or bottom fluid has

a much higher viscosity than the other two fluids, one eigenvalue branch is shifted much

more than the other. In extreme cases this can result in a single tongued stability curve

again, with the tongues stemming only from the eigenvalue branches where the relative

deflection favors the interface not in immediate contact with the viscous fluid. This occurs

when the eigenvalue branch related to the interface in contact with the more viscous fluid

has a threshold much higher than the other eigenvalue branch, causing the lowest critical

amplitude to always be that which is found on the branch related to the interface comprised

of the less viscous fluid pair. Both complete eigenvalue branches are shown for clarity, though

the lowest one at a given wavenumber is the one that governs the system stability.

Figure 4 shows the effect of increasing frequency on the system stability. Again, this
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FIG. 3. Effect of viscosity on three-fluid instability thresholds. a) The black lines are obtained

using the fluid properties summarized in Table I, while the red lines are obtained by increasing the

viscosity of the middle fluid by a factor of 20. As predicted, increasing the middle fluid viscosity

causes a shift of the threshold to higher amplitude and higher wavenumber. Testing frequency is

10 Hz. b) Effect obtained when the top or bottom fluid is much more viscous than the other two.

Testing frequency is 9 Hz. The fluid properties are the same as that shown in Table I with the

exception of ν1, which is set at 120 cSt.

behavior follows closely with that observed for a two-fluid case. An increase in frequency

causes the tongues to shift down in amplitude and to higher wavenumber. In a constrained

geometry, this would cause the system to access higher wavenumber modes with increasing

frequency, with the threshold becoming lower with increasing frequency.

B. Comparison to the Single Interface Problem

As can be inferred from the tanh(kh) term found in Benjamin and Ursell [7], once the

height of the middle fluid becomes high enough, the interfaces no longer interact with one

another. This can be seen by conducting three separate calculations, the first of which

is the three-fluid case with a tall middle layer. The other two calculations are done for

corresponding two-fluid systems, one supposing that the initial bottom fluid is replaced

with more middle fluid and the other supposing that the initial top fluid is replaced with

more middle fluid. The results of these calculations is shown in Figure 5(a). As expected,

the three-fluid stability curve is composed almost exactly of the two separate two-fluid cases.

The only exception occurs at low wavenumber, where tanh(kh) has not yet saturated and
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FIG. 4. Effect of increasing frequency on the stability of the system. In general, an increase in

frequency causes the tongues to shift to higher wavenumber and lower amplitude. Fluid properties

are those shown in Table I.

the interfaces still influence one another. This calculation shows that the system behaves

almost identically to two separate two-fluid systems when the middle height is large enough.

In addition, Figure 5(b) shows the relative interfacial deflections with this fluid height. It can

be seen that now, the lowest eigenvalue branch directly correlates to the relative interfacial

deflections. Therefore, it can be inferred that each eigenvalue branch is produced almost

solely due to contributions from the fluid pair comprising a single interface.

Interestingly, the opposite does not hold true when the height of the middle layer is very

small. In this case, the system does exhibit stability tongues with a single minimum, but the

stability thresholds do not match that of the two-fluid system between the top and bottom

fluids. A comparison between the two cases is shown in Figure 6(a). As can be seen clearly

from the comparison, the effect of the minuscule third fluid layer can have both stabilizing

and destabilizing effects on the system. On this single minimum stability curve, the relative

deflection approaches unity for all wavenumbers as the middle fluid height decreases for the
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FIG. 5. Comparison between three-fluid stability thresholds and corresponding two-fluid cases for

tall middle fluid heights. a) Three-fluid calculation versus corresponding two-fluid calculations for

high middle fluid heights. Properties are those shown in Table I, and layer heights are 0.5 cm

bottom, 1 cm middle, 0.5 cm top. Solid lines show the three-fluid stability curve prediction, and

symbols show the corresponding top/middle fluid and middle/bottom fluid two-fluid calculations.

Agreement between the tongues generated by the separate two-fluid calculations and the three-fluid

calculation are excellent, with the only discrepancies occurring at low wavenumber. b) Relative

deflection versus wavenumber for the tall middle fluid system. The relative deflection can be

accurately predicted by determining which eigenvalue branch occurs at lower amplitude in a).

subharmonic tongues. However, the harmonic tongues do not exhibit the same behavior. In

their case, the interface with the larger ∆ρ always deflects more than the other, and thus the

relative deflection is always greater than or less than unity across all wavenumbers. This is

shown in Figure 6(b), and a companion calculation with (∆ρ)a = (∆ρ)b is shown in Figure

6(d) to show that this behavior is related to bias caused by the ∆ρ imbalances.

Adding a third fluid at the top or bottom of a two-fluid system can also cause dramatic

changes to the stability of the system, allowing for selective destabilization or stabilization

to particular waveforms at a given frequency. Figure 7 shows an example of this behavior by

comparing a two-fluid system with a set total height to a corresponding three-fluid system

in which the third fluid replaces half of the height of the former top fluid. In this system,

regions of both destabilization (e.g. k = 85 – 310 m−1) and stabilization (e.g. k = 60 –

85 m−1) can be obtained through the addition of the third fluid. By changing the properties

of the additional fluid, the zones of stabilization and destabilization could potentially be

tailored for a given application in order to more efficiently utilize or suppress the Faraday
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FIG. 6. Comparison between three-fluid stability thresholds and corresponding two-fluid cases for

short middle fluid heights. a) Properties are those shown in Table I, and layer heights are 0.5 cm

bottom, 0.00001 cm middle, 0.5 cm top. Solid lines show the three-fluid stability curve prediction,

and symbols show the corresponding top/bottom two-fluid calculation with an assumed interfacial

tension of γ = γa = γb. The two different predictions agree only at low wavenumber, and differ

dramatically with increasing wavenumber. b) Relative deflection versus wavenumber for the short

middle fluid system. The relative deflection approaches unity for the subharmonic tongues, but

always favors the interface with the higher ∆ρ for the harmonic tongues. c) Three-fluid small

middle height calculation versus corresponding two-fluid calculation with no density difference

bias. Fluid properties are the same as a), but with ρ3 = 520 kg
m3 . d) Relative deflection for non-

biased three-fluid system. φ approaches unity for both harmonic and subharmonic responses in

the absence of a ∆ρ bias.
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instability for process enhancement.

0 100 200 300 400 500 600 700

wavenumber k (m
-1

)

0

5

10

15

20

25

30
V

ib
ra

ti
o
n
a
l 
A

m
p
lit

u
d
e
 A

 (
c
m

)

Three-Fluid Subharmonic
Two-Fluid Subharmonic

FIG. 7. Comparison between the stability thresholds for a two-fluid case and a three-fluid case

with the same total height where the third fluid is added at the top. Forcing frequency (ω) is 2

Hz. Fluid parameters for the two-fluid case are ρ1 = 1000 kg m−3, ν1 = 12 cSt, h1 = 1.27 cm,

ρ2 = 846 kg m−3, ν2 = 1.5 cSt, h2 = 1.27 cm, and γ = 0.007 kg m−2. Fluid parameters for the

three-fluid case are ρ1 = 1000 kg m−3, ν1 = 12cSt, h1 = 1.27 cm, ρ2 = 846 kg m−3, ν2 = 1.5 cSt,

h2 = 0.635 cm, ρ3 = 600 kg m−3, ν3 = 1 cSt, h3 = 0.635 cm, and γa = γb = 0.007 kg m−2. Multiple

regions of stabilization and destabilization can be observed. Harmonic solutions are omitted for

clarity.

Another interesting phenomenon that arises within three-fluid systems stems from the

fact that two-fluid systems can only become Faraday unstable if there is a finite density

difference between the two fluids. This can be seen by looking at the final stress balance

equation. If the fluid pair have a small density difference, ∆ρ appearing in the A∆ρ term

seen in Equation (40), say, will become very small and thus the critical amplitude A will

become very large. As a result, the stability threshold in such a two-fluid system is almost

unattainable experimentally. The destabilization arising from the addition of a third fluid,

however, can alleviate this problem if one seeks to destabilize an interface with a small ∆ρ,
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or even one with a ∆ρ of exactly zero. A demonstration of this is shown in Figure 8. In this

case, the fluid parameters are taken to be that described in Table I, with the exception that

the middle fluid’s density is adjusted to ρ2 = ρ1 = 1880 kg
m3 .
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FIG. 8. Three-fluid stability curve with one interface containing ∆ρ = 0. a) Stability curve

for the fluids described in Table I with ρ2 set to 1880 kg
m3 , therefore making ∆ρb equal to 0.

Testing frequency is 9 Hz. b) Relative deflections of the instability at onset versus wavenumber. A

wavenumber range at which the bottom interface deflects more than the top interface can be seen,

even though its ∆ρ is zero.

As can be observed, the system is able to produce stability curves even with the ∆ρb set

to zero. Since the stability curves in this case present with a single minimum, it is intuitive

that these curves occur almost solely due to the interface with a nonzero ∆ρ, and thus

it will always have a much higher deflection than the other. However, by examining the

relative deflection versus wavenumber plot shown in Figure 8(b), it can clearly be seen that

a wavenumber range does exist in which ζb ≥ ζa. Thus, if a geometry was selected such that

the wavenumber with the lowest critical amplitude fell within this range, the interface with

a ∆ρ of zero would exhibit instability with a non-negligible deflection, directly contrary to

the case with only two fluids.

C. Codimension Points Obtainable in the Three-Fluid System

Since the instability tongues actually stem from two distinct eigenvalue branches, codi-

mension points that are unattainable in two-fluid cases can be observed upon the addition
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of a third fluid. Figure 9 shows three examples of this type of codimension point.
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FIG. 9. Four possible codimension points obtainable in the three-fluid mechanically forced Faraday

instability. a) Codimension point where relative deflection between the interfaces is equal to 1.

At this point, both interfaces will become unstable simultaneously with comparable interfacial

deflections. b) Codimension point between tongues with opposing relative interfacial deflections,

resulting in mode expressions that are biased on each interface based upon the relative deflections.

c) Codimension point for a single mode at multiple harmonicities. This type of point is unachievable

in two-fluid systems because the harmonic and subharmonic tongues never meet. d) Example of

the type of codimension point achievable in two-fluid systems. One eigenvalue branch exhibits the

same critical amplitudes for multiple wavenumbers, resulting in a codimension point. This can also

be achieved for multiple wavenumbers at different harmonicities.

The first type of new codimension point, shown in Figure 9(a), is that where the relative

deflection is equal to unity. This type of codimension point corresponds to a wavenumber

which has interesting properties. At this point, the two interfaces would tend to become
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unstable with comparable relative deflections. However, the portion of the tongue at slightly

lower wavenumber exhibits a positive slope, while the portion of the tongue at slightly higher

wavenumber exhibits a negative slope. Though linear stability analysis does not offer any

insight into the temporal evolution of the interface after the onset of the instability, previous

studies in two-fluid systems [13, 24, 25] have shown that performing experiments within the

zones of negative slope on an A vs. ω plot (i.e. a positive slope on an A vs. k plot) exper-

imentally yields subcritical bifurcations, while conducting experiments in zones of positive

slope on an A vs. ω plot (i.e. a negative slope on an A vs. k plot) experimentally yields

supercritical bifurcations. This phenomenon was observed by experimentally monitoring

the temporal evolution of the interface over the course of an experiment after exciting the

instability near the threshold. Therefore, assuming that the typically observed trend holds

true, the eigenvalue branch for one interface yields an instability which will tend to exhibit a

subcritical bifurcation, while the other interface will tend to exhibit a supercritical bifurca-

tion. This point can be seen as one where the two interfaces would both tend to be unstable

with the same mode and harmonicity, but one interface would likely bifurcate subcritically

while the other would likely bifurcate supercritically. The dominant bifurcation, however, is

undetermined via the present analysis. Experimentally, as can be inferred through Figure

4, this would cause a single mode to appear first subcritically, then supercritically, then

subcritically again, and finally supercritcally before transitioning to another mode when

increasing frequency. This type of behavior is unobtainable in a two-fluid system, as the

single stability tongues only possess one minimum.

The second type of new codimension point as shown in Figure 9(b), is obtained when two

wavenumbers have the same critical amplitude, but lie on parts of their respective tongues

with opposing relative deflections. In other words, one interface would prefer to become

unstable with one mode, while the other interface would prefer to become unstable with a

completely different mode. The resultant waveform, from a linear instability perspective,

would be a combination of the two modes. However, it is possible that one interface would

exhibit a combination which preferentially favors one mode, while the other interface exhibits

the opposite combination. A pictorial representation of this possibility is shown in Figure

10, where both interfaces exhibit a combination of (2,1) and (0,1) modes. The top interface

adopts a dominant (0,1) waveform, while the bottom interface adopts a dominant (2,1)

waveform.
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FIG. 10. Theoretical waveform representation for competing (0,1) and (2,1) modes. The top

interface exhibits a mode which is primarily (0,1), while the bottom interface exhibits a mode

which is primarily (2,1).

Codimension points for a single wavenumber at different harmonicities can also be ob-

tained, as shown in Figure 9(c). This type of codimension is unattainable in two-fluid sys-

tems because in these systems the subharmonic and harmonic tongues never intersect. This

type of behavior is also seen in the three-fluid case between eigenvalue branches of equiva-

lent relative deflection. For example, a harmonic top interface dominated branch will never

intersect with a subharmonic top interface dominated branch. However, a top-dominated

subharmonic branch can intersect with a bottom-dominated harmonic branch, allowing for

the presence of these types of codimension point. This type of point would presumably

manifest with both interfaces exhibiting the same waveform but different harmonicities at

the onset of the instability.

In addition to these novel types of codimension points, the three-fluid system can also

exhibit the codimension points present in the two-fluid case. Namely, these occur when two

wavenumbers on the same type of eigenvalue branch exhibit the same critical amplitude,

resulting in a competition between two distinct modal structures of the same or different

harmonicities. The relative deflections at both wavenumbers are comparable and far away

from unity, meaning that the mode will primarily show on one of the two interfaces. This

type of codimension point is shown in Figure 9(d).

Another interesting phenomena that can occur when utilizing two-fluid systems is the

expression of the instability on both interfaces simultaneously but out of phase. A theoretical

example of this type of behavior is shown in Figure 11. In this case, the top and bottom

interfaces are both exhibiting (3,1) modes with comparable relative deflections, but precisely

out of phase with one another. This is indicated by the calculation when the relative
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deflection value, before taking the absolute value, yields a negative number, as shown in

Figure 12. This typically occurs only at extreme values of the relative deflection, i.e. |φ| <<

1 or |φ| >> 1. To depict some of the observations made through calculations we turn to

an experiment, describing the method, the reasons for the fluids of choice, and the conclude

with comparison to the theoretical model.

FIG. 11. Theoretical waveform representation for two out of phase (3,1) modes. Both interfaces

exhibit comparable relative deflection, yet their waveforms appear out of phase with one another.

IV. EXPERIMENTAL METHOD

Finding fluid choices for experimental validation of the model posed great difficulty. In

particular, all three fluids needed to be immiscible to avoid unintentional mixing during

filling of the cell or during excitation of a subcritical instability. In addition, an ideal

fluid combination would exhibit low stress at the sidewall in order to uphold the sidewall

assumption present in the model. Previous experiments by Batson et al. [13] utilized 1.5

cSt Silicone oil and FC-70 to effectively achieve this goal and obtain superb agreement with

theory. These two fluids were thus selected as two of the fluids in the current work. After

much experimentation, it was decided to use ultra-pure water as the third fluid, in this case

the middle fluid. It might be noted that the value of the interfacial tension plays a negligible

role in the determination of the critical amplitude, an observation made by earlier workers

[8], thus any minor impurities that might migrate to the aqueous interface would have no

consequence on the instability threshold.

The cell which contained water was found to produce a meniscus on both interfaces which

pointed down into the FC-70 and up into the Silicone oil due to the preference of the water

to wet the glass sidewalls. These menisci caused imperfections to the experiment in the form
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FIG. 12. Relative deflection before taking the absolute value for the three-fluid system described in

Figure 7 versus wavenumber. The relative deflection is negative at various wavenumbers. However,

the negative values typically occur when |φ| << 1 or |φ| >> 1.

of meniscus waves that were harmonic in nature and axisymmetric. However, these types of

waves were found previously to only affect the (0,1) harmonic mode onset [13]. Though the

sidewall behavior of this system was not ideal, it was chosen as the system to be used for the

validation experiments due to the lack of a superior fluid combination. Table II summarizes

the fluid properties of the system.

Fluid
Density

(kg m−3)
Kinematic

Viscosity (cSt)
Interfacial

Tension (N m−1)
Silicone Oil 825 1.5

0.045
Water 1000 1.0

0.051
FC-70 1940 14

TABLE II. Fluid properties for silicone oil, water and FC-70. Densities and interfacial tensions

were measured, and viscosities were assumed to be that labeled on the bottle.

The tested geometries were a 5.08 cm diameter cylinder with overall height 6.4 cm and
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a 12.7 cm diameter cylinder with overall height 5.08 cm. The smaller geometry was tested

due to the excellent agreement obtained by Batson et al. [13] when utilizing the same

geometry in two-fluid experiments, and the larger was tested in order to minimize sidewall

effects. Both cylinders were cut from commercially available glass piping, and were contained

between acrylic top and bottom plates. The choice of glass for the sidewalls was made due

to discrepancies observed in previous experiments when utilizing acrylic sidewalls. In fact,

the stress-free sidewall condition was experimentally simulated by utilizing fluids in which

the less viscous fluid predominately wets the sidewalls, allowing the interface to slide easily

as if the system were stress free. In the case of glass sidewalls, the wetting behavior of the

Silicone oil and FC-70 system utilized by Batson et al. [13] met these conditions. When the

same experiments were conducted using acrylic sidewalls, the FC-70 began to wet the walls,

and thus the stress-free sidewall assumption was not upheld. The top and bottom walls,

however, were presumed to have negligible effect on the instability thresholds due to their

distance from the interfaces, and thus acrylic was chosen due to ease of fabrication. For

practical experiments, the height of the middle layer needed to be large enough to be visible

yet small enough to retain the coupling between the interfaces. In addition, a minimum

amount of water was necessary to create an actual fluid layer, any less of which would cause

beading of the water preferentially on the sidewalls and a bridge between the Silicone oil

and FC-70 in the center of the testing cell. This led to an ideal fluid height of 1.68 cm water,

with the balance split evenly between Silicone oil and FC-70 (2.36 cm each) for the smaller

cylinder. Heights of 2.01 cm, 1.5 cm, and 1.63 cm for the FC-70, water, and Silicone oil,

respectively, were utilized in the larger geometry.

The filling procedure for the testing cell first involved a thorough cleaning of the cell with

water and isopropanol before drying with compressed air to minimize contaminants on the

surfaces in contact with the fluid. The cell was then assembled and sealed via compression

using wing nuts and Buna-N rubber gaskets, which did not interact or swell when exposed

to any of the testing fluids. Fluids were then filled by density from highest to lowest through

a small hole in the top of the cell connected to an overflow port. This port served to contain

extra Silicone oil as well as free space to accommodate for the expansion and contraction of

the fluids due to temperature changes in the room, allowing for long term use of the same

testing fluids without generation of air bubbles within the cell. A rectangular outer bath was

also filled with water around the testing cell to combat the image distortion caused by the
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curvature of the glass. Finally, a grid was affixed to the back of the cell to aid in imaging,

and a small white sheet of paper with a thin black line was attached to the cell to aid in

the determination of the exact frequency and amplitude which the cell was shaking through

image analysis. Figure 13 shows a schematic of the assembled testing cell and mechanical

shaker apparatus.

FIG. 13. Assembled testing cell and experimental setup. The base plate attaches to the mechanical

shaker and is secured with four screws. Backlighting allows for the clear visualization of the interface

and any deflection using a high-speed camera.

After filling, the assembled testing cell was mounted to the mechanical shaker, leveled,

and secured using four screws through a metal base plate. The cell was backlit using a light

mounted to the shaker for visualization which moved with the testing cell, and recordings

were taken using a stationary high-speed camera. The mechanical shaker was controlled

externally using a computer program, allowing the user to input a frequency and amplitude

of oscillation. This input was found to be accurate for the frequency of oscillation, but

the actual amplitude of oscillation of the cell varied from that which was imposed. This

warranted the conduction of image analysis on each experimental run to determine the actual

oscillation amplitude accurate to within one pixel (2% error in the amplitude or better).
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During the course of the experiments, a frequency of oscillation was first chosen for a given

test. An amplitude higher than the theoretical threshold was then input, and the shaker

was oscillated in order to observe the instability. Subsequent runs decreased the amplitude

of oscillation while keeping the frequency constant, until the system remained stable for a

period of 3 minutes after starting the forcing. For the purposes of the current work, stability

was defined by the absence of any observable Faraday waves on either interface. The experi-

mental threshold was determined by narrowing down the imposed amplitudes which resulted

in a stable and unstable system until a suitable precision was reached, typically 0.1 or 0.2

mm. At this point, the experimental threshold was determined to be the midpoint between

the nearest stable and unstable tested amplitudes. The threshold was recorded, along with

the resultant waveform, qualitative relative deflections at the onset, and harmonicity of the

response before moving to a new oscillation frequency and repeating the process.

V. RESULTS FROM EXPERIMENTS

Figure 14 shows the theoretically produced stability curves for the system described by

Table II when utilizing the 5.08 cm diameter cylinder.

The predicted modes and harmonicities are enclosed between pairs of dashed lines in

labeled accordingly. Before showing experimental data, it is important to note some dif-

ferences between this A vs. ω plot and the typical two-fluid plot of this kind. Since there

are two interfaces, modes are able to repeat themselves at the same harmonicity in different

frequency bands. This can be observed on Figure 14 by the repeated (2, 1)s, (3, 1)s, and

(0, 1)s regions. The black circled point shows an example of the type of codimension point

mentioned in 9(c), which is also unattainable in two-fluid systems. Finally, interesting be-

havior can be observed in the 4.5 to 5.5 Hz region, where a (3, 1)s tongue appears seemingly

within a (1, 1)s tongue. This behavior happens due to the double minima stability behavior,

as the (3, 1)s tongue is occurring on a distinct eigenvalue branch from the (1, 1)s tongue,

allowing it to interfere with the natural smooth occurrence of the (1, 1)s.

Figure 15 compares the theoretical results with experiments conducted using the system

described in Table II and the 5.08 cm diameter geometry. Since the experimental system

did not precisely honor the stress free sidewall assumption present in the model, a shift in

the tongues to higher frequency occurs, causing discrepancy between the theory and the
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FIG. 14. Theoretical amplitude versus frequency plot for the three-fluid system described by Table

II. The black circled point is an example of a three-fluid exclusive codimension point shown in

Figure 9(c). Distinct modes are enclosed between pairs of dashed lines and labeled

, with an “s” denoting a subharmonic response and an “h” denoting a harmonic response.

experiment. Qualitatively, however, it can be seen that the mode order of appearance with

increasing frequency is correctly predicted by the theory for all modes except the (0, 1)h mode

observed experimentally in the 3.5 – 3.8 Hz frequency range. Previous experiments have

shown axisymmetric meniscus waves to play a destabilizing role on the (0, 1)h experimental

threshold due to their shape and response harmonicity [13]. This occurs to an even greater

extent in the present experiment, as both menisci are much larger than that observed in [13].

The theoretical (0, 1)h tongue is also shown on the graph for reference, and its proximity to

the experimentally observed data leads to the conclusion that the destabilization is leading

to its experimental presence.

In addition to the modal transitions, the experimental thresholds tend to decrease with

increasing frequency, much like the theoretical predictions. Subcritical bifurcations were

observed for all sections of the experimental curve with negative slopes, and supercritical

bifurcations were observed in positive slope sections. This observation is in agreement with

previous two-fluid experiments. Codimension points were difficult to precisely excite due to

the discrepancy between the theory and the experiment. In addition, out of phase interfacial
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FIG. 15. Experimental results for the stability threshold obtained for the three-fluid system de-

scribed in Table II in a 5.08 cm diameter cylindrical geometry. Modes are boxed by wavenumber,

which can be compared to the theoretical predictions shown in Figure 14. The theoretical (0, 1)h
mode is also shown to account for its experimental appearance. Modal transitions and qualitative

behavior are accurately predicted by the model, though quantitative agreement suffers due to the

non-ideal sidewall conditions.

responses were never observed experimentally. This can be attributed to the fact that the

theoretically predicted out of phase responses typically occur at extreme values of the relative

deflection, i.e. |φ| << 1 or |φ| >> 1. In these cases, the experimentally observed modes

seem to only occur on one interface, as the small deflection of the opposing interface is lost

within the meniscus waves. Figure 16 shows three examples of obtained Faraday modes with

the current system, each highlighting a different relative deflection type. See Supplemental

Material at [URL will be inserted by publisher] for a video of these interfacial behaviors.

In order to minimize the adverse sidewall effects, testing was further conducted utilizing

the 12.7 cm diameter cylinder. Figure 17 shows the results of this testing. As can be seen

in the figure, there are multiple frequency bands where the experimental data agree with

the theoretical predictions. In other zones, however, a large departure between theory and

experiment is still present. The zones of agreement are those where the top interface has the

dominant deflection, while the zones of disagreement are those where the bottom interface

has the dominant deflection. This is indicative that the Silicone oil/water interface obeys
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(a) (b) (c)

FIG. 16. Mode examples with large, moderate, and small relative interfacial deflection ratios. a)

(2,1) mode with φ >> 1. The deflection of the bottom interface is much smaller than that of the

top interface. Testing frequency and amplitude are 4.07 Hz and 8.6 mm. b) (1,1) mode with φ ≈ 1.

Both interfaces have comparable, in phase deflections. Testing frequency and amplitude are 5.18

Hz and 4 mm. c) (2,1) mode with φ << 1. The deflection of the bottom interface is much higher

than that of the top interface. Testing frequency and amplitude are 6.93 Hz and 3 mm.

the stress-free sidewall assumption, while the water/FC-70 interface does not. In order to

test this, experiments were conducted using both two-fluid pairs and compared to two-fluid

theory. The results of these tests are shown in Figure 18. These results also show excellent

agreement between theory and experiment for the top two-fluid pair (Figure 18(a)) and

departure between theory and experiment for the bottom two-fluid pair (Figure 18(b)). For

all of the 12.7 cm diameter cylinder experiments, the modal structures could not be identified

due to the size of the container and competition between modes with similar wavenumbers.

Thus, the mode labels shown in Figures 17 and 18 are the theoretical predictions.

Overall, the theoretical model was able to qualitatively predict the behavior of a three-

fluid system with non-ideal sidewall behavior. Modal transitions, with the exception of the

(0, 1)h mode, were correctly predicted along with the frequency dependence of the thresh-

old amplitude. The frequency bands where a given mode occurred were shifted to higher

frequency due to the sidewall behavior, a behavior that is also seen in two-fluid systems

(see Figure 18(b)). When utilizing the same system in a larger geometry, the agreement

improved, especially for portions of the stability curve where the top interface primarily

governed the stability. Full quantitative agreement between the current model and experi-

mental data will require an ideal fluid system which upholds the stress-free sidewall condition
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FIG. 17. Experimental results for the stability threshold obtained for the three-fluid system de-

scribed in Table II in a 12.7 cm diameter cylindrical geometry. Agreement between theory and

experiment is obtained in some frequency bands whose stability thresholds are primarily governed

by the top interface.

on both interfaces, or modifications to the model to account for this additional stress.

VI. CONCLUSIONS

In this work, the Faraday instability was studied theoretically and experimentally for

mechanically oscillated three-fluid systems. The main motivation behind the work was

to determine the influence of one interface on the other, with particular interest in the

enhancement or delaying of the instability solely through the addition of a third fluid. It

was found theoretically that the three-fluid system produces stability tongues with multiple

minima due to the multiple eigenvalue branches influenced by each interface. In extreme

cases, the stability tongues can present with single minima similar to that seen in two-fluid

problems. The behavior of the tongues with frequency and viscosity agree with that seen

in two-fluid cases. However, disproportionate effect on one eigenvalue branch versus the

other can be observed, leading to interesting behavior for some fluid combinations. Multiple

codimension points unaccessible in two-fluid systems can be observed upon the addition of
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(a)

(b)

FIG. 18. Corresponding two-fluid comparisons for the system shown in Figure 17. a) Two-fluid

comparison for silicone oil (1.905 cm) and water (1.27 cm). b) Two-fluid comparison for water

(1.27 cm) and FC-70 (1.905 cm). All of the labeled theoretical modes are subharmonic with the

exception of the (4, 1) h mode in b). Agreement between theory and experiment is obtained for

both systems, but to a greater extent in a) where the stress-free sidewall assumption is better

upheld.
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a third fluid. A two-fluid system can easily be destabilized through the addition of a third

fluid, and local stabilization can be achieved to a lesser extent by adjusting the fluid choices

and layer heights. This realization could prove to be useful in processes where induced

vibrations are common and the Faraday instability is undesirable, or in situations where the

instability could be used to enhance a process.

Experiments were conducted in constrained geometries in an attempt to validate the

model. The geometry and testing frequencies were chosen to be in the range where mode

discretization was observable. Qualitative agreement was achieved, as the modal transi-

tions, harmonicities, and the threshold behavior with increasing frequency were accurately

predicted. Quantitative agreement like that observed by Batson et al. [13] was not achiev-

able due to the non-ideal sidewall behavior caused through the addition of a third fluid.

Future experiments might seek a different fluid combination to obtain better agreement be-

tween the theoretical predictions and experimentally determined thresholds. Particularly,

the stress-free sidewall assumption must be well realized by both interfaces in order to ob-

tain precise agreement. Utilizing a larger geometry, where sidewall behavior became less

important improved the agreement between theory and experiment, though quantitative

agreement throughout the entire stability curve was not achieved. Nevertheless, the results

presented in this work should qualitatively carry over to other systems. The work presented

would therefore be of practical interest for multiple applications, such as enhancing mix-

ing in multi-layer systems or the intentional suppression of the instability under conditions

where its presence would be detrimental to a process through the addition of a third fluid.

This work has shown that the theory first presented by Kumar and Tuckerman [8] can

effectively be extended to three-fluid cases. This results in a coupling between the fluid

interfaces which must be addressed during calculation, but presents little difficulty. A good

estimate for the three-fluid stability curve, however, can be obtained by superimposing two

separate two-fluid calculations for the top and middle fluid and middle and bottom fluid

pairs and taking the lowest of the resultant thresholds. This calculation is particularly

useful for systems where the middle layer is tall, resulting in a decoupling of the interfaces.
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