
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Diffusiophoretic and diffusioosmotic velocities for mixtures
of valence-asymmetric electrolytes

Ankur Gupta, Bhargav Rallabandi, and Howard A. Stone
Phys. Rev. Fluids 4, 043702 — Published 12 April 2019

DOI: 10.1103/PhysRevFluids.4.043702

http://dx.doi.org/10.1103/PhysRevFluids.4.043702


Diffusiophoretic and Diffusioosmotic Velocities for
Mixtures of Valence-Asymmetric Electrolytes

Ankur Gupta,1 Bhargav Rallabandi,2, 1 and Howard A. Stone1, ∗

1Department of Mechanical and Aerospace Engineering, Princeton University, Princeton NJ 08544
2Department of Mechanical Engineering, University of California Riverside, Riverside CA 92521

(Dated: March 15, 2019)

Diffusiophoresis and diffusioomosis are electrokinetic phenomena where relative motion is induced
between a charged surface and a surrounding electrolyte due to a concentration gradient of ions. In
the literature, a relative velocity between a surface and the electrolyte has been derived for a valence-
symmetric (z : z) electrolyte. In this article, we reformulate the governing equations in a convenient
form based on a systematic generalization of the nonlinear Poisson–Boltzmann equations in the
limit of a thin double layer, which allows us to derive results for diffusiophoretic and diffusioosmotic
velocities for a mixture of electrolytes with a general combination of cation and anion valences.
We find that the relative motion depends significantly on ion valences. We also provide analytical
approximations for the diffusiophoretic and diffusioosmotic velocities, and discuss their accuracy and
applicability. Further, we tabulate diffusiphoretic velocities for some common cases, which highlights
the importance of asymmetry in cation and anion valences. Finally, we discuss the validity of our
assumptions and the importance of effects such as finite ion size, dielectric decrement and surface
conduction for typical experimental conditions.

I. INTRODUCTION

Several physical scenarios involve an electrolyte in the vicinity of a charged surface, such as (i) charging and
discharging of double layers, which is the underlying process in electrochemical capacitors [1, 2], (ii) electrophoresis
and electroosmosis, which are electrokinetic phenomena where relative motion is induced between the surface and
the electrolyte due to the application of an external electric field [3–5], and (iii) diffusiophoresis and diffusioosmosis,
which are electrokinetic phenomena where relative motion is induced between the surface and the electrolyte due to
a concentration gradient of ions [5, 6]. In this article, we focus on diffusiophoresis and diffusioosmosis, which are
observed in processes such as dialysis [7], sedimentation and centrifugation [8], and the motion of colloidal particles
in microchannels [9–16]. Moreover, reports in the literature have utilized diffusiophoresis and diffusioosmosis for
applications in water treatment [10], fabric cleaning [17], self-propelling ‘active’ swimmers [18–20], and measurement
of the surface zeta potential [21], among others.

Diffusiophoresis is defined as the movement of a charged particle while the surrounding electrolyte is stationary.
In contrast, diffusioosmosis occurs when the electrolyte is moving while the surface is stationary. In their classical
work, Prieve, Anderson and others derived an expression for the relative velocity for a valence-symmetric electrolyte,
or a z : z electrolyte, such as NaCl (z = 1) and CaSO4 (z = 2) [5, 6, 22]. They showed that the diffusiophoretic
(or diffusioosmotic) velocity is the sum of an electrophoretic component and a chemiphoretic component. In their
derivation, a restriction is not imposed on the potential drop across the double layer, or zeta potential ψD. However,
their analyses require knowledge of the potential variation inside the double layer, first derived by Gouy for a z : z
electrolyte [23], to arrive at the expression for the diffusiophoretic velocity. Though there has been an increase in
interest to derive results for a mixture of electrolytes with a general combination of cation and anion valences [24–26]
a complete solution of the potential inside the double layer is not readily available for a mixture of valence-asymmetric
electrolytes. Some authors report an expression for a particle’s diffusiophoretic velocity in a mixture of electrolytes
where the potential distribution can be evaluated [24, 27] , although their results are only valid in the Debye–Hückel

limit of ΨD = e|ψD|
kBT

� 1, where ΨD is the dimensionless zeta potential, e is the charge on an electron, kB is the

Boltzmann constant, and T is the temperature. However, typical experiments include ψD . 100 mV, or ΨD . 4 [21].
Therefore, it is necessary to go beyond the limit of ΨD � 1.

Recently, we demonstrated that unequal cation and anion valences influence diffuse-charge relations for an elec-
trolyte near a charged surface [26]. Here, we extend the analysis to calculate the diffusiophoretic and diffusioosmotic
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FIG. 1. Sketch and notation for the derivation of the diffusioosmotic velocity. The valence of the ith ion is denoted as zi,
where zi > 0 for a cation and zi < 0 for an anion, here illustrated in shorthand by +© and -© respectively. The concentration
gradient of ions in the x direction induces a relative motion between the electrolyte and the surface. The surface charge density
is assumed to be constant and is denoted as q (the schematic shows the scenario of q > 0).

velocities. First, we reformulate the classical derivation of the diffusiophoretic velocity and show, perhaps suprisingly,
that the detailed profile of the electric potential within the double layer is not necessary to determine the diffusio-
phoretic velocity. We derive velocities for a general mixture of ions with valence zi, without imposing any restriction
on ψD, in the limit of thin double layers. We show that the relative velocity can be significantly influenced by the
valence zi. Our results are in agreement with those previously reported in the Debye–Hückel limit [24, 27], and we
also report simplified expressions valid for large zeta potentials. For the case of a single electrolyte with the same
valence, we recover the original solution highlighting the generality of our approach.

We derive our main results in the limit of thin double layers and do not consider effects such as finite ion size
[26, 28, 29], dielectric decrement [26, 30, 31] and surface conduction [32–34]. Therefore, we discuss experimental
conditions where our analysis is applicable and also detail scenarios where the inclusion of the aforementioned effects
should be considered.

II. PHYSICAL ORIGIN OF DIFFUSIOPHORESIS AND DIFFUSIOOSMOSIS

We first summarize the physical mechanism that gives rise to diffusiophoresis and diffusioosmosis. For convenience,
we only describe the mechanism of diffusioosmosis. A schematic of diffusioosmosis is provided in Fig. 1 where a
mixture of electrolytes is in contact with a charged surface. The valence of an ith ion is denoted as zi. Diffusioosmotic
motion of the electrolyte is produced when a gradient in ion concentrations is present far away from the surface,
or ci∞(x) (a more rigorous definition of ci∞(x) is provided in the next section). Depending on the charge of the
surface, either cations or anions are attracted towards the surface, and the concentration of the attracted ion increases
significantly near the wall. The length scale of this diffuse-charge region is given by the Debye length, λD. Most
studies assume a single electrolyte with equal valences of cations and anions, while we focus on the general case of a
mixture of multiple electrolytes with arbitrary zi.

The diffusioosmotic velocity is commonly described as the sum of an electrophoretic component and a chemiphoretic
component. We first focus on the electrophoretic component. Due to a gradient in the electrolyte concentration far
away from the surface, ions diffuse towards the region of low concentration. However, different mobilities of cations
and anions give rise to an electric field to maintain a zero flux of net charge. Since the double layer has a net
charge, this electric field creates an electrostatic force inside the double layer. Therefore, the fluid far away from the
surface moves so as to generate the shear forces in the double layer that balance the electrostatic forces, similar to an
electrophoretic system. In contrast, chemiphoretic movement of the fluid far away from the surface generates shear
forces inside the double layer that balance the pressure forces inside the double layer, which arise due to variation in
electrical force along the x direction. Depending on the charge at the surface and the relative diffusivities of cations
and anions, the electrophoretic and chemiphoretic components can either be in the same direction or in the opposite
direction.
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III. ANALYSIS OF A GENERAL MIXTURE OF ELECTROLYTES

A. Governing Equations

We assume that the liquid far away from the stationary surface in Fig. 1 contains multiple ions where zi > 0 for
a cation and zi < 0 for an anion. Here, x denotes the coordinate along the surface and y is normal to the surface.
The surface charge density q is assumed to be constant and is related to the potential drop across the double layer,
denoted here as ψD (Fig. 1). The incompressible fluid flow is governed by the Stokes equations with an electrostatic
body force, Gauss’s law of electrostatics, and the Nernst–Planck equations for the flux of ions. We define u =
ux(x, y)ex+uy(x, y)ey as the velocity field, p(x, y) as pressure, µ as the fluid viscosity, ρe(x, y) = e

∑
i zici as the charge

density, ψ(x, y) as the electrical potential, ci(x, y) as the concentrations of the ith ion, ji = jix(x, y)ex + jiy(x, y)ey as
the fluxes of the ith ion, and Di as the diffusivity of the ith ion. Then, the governing equations are

∇ · u = 0, (1a)

−∇p+ µ∇2u− ρe∇ψ = 0, (1b)

−∇ · (ε∇ψ) = ρe = e
∑
i

zici, (1c)

∇ · ji = 0, (1d)

ji = −Di∇ci + uci −
Dizieci
kBT

∇ψ. (1e)

In the description used above, the electrical permittivity ε is assumed constant.

Our objective is to solve for the diffusioosmotic velocity uDO parallel to the surface, that develops at the outer
boundary of the double layer. We first non-dimensionalize the equations. We define a diffusivity scale D∗ and an
ion concentration scale c∗, which are typical values of ion diffusivities and ion concentration in bulk. There are two
relevant length scales in our system. First, there is the length at which the ion concentration changes in bulk, which

we denote here as a∗. The second relevant length scale is the Debye length λD =
√

εkBT
e2c∗ . We define the thermal

potential as ψT = kBT
e , δ = λD

a∗ , and a dimensionless surface charge Q =
q

ec∗λD
.

We non-dimensionalize the equations by introducing the dimensionless quantities X = x
a∗ , Y = y

λD
, Ci =

ci
c∗

,

Di =
Di

D∗
, U = a∗µ

εψ2
T
u, Ji = a∗

D∗c∗ ji, P =
λ2
D

εψ2
T
p, Ψ = ψ

ψT
and α =

εψ2
T

µD∗ . We note that α is a characteristic Péclet

number for the flow outside the double layer and the typical value of α = O
(
10−1

)
. Thus, Eqs. (1) reduce to

∇̂ ·U = 0, (2a)

−∇̂P + δ∇̂2U + ∇̂2Ψ∇̂Ψ = 0, (2b)

−∇̂2Ψ =
∑
i

ziCi, (2c)

∇̂ · Ji = 0, (2d)

Ji = −δ−1Di∇̂Ci + αUCi − δ−1DiziCi∇̂Ψ, (2e)

where ∇̂ = λD∇ = exδ
∂
∂X + ey

∂
∂Y is the rescaled gradient operator.

B. The Thin Double Layer Approximation

We analyze the system of Eqs. (2) in the limit of δ → 0, for which the solution is thus divided into two regions:
the double layer region and the bulk region [5, 6, 35]. For a formal treatment of these regions through asymptotic
analysis, we refer the readers to Schnitzer and Yariv [33].
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1. Analysis in the Double Layer

Inside the double layer, since x = O(a∗) and y = O(λD), the dimensionless X = O(1) and Y = O(1). We now
use order-of-magnitude analysis to simplify Eqs. (2). Using Eq. (2a), we conclude UY

UX
= O(δ). Similarly, Eq. (2d)

suggests that JiY
JiX

= O(δ). In the limit of δ → 0, these relations suggest that velocity and species flux in the Y direction

are negligible when compared to their values in X direction. However, Eq. (2e) suggests an opposite relation between
JiY and JiX . Assuming Ci = O(1), Ψ = O(1) and α . O(1), we can estimate JiY

JiX
= O(δ−1). Therefore, for the order

of magnitude predictions between Eq. (2e) and Eq. (2d) to be consistent with each other and the condition of zero
normal flux at Y = 0, the dominant terms in JiY from Eq. (2e) must vanish. Thus, the diffusion and electromigration
normal to the surface are in balance (δ−1Di ∂Ci

∂Y + δ−1ziDiCi ∂Ψ
∂Y = 0), which upon integration yields

Ci = Ci∞ exp(−zi(Ψ−Ψ∞)), (3)

where we have defined Ci∞(X) and Ψ∞(X) as the concentration of an ith ion and the electrical potential, respectively,
far away from the surface, or in the bulk. For convenience, we define Ψ(X,Y ) = Ψ0(X,Y ) + Ψ∞(X), to get

Ci = Ci∞ exp(−ziΨ0). (4)

Eq. (4) is the well-known Boltzmann distribution. We note that Ψ0(X, 0) = ΨD is, by definition, the surface (zeta)
potential relative to the bulk.

Next, we focus on Eq. (2c): since X and Y are both O(1) in the Debye layer, ∇̂2 = δ2 ∂2

∂X2 + ∂2

∂Y 2 ≈ ∂2

∂Y 2 , leading to

∂2Ψ

∂Y 2
=
∂2Ψ0

∂Y 2
= −

∑
i

ziCi. (5)

Substituting Eq. (4) in Eq. (5) and integrating once while utilizing the matching condition ∂Ψ0

∂Y

∣∣
Y→∞ = 0 [33], we

get (
∂Ψ0

∂Y

)2

= 2
∑
i

Ci∞gi(Ψ0), (6)

where we define

gi(Ψ0) ≡ exp(−ziΨ0)− 1. (7)

We note that gi(Ψ0) is the excess concentration of the ith ion in the double layer relative to the bulk.

The typical solution strategy at this stage is to integrate Eq. (6) to find the potential Ψ0(X,Y ). However, analytical
solutions are only possible for z : z electrolytes or in the limit of small potentials. Below we develop an alternative
method that circumvents this step to address the general case of electrolyte mixtures. Gauss’s law at the surface, i.e.

y = 0, defines the surface charge q = −ε ∂ψ
∂y

∣∣∣
y=0

, which in dimensionless variables is Q = − ∂Ψ
∂Y

∣∣
Y=0

. We utilize Eq.

(6) to relate Q to ΨD as

Q = − ∂Ψ

∂Y

∣∣∣∣
Y=0

= sgn(ΨD)

(
2
∑
i

Ci∞gi(ΨD)

)1/2

. (8)

Since we have solved for Ci (Eq. (4)) and ∂Ψ
∂Y (Eq. (6)), we now focus on Eq. (2b) and utilize an order-of-magnitude

analysis. In the Y direction, the ratio of shear stress to the electrostatic term is O(δUY )� 1 and therefore, to satisfy
Eq. (2b), the pressure term balances the electrostatic term, or

∂P

∂Y
=
∂2Ψ0

∂Y 2

∂Ψ0

∂Y
. (9)

One integration in Y , along with P (X,Y → ∞) = 0 (choosing the bulk pressure as a reference) and the matching
condition ∂Ψ0

∂Y

∣∣
Y→∞ = 0, yields

P (X,Y ) =
1

2

(
∂Ψ0

∂Y

)2

=
∑
i

Ci∞gi(Ψ0). (10)
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Physically, Eq. (10) states the well-known idea that the osmotic pressure inside the double layer is higher than that
in the bulk due to the electric field inside the double layer. Therefore,

∑
i Ci∞gi(Ψ0) is a measure of the rescaled

energy density inside the double layer.

Given the form of Eq. (10) in terms of Ψ0, it is useful to change independent variables to express P (X,Y ) =

P̃ (Ci∞(X),Ψ0(X,Y )); note that there is no loss of generality in this transformation within the thin Debye layer
approximation used here. Thus, we may write

∂P

∂X

∣∣∣∣
Y

=
∑
i

∂P̃

∂Ci∞

∣∣∣∣∣
Ψ0

dCi∞
dX

+
∂P̃

∂Ψ0

∣∣∣∣∣
Ci∞

∂Ψ0

∂X
, (11)

∂P

∂Y

∣∣∣∣
X

=
∑
i

∂P̃

∂Ci∞

∣∣∣∣∣
Ψ0

∂Ci∞
∂Y

+
∂P̃

∂Ψ0

∣∣∣∣∣
Ci∞

∂Ψ0

∂Y
=

∂P̃

∂Ψ0

∣∣∣∣∣
Ci∞

∂Ψ0

∂Y
. (12)

Comparing Eq. (12) with Eq. (9), we obtain

∂P̃

∂Ψ0

∣∣∣∣∣
Ci∞

=
∂2Ψ0

∂Y 2
. (13)

Utilizing Eq. (13) in Eq. (11) then results in

∂P

∂X

∣∣∣∣
Y

=
∑
i

∂P̃

∂Ci∞

∣∣∣∣∣
Ψ0

dCi∞
dX

+
∂2Ψ0

∂Y 2

∂Ψ0

∂X
. (14)

Now, we focus on the X-direction balance of Eq. (2b). Since both X and Y are O(1) in the Debye layer, Eq. (2b)
can be approximated as

∂P

∂X
=
∂2UX
∂Y 2

+
∂2Ψ0

∂Y 2

∂Ψ

∂X
(15)

Substituting Eq. (14) in Eq. (15) yields

∂2UX
∂Y 2

= −∂
2Ψ0

∂Y 2

dΨ∞
dX

+
∑
i

∂P̃

∂Ci∞

∣∣∣∣∣
Ψ̂0

dCi∞
dX

. (16)

To the best of our knowledge, the form of Eq. (16) has not been noted previously. Eq. (16) provides insights into the
mechanism for motion as it clearly separates the contributions from the bulk electric field (electrophoresis), which is
proportional to dΨ∞

dX , and the electric field energy inside the double layer (chemiphoresis), which is proportional to
dCi∞
dX .

Next, we integrate Eq. (16) to evaluate the diffusioosmotic slip velocity UDO = UX(X,Y → ∞). Integration of

the electrophoretic component is straightforward. We first use Eq. (10) to recognize that ∂P̃
∂Ci∞

= gi(Ψ0), which on

substitution into Eq. (16) yields

∂2UX
∂Y 2

= −∂
2Ψ0

∂Y 2

dΨ∞
dX

+
∑
i

gi(Ψ0)
dCi∞
dX

. (17)

We integrate this equation once across the double layer subject to the condition that Y -derivatives vanish as Y →∞
to obtain

∂UX
∂Y

= −∂Ψ0

∂Y

dΨ∞
dX

+
∑
i

(
dCi∞
dX

∫ Y

∞
gi(Ψ0(X,Y ′))dY ′

)
. (18)

Since the chemiphoretic contribution to the velocity distribution depends on Y ′ only through the excess potential
Ψ0(X,Y ′), it is convenient to change the integration variable from Y ′ to Ψ′ to find

∂UX
∂Y

= −∂Ψ0

∂Y

dΨ∞
dX

+
∑
i

(
dCi∞
dX

∫ Ψ0

0

gi(Ψ
′)

(
∂Ψ′

∂Y ′

)−1

dΨ′

)
. (19)
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Similarly, we integrate again across the double layer and utilize the boundary conditions on velocity and potential,
i.e. UX(X, 0) = 0, and UX(X,∞) = UDO, Ψ0(X, 0) = ΨD and Ψ0(X, 0) =∞ to get

UDO =
dΨ∞
dX

ΨD +
∑
i

(
dCi∞
dX

∫ 0

ΨD

[∫ Ψ0

0

gi(Ψ
′)

(
∂Ψ′

∂Y

)−1

dΨ′

](
∂Ψ0

∂Y

)−1

dΨ0

)
. (20)

Finally, we substitute the expression for ∂Ψ0

∂Y from Eq. (6) in Eq. (20) to obtain

UDO =
dΨ∞
dX

ΨD −
1

2

∑
i

dCi∞
dX

∫ ΨD

0

[∫ Ψ0

0
gi(Ψ

′)
(∑

j Cj∞gj(Ψ
′)
)− 1

2

dΨ′
]

(∑
j Cj∞gj(Ψ0)

) 1
2

dΨ0

 , (21)

where we recall that gi(Ψ) ≡ exp(−ziΨ)− 1, as given by Eq. (7). Eq. (21) is a statement relating the diffusioosmotic
velocity to the excess ion concentration gi(Ψ) and the energy density of the double layer

∑
i Ci∞gi(Ψ), albeit a

complicated one. To relate dΨ∞
dX and dCi∞

dX , we now analyse Eqs. (2) in the bulk.

2. Analysis in Bulk

Now, we assume that there is no external electric field applied to the system. We also invoke the condition that
the surface conduction effect is negligible, i.e. the flux of ions in the direction perpendicular to the surface can be
neglected [33]. Hence, in the bulk, the dependence on Y vanishes, or Ci = Ci∞(X), P = 0 and Ψ = Ψ∞(X). In the
bulk, x = O(a∗), or X = O(1). Thus, for δ → 0, Eq. (2c) yields the electroneutrality conditions∑

i

ziCi∞ = 0. (22)

Moreover, since there is no externally applied electric field in diffusiophoresis, the net current in the bulk should be
zero,

∑
i ziJiX = 0 [22, 32]. This condition allows us to relate Ψ∞ to Ci∞ by substituting the expression for JiX from

Eq. (2e) and summing over the ions to find

−
∑
i

ziDi
dCi∞
dX

+ αUDO

∑
i

ziCi∞ −
dΨ∞
dX

∑
i

z2
iDiCi∞ = 0. (23)

Using Eq. (22), Eq. (23) yields [24, 36]

dΨ∞
dX

= −
∑
iDizi

dCi∞
dX∑

iDiz2
iCi∞

. (24)

We note that Eq. (24) is derived by ignoring surface conduction effects, and in the absence of externally applied electric
fields. However, for large ΨD, surface conduction effect could be important [32, 33]. In section IV, we summarize
typical scenarios encountered in experiments, and discuss when surface conduction effect is likely to be significant. A
more comprehensive and rigorous theoretical analysis of this effect for a mixture of multiple ions is feasible within the
current framework and should be carried out in future studies.

3. Final Result

We now combine the results from the double layer analysis and the bulk region. Substituting Eq. (24) in (21) yields

UDO = −
∑
iDizi

dCi∞
dX∑

iDiz2
iCi∞

ΨD −
1

2

∑
i

dCi∞
dX

∫ ΨD

0

[∫ Ψ0

0
gi(Ψ

′)
(∑

j Cj∞gj(Ψ
′)
)− 1

2

dΨ′
]

(∑
j Cj∞gj(Ψ0)

) 1
2

dΨ0

 , (25)

where gi(Ψ0) ≡ exp(−ziΨ0)− 1 and Ci∞(X) needs to satisfy the bulk electroneutrality condition, i.e.
∑
i ziCi∞ = 0.

We also recall that ΨD is dependent on Q through Eq. (8).
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Equation (25) is our main result for the diffusioosmotic velocity as a function of the zeta potential ΨD of the surface
and the bulk ion concentration fields. To the best of our knowledge, the form of this equation has not been reported
previously for the case of a general mixture of ions. We emphasize that for the evaluation of UDO, the expression of
Ψ0(X,Y ) is not necessary, and integrating terms containing gi(Ψ0) is sufficient to evaluate UDO, as evident from Eq.
(25).

It is clear from Eq. (25) that for a single salt, both the electrophoretic and chemiphoretic components would be
proportional to d lnC∞

dX . Moreover, since X = O(1) and Ci∞ = O(1), the electrophoretic and chemiphoretic terms
are both O(ΨD). Lastly, the diffusiophoretic velocity UDP is equal and opposite to the value of UDO predicted in Eq.
(25), i.e., UDP = −UDO, in the limit of λD

b∗ → 0, where b∗ is the diameter of the particle.

C. The Debye–Hückel Limit of |ΨD| � 1

We now discuss some limiting cases for which the integrals involved in UDO can be evaluated explicitly. For small

potentials (|ΨD| � 1), a Taylor series expansion shows that gi(Ψ0) = −ziΨ0 +
z2i
2 Ψ2

0 −
z3i
6 Ψ3

0 +O
(
Ψ4

0

)
. Substituting

this expression into Eq. (25) and using the electroneutrality condition, we get

UDO = −
∑
iDizi

dCi∞
dX∑

iDiz2
iCi∞

ΨD −
∑
i z

2
i

dCi∞
dX∑

i z
2
iCi∞

Ψ2
D

8
+

(∑
i z

3
i

dCi∞
dX∑

i z
2
iCi∞

−
5
(∑

i z
2
i

dCi∞
dX

) (∑
i z

3
iCi∞

)
4 (
∑
i z

2
iCi∞)

2

)
Ψ3
D

54
+O(Ψ4

D) (26)

Equation (26) provides a convenient expression to evaluate UDO with an order of accuracy O(Ψ3
D). If we neglect the

cubic term, our result is consistent with previous reports [24, 27], where the authors arrived at their result by utilizing
the potential description Ψ0(X,Y ) in the linear limit (the Debye–Hückel approximation) [24]. We also observe that at
O(Ψ3

D), the diffusioosmotic velocity depends explicitly on the difference of magnitude between the anion and cation
valences (through z3

i ), which is a qualitatively new effect that is not captured by Debye–Hückel theory.

D. The Limit of |ΨD| � 1

We now develop useful approximations for the case of large potentials ΨD � 1. For ΨD > 0, in any given mixture
of ions, we identify the largest anion valence by z− = −maxi(|zi− |), and approximate gi(Ψ0) ≈ exp (−zi−Ψ0). Since,
in the chemiphoretic term, z

i− appears in the exponential, only anions (i) with zi− = z− will contribute significantly
to summations involved in the chemiphoretic portion of UDO. Thus, we sum only over salts with anion valence z−,
indicated below with a (−) over the sum. The analysis for ΨD < 0 is similar: we identify z+ = maxi(zi+) and sum
only over salts with cation valence z+, indicated below with a (+) over the sum.

Next, we observe from Eq. (25) that evaluating integrals involves the limit from 0 to Ψ0 or 0 to ΨD. The approxi-
mation of gi(Ψ0) above is inaccurate near the lower integration limit, and can be shown, as a result, to overestimate
the integrals by a subdominant O(1) term for |Ψ0| � 1. We correct for this error by modifying the lower limit of
the integral in Eq. (25) from 0 to Ψ`, where Ψ` is an O(1) parameter whose value we discuss later. As we will show,
the introduction of Ψ` leaves the leading-order asymptotic behavior of UDO unchanged for |ΨD| � 1, while allowing
us obtain a significant improvement in the numerical accuracy of our predictions for moderate zeta potentials |ΨD| & 1.

Thus substituting (i) gi(Ψ0) ≈ exp (−zi−Ψ0) for ΨD � 1, (ii) gi(Ψ0) ≈ exp (−zi+Ψ0) for −ΨD � 1, and (iii)
modifying the lower limits of integration from 0 to Ψ` in Eq. (25), we obtain

UDO =


−
∑
iDizi

dCi∞
dX∑

iDiz2
iCi∞

ΨD +

(+)∑
i

dCi∞
dX

Ci∞

(
ΨD + Ψ`

z+
− 2 (exp (z+(Ψ` + ΨD)/2)− 1)

z2
+

)
, −ΨD � 1

−
∑
iDizi

dCi∞
dX∑

iDiz2
iCi∞

ΨD −
(−)∑
i

dCi∞
dX

Ci∞

(
Ψ` −ΨD

z−
+

2 (exp (−z−(Ψ` −ΨD)/2)− 1)

z2
−

)
, ΨD � 1.

(27)

To leading order, observe that the diffusioosmotic velocity is linear in ΨD for |ΨD| � 1. The next order is independent
of ΨD but depends on the O(1) parameter Ψ`, for which we determine an approximation in the next section. In section
V, we detail the accuracy of the Debye-Hückel limit and the |ΨD| � 1 approximations. We reiterate that our analysis
assumes that finite ion size, dielectric decrement and surface conductions effects are negligible, which may become
important for |ΨD| � 1, as we detail below.
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TABLE I. Summary of physical parameters and relevant dimensionless groups from recent experiments on diffusiophoresis that
justify our assumptions. To estimate the values, dion = 3 Å is assumed for the diameter of an ion (see section IV B) and γ = 10
[M]−1 is assumed for the dielectric decrement factor for an ion (see section IV C).

Property Ref. [9] Ref. [7] Ref [11] Ref. [25]
c∗ 50 [mM] 50 [mM] 2 [mM] 1 [mM]
a∗ 60 [µm] 100 [µm] 500 [µm] 100 [µm]
b∗ 200 [nm] 500 [nm] 60 - 1000 [nm] 500 [nm]
λD 1.3 [nm] 1.3 [nm] 6.7 [nm] 9.5 [nm]
λD
a∗ 2.2×10−5 1.3×10−5 1.3×10−5 9.5×10−5

λD
b∗ 6.7×10−3 2.6×10−3 6.7×10−3- 1.1 ×10−1 5.2×10−3

1
z

ln
(

1
d3ionc

∗

)
7 7 10 11

1
z

ln
(
εw
γc∗

)
5 5 8 9

2 ln
(
b∗
λD

)
10 12 4 - 10 8

IV. VALIDITY OF DERIVED PREDICTIONS

In this section, we address the validity of the assumptions we invoked during our analysis. Specifically, we discuss
the following assumptions: (A) thin double layer, (B) ions are point charges (assumed implicitly through the Nernst-
Planck equations, see below for details), (C) electrical permittivity is constant, and (D) surface conduction can be
ignored. To facilitate this discussion, we compiled data from some of the previously published experimental studies
on diffusiophoresis and estimated the physical parameters along with the relevant dimensionless groups; see Table I.

A. Thin Double Layer

The common thin double layer assumption is central to the validity of our derived relation in Eq. (25). Typically,
experiments are conducted on diffusiophoresis (and not diffusioosmosis), i.e. the scenario when charged particles move
under the presence of a salt gradient while the electrolyte is stationary. In diffusiophoresis, there are three length
scales: (i) particle size b∗, (ii) Debye length λD, and (iii) the length scale over which the imposed ion concentration
decays a∗. To utilize Eq. (25) for describing experiments, in addition to λD

a∗ = δ � 1, λD

b∗ � 1 also needs to be satisfied.
Based on previously published experimental studies in Table I, we observe that λD = 1 − 10 nm, a∗ = 100 − 500
µm and b∗ = 60 − 1000 nm. The table shows that λ

a∗ . O
(
10−4

)
and λ

b∗ . O
(
10−2

)
. Therefore, the thin double

layer approximation is applicable to typical experimental scenarios. However, we note than when b∗ . 100 nm,
λ
b∗ . O

(
10−1

)
, and there might be some deviations from the velocities predicted by Eq. (25).

B. Ions are Point Charges

Our analysis utilizes the Nernst–Planck equations, i.e. Eqs. (2d)–(2e), to solve for the diffusioosmotic and diffu-
siophoretic velocities. The Nernst–Planck description assumes that ions are point charges and the volume fraction
of ions can be ignored when compared to the volume fraction of solvent [28]. However, for large c∗ and ΨD, the
concentration of surface-attracted ions inside the double layer can be large, and finite ion size effects could become
important [26, 28, 29]. The dimensionless number that governs this effect is d3

ionc
∗, where dion is the diameter of an

ion. Physically, this parameter is the dimensionless volume fraction of ions in the bulk. The finite ion size effects

are not significant when |ΨD| . 1
z ln

(
1

d3ionc
∗

)
[26]. To estimate this value, it is crucial to estimate the value of dion.

Typically, dion ≈ 1 Å, although previous studies have argued that the ion diameter should include the hydration shell,
modifying this estimate to dion ≈ 3 Å [28]. Therefore, we assumed that dion = 3 Å to estimate values. Table I shows
that finite ion sizes are not significant for ΨD . 7. Since most experiments are performed for particles with ΨD . 4,
we expect that finite ion size effects are not significant for diffusioosmotic and diffusiophoretic velocity predictions.
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C. Electrical Permittivity is Constant

We also assumed that the electrical permittivity ε is constant. However, inside the double layer, the electrical
permittivity can decrease due to a large concentration of ions. This effect is known as the dielectric decrement, and,
similar to finite ion size, it also becomes significant at large c∗ and ΨD [26, 30, 31]. Specifically, this effect is not

significant when |ΨD| . 1
z ln

(
εw
γc∗

)
[26], where γ is the dielectric decrement factor. To estimate the validity, we

assumed γ = 10 [M]−1 [30]. We show in Table I that for ΨD . 5, this effect can be ignored. Therefore, a change in
the dielectric constant is unlikely to be significant for typical diffusiophoretic experiments.

D. Surface Conduction

As mentioned previously, within the Poisson-Boltzmann framework, for large ΨD, a more careful treatment of the
bulk region is required to account for the effect of surface conduction where the currents from the double layer can
leak into the bulk region [32, 33]. This effect is not significant for ΨD . 2 ln

(
1
δ

)
[33]. Table I demonstrates that this

effect may not be significant for ΨD . 10 and would likely not influence typical experiments in diffusiophoresis and
diffusioosmosis.

In addition to the above mentioned assumptions, we note that we have not considered specific ion interactions in
our analysis. This effect could be taken into account by assuming a Stern layer near the surface and specifically
account for ion interactions [37], and will be pursued in our future work.

V. ONE ELECTROLYTE WITH ASYMMETRIC VALENCES

We now discuss the results from Eq. (25) for the case of a single electrolyte. In this section, we also tabulate
diffusiophoretic velocities for some common valence asymmetric electrolytes such CaCl2, Na2SO4, MgCl2, and others.
Since we focus on the case of a single electrolyte in this section, for further discussion, we omit the i subscript from
Ci∞, gi(Ψ0) etc.

A. Exact Solution

For a solution consisting of a single electrolyte, to maintain electroneutrality, we assume that there is one cation with
valence z+ and one anion with valence z− . Moreover, to satisfy electroneutrality in the bulk, we write C+∞ = −z−C∞
and C−∞ = z+C∞. Utilizing Eqs. (7) and (25), we obtain

UDO =
d lnC∞

dX

(
−βΨD −

1

2

∫ ΨD

0

∫ Ψ0

0

(
−z− exp

(
−z

+
Ψ′
)

+ z
+

exp
(
−z−Ψ′

)
− z

+
+ z−

)1/2
dΨ′(

−z− exp
(
−z+Ψ0

)
+ z+ exp

(
−z−Ψ0

)
− z+ + z−

)1/2 dΨ0

)
(28)

where β =
D

+
−D−

z
+
D

+
−z−D−

. We note that the value of β here is consistent with the idea of a junction potential that

is generally suggested for asymmetric diffusivities [38, 39]. We now evaluate Eq. (28) in different limits. For one
electrolyte and z+ = −z− = z, Eq. (28) reduces to the well-known result [6, 27, 35]

UDO = −d lnC∞
dX

[
βΨD +

4

z2
ln

(
cosh

(
zΨD

4

))]
. (29)

B. Analytical Approximations

In the limit of |ΨD| � 1, Eq. (26) or Eq. (28) reduces to

UDO

d lnC∞
dX

= −βΨD −
Ψ2
D

8
−
(
z
+

+ z−
) Ψ3

D

216
+O(Ψ4

D). (30)
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Equation (30) shows that the electrophoresis term is affected by valence through the definition of β. The quadratic
terms of the chemiphoretic contribution is independent of the valence whereas the cubic correction is influenced by
the difference between the (unsigned) valences of the cation and anion. For |ΨD| � 1, Eq. (27) reduces to

UDO

d lnC∞
dX

=


−βΨD +

(
ΨD + Ψ`

z+
− 2 (exp (z+(Ψ` + ΨD)/2)− 1)

z2
+

)
, −ΨD � 1

−βΨD −
(

Ψ` −ΨD

z−
+

2 (exp (−z−(Ψ` −ΨD)/2)− 1)

z2
−

)
, ΨD � 1.

(31)

Therefore, as |ΨD| increases, the impact of asymmetry in cation and anion valences on the chemiphoretic contribution
also increases. Comparing the approximation (31) with the exact solution (29) for large zeta potentials, we find that
the two expressions agree identically at leading (linear) order in ΨD. Subdominant terms in both expressions are
O(1); requiring agreement at this order determines the parameter

Ψ` =

{
z−1
+

(4 ln 2− 2) , −ΨD � 1
−z−1
−

(4 ln 2− 2) , ΨD � 1.
(32)

With these choices for Ψ`, (31) and (29) differ only by a terms exponentially small in |ΨD|. We note that the
Ψ` values determined above are formally valid for a single z : z electrolyte, though we expect them to provide
reasonable approximations for more complicated situations such as mixtures of valence-asymmetric electrolytes (Fig.
2 and appendix A). We reiterate that the leading-order behaviour of our approximation Eq. (31) for large potentials
remains independent of Ψ`.

C. Validity of Analytical Approximations

We now present the variation of UDO by numerically integrating the exact expression Eq. (28) for some typical
z
+

: z− electrolytes, and discuss the accuracy and applicability of approximations Eqs. (30)–(31). The properties
of common electrolytes are summarized in Table II, and typical results for UDO are shown in Fig. 2. We find that
though Eq. (30) is derived for |ΨD| � 1, it is a good approximation of the exact result from Eq. (28) for |ΨD| . 1;
see Fig. 2(a). However, we discover that Eq. (30) with accuracy up to O(Ψ3

D) is closer to the numerical results
as compared to Eq. (30) with accuracy only up to O(Ψ2

D) for all ΨD, depending on the value of β, z
+

, and z− .
Therefore, the improvements due to higher-order corrections are restricted for larger |ΨD| and Eq. (30) should be
utilized for |ΨD| . 1. In contrast, Eq. (31) gives a more accurate predication for larger |ΨD| and is best utilized
for |ΨD| & 4, though in many cases can also provide good approximations for smaller potentials; see Fig. 2(b). We
note that before utilizing Eq. (31), it should be ensured that effects such as finite ion size, dielectric decrement and
surface conduction are not significant. The results in Fig. 2(b) were generated using the values of Ψ` provided in Eq.
(32). We discuss the sensitivity of our results on the choice of Ψ` in the appendix A. We emphasize that z

+
and z−

significantly influence UDO, as evident from Eq. (31) and Fig. 2(a,b).

D. Some Common z+ : z− Electrolytes

We now present a comparison of UDO for different electrolytes and the results are summarized in Fig. 3. We first
compare HCl and H2SO4. Since the cation is H+ in these two electrolytes, β values are large and positive in both
cases. For small |ΨD|, the ratio of electrophoretic and chemiphoretic contributions is 8β

ΨD
, see Eq. (30). Therefore, for

TABLE II. Values of z+ , z− , D+, D− and β for some common electrolytes at 25◦C. The ion diffusivities are taken from [27].

electrolyte z+ z− D+ D− β
[10−9 m2s−1] [10−9 m2s−1]

HCl 1 -1 9.31 2.03 0.64
H2SO4 1 -2 9.31 1.06 0.72
NaCl 1 -1 1.33 2.03 −0.21
Na2SO4 1 -2 1.33 1.06 0.08
CaCl2 2 -1 0.79 2.03 −0.34
Mg(HCO3)2 2 -1 0.70 1.18 −0.18
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FIG. 2. Approximate solutions for the diffusioosmotic velocity as compared to predictions Eq. (28), calculated by numerical
integration. The solid lines are the results of numerically integrating Eq. (28), circles are results from Eq. (30) with accuracy
upto O(Ψ2

D), squares are evaluated through Eq. (30) with accuracy upto O(Ψ3
D), and triangles are generated from Eq. (31)

with Ψ` values given by Eq. (32). The parameters z+ = 1, z− = −2, β = 0.72 correspond to H2SO4, z+ = 1, z− = −2, β = 0.08
correspond to Na2SO4, and z+ = 2, z− = −1, β = −0.34 correspond to CaCl2; see Table II.

HCl and H2SO4, the two contributions are cooperative for ΨD > 0 and competitive for ΨD < 0. Next, we compare
NaCl and Na2SO4. Though the cation for both of these electrolytes is same, due to the smaller diffusivity of SO2−

4 as
compared to Cl−, and because the valence of SO2−

4 is higher, there is a considerable difference between the β values
of the two electrolytes (see Table II). We find that since β is negative for NaCl, for ΨD > 0, the electrophoretic and
chemiphoretic components compete with each other. In contrast, since the electrophoretic effect is weak for Na2SO4,
for ΨD > 0, the diffusioosmotic velocity of Na2SO4 is larger in magnitude as compared to NaCl. However, the opposite
is true for ΨD < 0, where for NaCl, the electrophoretic and chemiphoretic components are similarly signed and thus
the case of NaCl has a larger magnitude of diffusioosmotic velocity as compared to Na2SO4. A similar comparison
can be drawn between CaCl2 and Mg(HCO3)2. These examples demonstrate that asymmetric valence electrolytes
can be utilized for control over diffusioosmotic and diffusiphoretic processes, and may influence other electrokinetic
phenomena.

FIG. 3. Diffusioosmotic velocity for some common z : z and z+ : z− electrolytes as given by Eq. (28).
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VI. CONCLUSIONS

In this article, we presented general results for diffusioosmotic and diffusiophoretic velocities for a mixture of
valence-asymmetric electrolytes with arbitrary zi. Equation (25) includes the effect of valence asymmetry for a mix-
ture of electrolytes, and Eq. (28) describe the dependence for a single electrolyte. We also presented the approximate
solutions in the limit of |ΨD| � 1 and |ΨD| � 1; see Eqs. (26), (27), (30) and (31). We demonstrated that asymmetry
in electrolyte valence is a useful parameter to tune the diffusiophoretic and diffusioosmotic motions. Our analysis
will motivate future experimental studies on diffusiophoresis and diffusioosmosis using mixture of electrolytes and
multivalent salts. Future theoretical studies in this area could focus on including the effects of finite ion size, dielectric
decrement and surface conduction in the analysis to further generalize diffusiophoretic and diffusioosmostic velocity
relations.
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Appendix A: The Choice of Ψ`

We now discuss the dependence of UDO on Ψ` when Eq. (31) is utilized to evaluate UDO. We find that Ψ` from Eq.
(32) provides the best approximation to the numerical solution as compared to other values; see Fig. A1. However,
all values of Ψ` between 0 and 1 work reasonably well. However, for larger values of Ψ`, such as Ψ` = 5, the deviation
from the numerical solution is significant.

FIG. A1. Comparison of UD0 obtained from Eq. (31) with numerical solution of Eq. (28) for different values of Ψ`. Parameter
values of β = 0.72, z+ = 1 and z− = −2 (corresponding to H2SO4) were used.
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