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Abstract
At mesoscopic scales electrolyte solutions are modeled by the fluctuating generalized Poisson-Nernst-

Planck (PNP) equations [J.-P. Péraud et al., Phys. Rev. F, 1(7):074103, 2016]. However, at length and

time scales larger than the Debye scales, electrolytes are effectively electroneutral, and the charged-fluid

PNP equations become too stiff to solve numerically. Here we formulate the isothermal incompressible

equations of fluctuating hydrodynamics for reactive multispecies mixtures involving charged species in the

electroneutral limit, and design a numerical algorithm to solve these equations. Our model does not assume a

dilute electrolyte solution but rather treats all species on an equal footing, accounting for cross-diffusion and

non-ideality using Maxwell-Stefan theory. By enforcing local electroneutrality as a constraint, we obtain

an elliptic equation for the electric potential that replaces the Poisson equation in the fluctuating PNP

equations. We develop a second-order midpoint predictor-corrector algorithm to solve either the charged-

fluid or electroneutral equations with only a change of the elliptic solver. We use the electroneutral algorithm

to study a gravitational fingering instability, triggered by thermal fluctuations, at an interface where an acid

and base react to neutralize each other. Our results demonstrate that, because the four ions diffuse with

very different coefficients, one must treat each ion as an individual species, and cannot treat the acid, base,

and salt as neutral species. This emphasizes the differences between electrodiffusion and classical Fickian

diffusion, even at electroneutral scales.
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I. INTRODUCTION

Better understanding of transport phenomena in electrolytes is important for studying both

naturally occurring and man-made systems at small scales. Living cells rely strongly on membrane

potentials and the electrodiffusion of ions. Batteries and fuel cells also rely on ionic transport. In

both of these examples the length and time scales involved are intractable for molecular dynamics.

A more efficient and tractable numerical approach for mesoscopic fluids is fluctuating hydrody-

namics (FHD), which extends conventional hydrodynamics by including a random component to

the dissipative fluxes in a manner consistent with irreversible thermodynamics and the fluctuation-

dissipation theorem. Access to tools to model systems involving complex electrolyte mixtures with

the inclusion of their inherent statistical fluctuations would not only increase our understanding

of cellular mechanisms, but also provide a path towards better design tools for bio-engineering

applications.

In our prior work [1] we formulated a charged-fluid form of the equations of fluctuating hy-

drodynamics and developed associated algorithms for electrolyte mixtures containing an arbitrary

number of ionic or neutral species. Our formulation combined a generalized fluctuating Poisson-

Nernst-Planck (PNP) equation based on the Maxwell-Stefan formulation of electrodiffusion with

the fluctuating low Mach number Navier-Stokes (NS) equation for the fluid flow. In that formula-

tion, the fluid is considered to be a mixture of incompressible but miscible components (species),

each with its own density, and it is not necessary to distinguish a single species as a solvent 1.

For very dilute electrolyte solutions, in the absence of fluctuations the deterministic formulation

reverts to the classical PNP equations for the composition, coupled to an incompressible NS equa-

tion for the fluid velocity. In recent work [2, 3] we have demonstrated that the addition of thermal

fluctuations renormalizes the PNP equations to reproduce the Debye-Hückel-Onsager theory for

dilute solutions.

The charged-fluid formulation is designed for simulations where the spatial grid resolves the

Debye length λD, which is typically on the order of a few to tens of nanometers. In particular, the

time step size in the algorithm used in [1] was limited by τD = λ2
D/D (see Eq. (86) in [1]), where D

is a typical diffusion coefficient. In many practical applications one is interested in modeling bulk

electrolytes at length scales much larger than the Debye length, over diffusive time scales much

longer than τD. At such scales, the electrolyte is effectively electroneutral, and electrodiffusion is

1 This formulation is also useful for modeling ionic liquids.
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described by the electroneutral limit of the PNP equations [4, 5]. In this paper, we formulate the

electroneutral limit of the generalized fluctuating PNP equations and develop a numerical method

to solve these equations. In the electroneutral limit, the evolution is constrained to preserve charge

neutrality by replacing the standard Poisson equation for the electric field with a variable coefficient

elliptic equation. Thus, with only a change of an elliptic equation solver, our algorithm can switch

from charged-fluid to electroneutral, allowing us to use the same code to study a broad range

of length and time scales. Implicit in a coarse-grained description like FHD is the assumption

that each cell (coarse-graining volume) contains sufficiently many ions to justify neglecting the

discrete particle nature of molecules. While this assumption is problematic for charged-fluid FHD

except for dilute solutions (for which the Debye length is large compared to the inter-ion spacing),

in electroneutral FHD the cell dimensions are much larger than the Debye length and therefore

typically contain a large number of ions even for dense solutions (for which the Debye length is

comparable or smaller than the inter-ion spacing).

Additionally, in this work we incorporate chemical reactions in the charged-fluid and electro-

neutral formulations/algorithms following our prior work on non-ionic mixtures [6]. In the approach

developed in [6], fluctuating chemistry is treated using a discrete Chemical Master Equation (CME)

formulation, while hydrodynamic transport including mass and momentum diffusion is treated

using a fluctuating hydrodynamics semi-continuum formulation. Our numerical algorithm is a

modification of the algorithm developed in [6] to replace diffusion by electrodiffusion for both

formulations.

In [6], we modeled recent experiments [7] studying a gravity-driven instability of a front where

an acid (HCl) and a base (NaOH) neutralize each other to form a salt (NaCl). In these prior

simulations, we followed the literature [7–9] and modeled the acid, base, and salt as neutral species

(HCl, NaOH, and NaCl); we will refer to this as the ambipolar approximation. In reality, however,

these species are all strong electrolytes and disassociate into ions (H+, OH−, Na+, and Cl−). It

is well-known that electrodiffusion can be very different than ordinary diffusion because of the

strong coupling of the motions of the ions via the electric fields they generate; for example, an

ionic species can diffuse against its own concentration gradient [10]. In this work, we use the

electroneutral formulation to model the fingering instability at an HCl/NaOH front but treating

each ion as a separate charged species. This avoids uncontrolled approximations and allows us to

assess the quantitative accuracy of the ambipolar approximation in a multispecies electrolyte.

We begin by formulating the stochastic partial differential equations of fluctuating hydrody-

namics for electrolytes in Section II. We first review the charged-fluid formulation in which the
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Debye length is resolved in Section IIA, and then formulate the electroneutral equations in Sec-

tion II B. We also discuss the spectra of concentration fluctuations at thermodynamic equilibrium

for both charged-fluid and electroneutral formulations in Section IIC. We present a second-order

predictor-corrector algorithm for both formulations in Section III. The methodology is applied to

study a fingering instability at an acid-base front in Section IV. We conclude with some directions

for future research in Section V.

II. CHARGED-FLUID AND ELECTRONEUTRAL FLUCTUATING ELECTROHYDRO-

DYNAMICS

We consider an isothermal isobaric mixture of Ns species and use the following notation. Vectors

(both in the geometrical and in the linear algebra sense), matrices (and tensors), and operators

are denoted with bold letters. The mass density of species s is denoted with ρs and its number

density with ns, giving the total mass density ρ = ∑Ns
s=1 ρs and total number density n = ∑Ns

s=1 ns.

The mass fractions are denoted with w, where ws = ρs/ρ, while the number or mole fractions are

denoted with x, where xs = ns/n; both the mass and number fractions sum to unity. One can

transform between mass and number fractions by xs = m̄ws/ms, where ms is the molecular mass

of species s and the mixture-averaged molecular mass is

m̄ = ρ

n
=
(
Ns∑
s=1

ws
ms

)−1

.

A diagonal matrix whose diagonal is given by a vector is denoted by the corresponding capital

letter; for example, W is a diagonal matrix with entries w and M is a diagonal matrix of the

molecular masses m.

The charges per unit mass are denoted by z with zs = Vse/ms, where e is the elementary charge

and Vs is the valence of species s. The total density of free charges is thus

Z =
Ns∑
s=1

ρszs = ρzTw.

For an ideal solution the Debye length is given by

λD =
(

εkBT

ρzTWMz

)1/2
=
(

εkBT∑Ns
s=1 ρwsmsz2

s

)1/2

, (1)

where ε is the dielectric permittivity of the mixture, kB is Boltzmann’s constant, and T is the

temperature.
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A. Charged-fluid Formulation

In this section we review the fluctuating hydrodynamics equations for an electrolyte mixture,

following the notation in [1]. Unlike this prior work, and following [6], here we make a Boussinesq

approximation and assume that the density of the mixture changes only weakly with composition,

ρ ≈ ρ0. This allows us to use an incompressible approximation of the momentum equation,

which greatly simplifies the construction of a numerical algorithm [6]. The dependence of the

density on composition is only taken into account in the gravity forcing term. This Boussinesq

approximation is certainly valid for moderately dilute electrolyte solutions. We neglect the effects

of thermodiffusion and barodiffusion on mass transport and assume constant temperature T and

thermodynamic pressure P .

The incompressible equations of fluctuating hydrodynamics for an isothermal reactive electrolyte

mixture can be obtained by combining terms given in [1] with those given in [6]. Here we summarize

the resulting equations.

1. Quasi-electrostatic Poisson Equation

In the electroquasistatic approximation (magnetic effects are neglected), the electric potential

Φ(r, t) satisfies the Poisson equation

∇ · (εE) = −∇ · (ε∇Φ) = Z, (2)

where the electric field is E = −∇Φ, and the dielectric permittivity ε (w) can, in principle, depend

on composition. The boundary conditions for Φ are standard Neumann conditions for dielectric

boundaries or Dirichlet conditions for metallic boundaries.

The presence of charges and electric fields leads to a nonzero Lorentz force in the momentum

equation given by the divergence of the Maxwell stress tensor σM = ε
(
EET −ETEI/2

)
,

fE = ∇ · σM = ZE − E2

2 ∇ε.

In this work we assume that the permittivity is constant, which reduces the Lorentz force to

fE = ZE. Using the Poisson equation (2), we can rewrite this in the equivalent form

fE = ∇ · (εE)E = [∇ · (ε∇Φ)]∇Φ,

which is suitable for both the charged-fluid and the electroneutral formulations [5]. By contrast,

as we explain later, the traditional form fE = ZE cannot be used in the electroneutral limit since

formally Z → 0 but the Lorentz force does not go to zero in this limit [5].
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2. Momentum Equation

In the Boussinesq approximation, ρ = ρ0 and conservation of momentum gives the fluctuating

incompressible Navier-Stokes equations

∂ (ρv)
∂t

+ ∇π = −∇·(ρvvT ) + ∇·(η∇̄v + Σ) + ∇ · (ε∇Φ) ∇Φ + f , (3)

∇·v = 0. (4)

Here, v(r, t) is the fluid velocity, π(r, t) is the mechanical pressure (a Lagrange multiplier that

ensures the velocity remains divergence free), η(w) is the viscosity, ∇̄ = ∇ + ∇T is a symmetric

gradient, and Σ is the stochastic momentum flux. The buoyancy force f(w, t) is a problem-specific

function of w(r, t) and can also be an explicit function of time.

Based on the fluctuation-dissipation relation, the stochastic momentum flux Σ is modeled as

Σ =
√
ηkBT

[
Zmom + (Zmom)T

]
, (5)

where Zmom(r, t) is a standard Gaussian white noise tensor field with uncorrelated components

having δ-function correlations in space and time.

The two physical boundary conditions for the charged-fluid equations that we consider here are

the no-slip condition v = 0 on the boundary, and the free-slip boundary condition,

vn = v · n = 0 and ∂vn
∂τ

+ ∂vτ
∂n

= 0, (6)

where n is the unit vector normal to the boundary, τ is a unit vector tangential to the boundary,

τ · n = 0, and vτ is the tangential component of the velocity.

3. Species Equations

Conservation of mass for each species gives the dynamics of the composition of the mixture,

∂ (ρws)
∂t

= −∇·(ρwsv)−∇·Fs +msΩs, (7)

where we remind the reader that in the Boussinesq approximation density is constant, i.e., ρ = ρ0.

The total diffusive mass flux Fs of species s is composed of a dissipative flux F s and fluctuating

flux F̃s,

Fs = F s + F̃s, (8)
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and Ωs is a source term representing stochastic chemistry. Note that by summing up (7) over

all species we recover (4) since ∑s Fs = 0 and ∑smsΩs = 0. The formulation of the chemical

production rates Ωs is taken from [6] and summarized in Appendix A.

Diffusion is driven by the gradients of the electrochemical potentials

µs(x, T, P ) = µ0
s(T, P ) + kBT

ms
log(xsγs) + zsΦ, (9)

where µ0
s(T, P ) is a reference chemical potential and γs(x, T, P ) is the activity coefficient (for an

ideal mixture, γs = 1). This gives the dissipative diffusive mass fluxes [1]

F = −ρWχ

(
Γ∇x+ m̄Wz

kBT
∇Φ

)
, (10)

where χ is a symmetric positive semi-definite diffusion matrix that can be computed from the

Maxwell-Stefan diffusion coefficients [6, 11]. Here Γ is the matrix of thermodynamic factors,

Γ = I +
(
X − xxT

)
H, (11)

where the symmetric matrix H is the Hessian of the excess free energy per particle; for an ideal

mixture H = 0 and Γ is the identity matrix [11]. The stochastic mass fluxes F̃ are given by the

fluctuation-dissipation relation,

F̃ =
√

2m̄ρWχ
1
2 Zmass, (12)

where χ 1
2 is a “square root” of χ satisfying χ 1

2 (χ 1
2 )T = χ, and Zmass(r, t) is a standard Gaussian

random vector field with uncorrelated components.

In summary, the composition follows the equation (7), with electrodiffusive fluxes given by the

sum of (10) and (12); the chemical production rates are discussed in Appendix A and given by

(A5).

For dilute species, the expression for the electrodiffusive dissipative fluxes reduces to that in

the familiar PNP equations. Specifically, for a species s that is dilute, xs � 1, we get the familiar

Nernst-Planck-Fick law (see Appendix A in [6])

F s ≈ −ρ
msDs

m̄solv

(
∇xs + m̄solvwszs

kBT
∇Φ

)
= −ρDs

(
∇ws + mswszs

kBT
∇Φ

)
, (13)

where xs ≈ m̄solvws/ms, and m̄solv = (∑solvent s′ ws′/ms′)−1 is the mixture-averaged molecular

mass of the solvent, which could itself be a mixture of liquids. Here Ds is the trace diffusion

coefficient of the dilute species in the solvent, which can be related to the Maxwell-Stefan coefficients
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involving species s (see (40) in [6]). The stochastic flux also simplifies in the fluctuating PNP

equations for dilute species,

F̃s ≈
√

2ρmswsDs Zmass
s .

The boundary conditions for (7) depend on the nature of the physical boundary. We consider

non-reactive impermeable walls and reservoirs; reactive boundaries can be accounted for [12] but

we do not consider them here. For both kinds of boundaries the normal component of the velocity is

zero in the Boussinesq approximation (see Eq. (15) in [13] for a generalization to low Mach number

variable-density models). This implies that the normal mass fluxes of all species at walls must be

zero, F (n) = F · n = 0. Reservoir boundaries are intended to model a permeable membrane that

connects the system to a large reservoir held at a specified concentration wresvr, and correspond to

a Dirichlet condition on w.

B. Electroneutral Formulation

The charged-fluid equations (2,3,4,7) suffer from a well-known stiffness: The characteristic

Debye length scale λD is typically much smaller than the macroscopic/device scales of interest.

Thin Debye boundary layers develop near physical boundaries, with thickness proportional to λD.

Outside of these layers, the fields vary much more smoothly on scales much larger than the Debye

length. On such scales, the electrolyte is effectively electroneutral, and electrodiffusion is described

the electroneutral limit of the PNP equations [4, 5].

The electroneutral bulk equations can be justified by formal asymptotic analysis [4, 5]. This

analysis leads to an elliptic equation for the potential Φ that forces the evolution to preserve

charge neutrality. Here we derive this equation by simply invoking charge neutrality as a local

linear constraint,

Z = ρzTw = ρ
Ns∑
s=1

zsws = 0, (14)

everywhere in the bulk. By differentiating the constraint Z (r, t) = 0 we get

∂Z

∂t
= zT

∂

∂t
(ρw) =

Ns∑
s=1

zs (−∇·(ρwsv)−∇·Fs +msΩs) = 0. (15)

Because advection preserves Z = 0,

Ns∑
s=1

zs∇·(ρwsv) = ∇·
((

ρ
Ns∑
s=1

zsws

)
v

)
= ∇· (Zv) = 0, (16)
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and reactions conserve charge, ∑Ns
s=1 zsmsΩs = 0, Eq. (15) simplifies to

Ns∑
s=1

zs∇·Fs = ∇·
(
Ns∑
s=1

zsFs

)
= ∇·

(
zTF

)
= 0. (17)

1. Electroneutral Elliptic Equation

Using the expressions (10) and (12) for the diffusive mass fluxes, we can rewrite the condition

∇·
(
zTF

)
= 0 as an elliptic PDE for the electric potential,

∇·
[(

m̄ρ

kBT
zTWχWz

)
∇Φ

]
= ∇·

(
zTFd

)
, (18)

where Fd denotes the diffusive fluxes without the electrodiffusion,

Fd = −ρWχΓ∇x+
√

2m̄ρWχ
1
2 Zmass.

We see that in the electroneutral limit, the electric potential becomes a Lagrange multiplier that

enforces the electroneutrality condition. It is given by the solution of the modified elliptic equa-

tion (18), and not by the quasielectrostatic Poisson equation (2). In summary, the fluctuating

electroneutral equations we consider in this work are given by (3,4,7,18).

It is worth pointing out that the validity of the electroneutral limit requires that λD be small

everywhere in the bulk, where we recall that for an ideal solution λD ∼
(
zTWMz

)−1/2
. This

requires the presence of some charges everywhere in the domain, that is, one cannot use (18)

when parts of the domain are ion-free since in those parts of the domain λD would diverge; an

example of a situation not covered by the electroneutral limit would be the diffusive mixing of

pure and salty water. In particular, (18) is not uniformly elliptic if in some part of the domain

zTWχWz → 0, i.e., if zsws → 0 for all species s. In practice, for water solutions, it is energetically

very unfavorable to remove all ions and purify water to the point where the Debye length would

approach macroscopic/device scales2. We will therefore assume here that there are sufficiently

many ions everywhere in the domain to justify the electroneutral limit (3,4,7,18).

2. Boundary Conditions

Obtaining proper boundary conditions for the electroneutral equations (3,4,7,18) requires a

nontrivial asymptotic analysis matching the electroneutral bulk “outer solution” on the outside of

2 For ultra-pure water the ion mass fractions are ≈ 10
−10

and the Debye length is a few microns.
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the Debye layer to the boundary layer “inner solution” inside the Debye layer [5, 14, 15]. Since

we are interested here in the electroneutral bulk, what we mean by boundary conditions are the

conditions not on the physical boundary itself but rather on the outer boundary of the Debye

layer. In the electroneutral limit λD/lmin → 0, where lmin is the smallest length scale of interest,

the thickness of the boundary layer is formally zero and the outer conditions become effective

boundary conditions for the electroneutral bulk equations. Though surface reactions can affect the

charge density bound to dielectric boundaries (e.g., electron exchange), in this paper we do not

consider surface chemistry.

Here we will assume that there is no surface conduction in the Debye layer, i.e., we only need to

consider normal mass fluxes (the curved surface analysis in [5] shows that curvature does not enter

in the leading-order asymptotics) at the outer edge of the double layer. For dielectric boundaries,

a careful analysis of the validity of the assumption of no surface currents is carried out in [14], and

it is concluded that it is valid only for weakly to moderately charged surfaces. For highly charged

dielectric boundaries, surface conduction enters even in the leading-order asymptotic matching.

For metals, a careful asymptotic analysis is carried out in [15] and shows that, in regions where

the potential jump across the layer is exponentially large (measured with respect to the thermal

voltage kBT/e), surface conduction also enters.

Under the assumption of no surface conduction, we first consider the boundary conditions for

the electrodiffusion equations (7,18), and then turn our attention to the velocity equations (3,4).

We recall that the electrodiffusive mass flux is

F = Fd −
(
m̄ρ

kBT
WχWz

)
∇Φ.

Since the flux must locally preserve the charge neutrality, zTF (n) = 0 on the boundary, where we

recall that F (n) = n · F denotes the fluxes normal to the boundary. This immediately gives the

effective Neumann boundary condition for the potential,

∂Φ
∂n

=
(
m̄ρ

kBT
zTWχWz

)−1 (
zTF

(n)
d

)
, (19)

where F (n)
d = n · Fd.

For dilute solutions and impermeable walls, in the deterministic case, one can show that F (n)
d =

0 which means that (19) becomes a homogeneous Neumann condition for the potential, ∂Φ/∂n = 0,

which is the boundary condition for a dielectric boundary with no bound surface charge in the

charged-fluid formulation. The derivation is well-known for binary dilute electrolytes [5], and it is

straightforward to generalize it to dilute multi-ion solutions as follows. From the electroneutrality
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condition zTw = 0 we get zT (∂w/∂n) = 0. Focusing on the dilute ions only, we have from (13)

that the vanishing of the electrodiffusive flux is equivalent to

∂w

∂n
+ (∂Φ/∂n)

kBT
MWz = 0.

Taking the dot product with z of both sides of this equation, we obtain ∂Φ/∂n = 0 because

zTMWz ∼ λ−2
D > 0. This implies ∂w/∂n = 0 and therefore F (n)

d = 0. We will assume that

∂Φ/∂n = 0 also holds on impermeable walls for general mixtures and even in the presence of

fluctuations, even though we have not been able to rigorously justify this. It is worthwhile to note

that any choice of Neumann boundary condition on the potential gives identical total electrodiffu-

sive flux F (n); the only physically-relevant boundary condition is that F (n) vanish at impermeable

walls. Only the Lorentz force in (3), which depends on Φ, is affected by the choice of Neumann

boundary condition. While the Lorentz force is essential for modeling electrokinetic flows, it plays

a minimal role in the problems we study here, so our choice to enforce a homogeneous condition

∂Φ/∂n = 0 for impermeable walls is inconsequential.

For reservoir boundaries, F (n)
d is known at the boundary from the Dirichlet conditions onw, and

(19) becomes an inhomogeneous Neumann condition for the potential. In summary, at a physical

boundary, we impose the following boundary conditions for (7,18):

• F
(n)
d = n · Fd = 0 and ∂Φ/∂n = 0 for impermeable walls.

• w = wresvr with zTwresvr = 0 and (19) for reservoirs.

Note that the condition (19) applies irrespective of whether the boundary (wall or membrane) is

dielectric (polarizable) or metal (conducting); the effective condition for the potential is always

Neumann, even if in the charged-fluid formulation there is a Dirichlet condition on the potential.

The electroneutral boundary conditions for the velocity equation (3,4) are even harder to derive.

In general, the fluid velocity on the outer boundary of the Debye layer is not zero, even for a no-

slip boundary. This means that the appropriate velocity boundary condition for the electroneutral

equations is a specified-slip condition, vn = 0 and vτ nonzero. However, to our knowledge, the

velocity slip has only been computed using asymptotic analysis for binary electrolytes, and this

analysis has not, to our knowledge, been generalized to multi-ion mixtures. For dilute electrolytes,

slip expressions have been proposed without a careful asymptotic analysis, see for example (4) in

[16]. Because an asymptotic analysis for multispecies electrolytes is not available, and because in

the example we consider here there are no applied electric fields or highly-charged surfaces (either

of which could make the apparent slip velocity large enough to play some role), in this work we
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will simply use the same boundary condition (no-slip or free-slip) for the electroneutral and the

charged-fluid formulations. For no-slip boundaries this means vτ = 0, which is expected to be

a good approximation for dielectric boundaries if the surface charge density is sufficiently small.

We emphasize, however, that an effective no-slip boundary condition is not appropriate in general

(e.g., slip is important for ionic diffusiophoresis), and each specific application requires a careful

consideration of the boundary condition.

3. Effective Salt Diffusion

Let us define the vector field

g
(Φ)
amb =

(
m̄ρ

kBT
zTWχWz

)−1
zTFd, (20)

which simplifies for deterministic models of dilute electrolytes to

g
(Φ)
amb = − (kBT )

∑
s zsDs∇ws∑
smsz2

sDsws
. (21)

For some specific special cases, the solution of the effective Poisson equation (18) is given 3 by

∇Φ = g
(Φ)
amb. This is sometimes stated as a fact, see for example Eq. (3) in [16]. However, except

for dilute binary electrolytes and for problems in one dimension, g(Φ)
amb is, in general, not a gradient,

unless w (and thus the denominator in (21)) can be approximated to be constant over the domain.

For dilute binary electroneutral electrolytes w2 = −z1w1/z2, which in the absence of fluctuations

gives

(kBT )−1 g
(Φ)
amb = − (D1 −D2)

(m1z1D1 −m2z2D2)
∇w1
w1

= − (D1 −D2)
(m1z1D1 −m2z2D2)∇ (ln w1) , (22)

which is indeed a gradient of a function and therefore ∇Φ = g
(Φ)
amb. Substituting (22) into Fick’s

law (13) we obtain

F 1 = −ρ(m1z1 −m2z2)D1D2
(m1z1D1 −m2z2D2) ∇w1. (23)

The effective diffusion coefficient of the salt is therefore the weighted harmonic mean

Damb = (m1z1 −m2z2)D1D2
(m1z1D1 −m2z2D2) , (24)

which we will refer to as the ambipolar binary diffusion coefficient.

3 Note that the boundary condition (19) is consistent with ∇Φ = g
(Φ)
amb on the boundary (cf. (20)).
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This shows that for a dilute binary electrolyte without fluctuations the electroneutral model

is equivalent to modeling a binary salt as an uncharged substance with an effective ambipolar

diffusion coefficient, i.e., the two ions tend to diffuse together. However, this correspondence is

not true in more general cases. Specifically, it is not valid when fluctuations are included, when

the system is not dilute, or when there are more than two ions. Although the equivalence is lost,

a number of prior studies [6, 7, 9] have used (24) to define effective diffusion coefficients of salts

in more general situations. We will refer to this type of approach as the ambipolar approximation

and investigate it in detail in Section IVB.

C. Thermal Fluctuations

Important quantities that can be derived from the fluctuating hydrodynamics equations are

the spectra of the fluctuations at thermodynamic equilibrium, referred to as the static structure

factors. These structure factors can be obtained from either the more general results derived in

[1] for the charged-fluid equations, or, from equilibrium statistical mechanics. It is important to

confirm that our electroneutral FHD equations give the correct spectrum of fluctuations in order

to justify our formulation of the stochastic fluxes.

The matrix of equilibrium structure factors can be expressed either in terms of mass or mole

fractions. Here we define the matrix of static structure factors in terms of the fluctuations in the

mass fractions δw around the equilibrium concentrations, which for notational brevity we denote

in this section with w without any decoration,

Ss,s′ (k) =
〈(
δ̂ws (k)

) (
δ̂ws′ (k)

)?〉
. (25)

where s and s′ are two species (including s = s′), k is the wavevector, hat denotes a Fourier

transform, and star denotes a complex conjugate.

The static factors for an electrolyte mixture with an arbitrary number of species at thermody-

namic equilibrium are [1, 11]

S = S0 −
1(

k2λ2
D + 1

) S0zz
TS0

zTS0z
, (26)

where the structure factor for a mixture of uncharged species (i.e., for z = 0) is [11]

S0 = m̄

ρ

(
W −wwT

) [
Γ
(
X − xxT

)
+ 11T

]−1 (
W −wwT

)
, (27)

and 1 is the vector of 1’s. The Debye length can be generalized to non-ideal mixtures as

λ−2
D = ρ2

εkBT
zTS0z = m̄ρ

εkBT
zTW

[
Γ
(
X − xxT

)
+ 11T

]−1
Wz. (28)
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See Eqs. (41) and (42) in [11] for a simplification for ideal mixtures, including dilute solutions.

The structure factor SZ (k) of the total free charge density Z = ρzTw is

SZ = ρ2
〈(
zT δ̂w

) (
zT δ̂w

)?〉
= ρ2zTSz. (29)

Using the generalized definition of the Debye length (28) allows to conveniently express it as

SZ = ρ2zTSz =
(
ρ2zTS0z

) k2λ2
D

1 + k2λ2
D

. (30)

The fact that SZ(k) tends to zero for small wavenumbers (kλD → 0) is a manifestation of the

transition to the electroneutral regime at large length scales. It is important to point out that at

scales much larger than the Debye length the fluctuations δw are electroneutral in addition to the

electroneutral mean composition w. This means that the composition w+ δw strictly remains on

the electroneutral constraint at all times, consistent with our electroneutral formulation.

At thermodynamic equilibrium, for length scales much larger than the Debye length, the struc-

ture factor (26) simplifies to

S(eln) = lim
kλD→0

S = S0 −
S0zz

TS0
zTS0z

, (31)

and this is the spectrum of fluctuations in composition in the electroneutral limit. Note that

S(eln)z = 0, as expected from the electroneutrality. For dilute electrolyte solutions, which are

necessarily ideal, if we consider two ions of species s and s′, we have the explicit formula

S
(eln)
s,s′ = ρ−1

wsmsδs,s′ −
(∑

k

mkz
2
kwk

)−1

(wsmszs) (ws′ms′zs′)

 . (32)

In Appendix B we derive the same result for a dilute binary electrolyte using equilibrium statistical

mechanics, without referring to the generalized PNP equations.

It can be confirmed that the electroneutral equations (3,4,7,18) are consistent with (31), which

demonstrates that nothing special needs to be done in the electroneutral limit to handle the fluctu-

ating diffusive fluxes except to include them in the right-hand side of the modified Poisson equation

(18).

III. NUMERICAL ALGORITHM

In this section we describe our charged-fluid and electroneutral numerical algorithms, both

of which are second-order accurate in space and time deterministically, and second-order weakly

accurate for the linearized fluctuating hydrodynamics equations. The algorithms are closely based
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on the algorithm developed for isothermal constant-density reactive multispecies mixtures of non-

ionic species in our prior work [6]. The handling of the charged species and in particular the

quasielectrostatic Poisson equation is described already in detail in our prior work [1]. Here we

only briefly sketch the algorithmic details and focus on the key differences with our prior work.

We note that special care is taken to ensure that the only difference between the charged-fluid

and electroneutral algorithms is that a different elliptic equation is solved to compute the electric

potential Φ. We therefore present both cases together and note any differences explicitly where

necessary.

A. Spatial Discretization

Our spatial discretization of reaction-advection-diffusion is identical to the one used in our

previous work [6], which is itself a slight modification of the methods described in [1, 11, 17],

improved to accurately handle very small numbers of molecules. The spatial discretization is

based on a structured-grid finite-volume approach with cell-averaged densities, electric potential,

and pressure, and face-averaged (staggered) velocities. We use standard second-order stencils for

the gradient, divergence, and spatial averaging in order to satisfy discrete fluctuation-dissipation

balance (DFDB) [18].

The discretization of the momentum equation (3,4), including no-slip or free-slip boundary

conditions, is the same as our previous works [1, 6, 11, 17], with the important caveat that the

Lorentz force is evaluated as ∇ · (ε∇Φ) ∇Φ so that the same implementation works for either the

charged-fluid or the electroneutral formulations. Standard centered second-order stencils are used

to discretize ∇ · (ε∇Φ) ∇Φ on the faces of the grid.

The discretization of the electrodiffusion equations (7,18) is closely based on that developed

in [1, 6]. Our implementation independently tracks the densities of all species ρs but ensures the

overall mass conservation in the Boussinesq limit,∑Ns
s=1 ρs = ρ0, in each grid cell to within (Stokes)

solver tolerance. For each species, we construct the mass fluxes on faces of the grid and employ

the standard conservative divergence in order to guarantee conservation of mass for each species.

Diffusive fluxes, including the dissipative and stochastic fluxes, are computed as described in [6].

Chemical reaction terms are local and are computed independently in each cell as in [6].

The elliptic equations (2) and (18) are discretized using a standard centered second-order stencil,

and the resulting linear system is solved using a geometric multigrid algorithm [1]. For the elec-

troneutral elliptic equation (18), W and Wχ are already computed on each grid face to calculate
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diffusive mass fluxes (see [6] for details), and therefore the non-constant coefficient ∼ zTWχWz

can be directly computed on each grid face.

Boundary conditions for the electroneutral electrodiffusion equations (7,18) are implemented as

follows. For impermeable walls, the condition F (n)
d = n · Fd = 0 is trivially implemented in our

finite-volume scheme by zeroing the total mass flux (including the stochastic fluxes) on the bound-

ary. The modified elliptic equation (18) is then solved with the homogeneous Neumann condition

∂Φ/∂n = 0. For reservoirs, the Dirichlet condition w = wresvr is implemented by computing ∇x

at the boundary using one-sided differences and the specified values on the boundary; this then

gives the dissipative portion of the diffusive mass flux F d = −ρWχΓ∇x. The generation of the

stochastic component of the diffusive mass flux F̃ at the boundary is described in prior work [19].

Once Fd = F d + F̃ is computed on the boundary, (18) is solved with an inhomogeneous Neumann

condition computed using (19).

Advective mass fluxes ρfv are computed on each face f of the grid by first computing face-

centered densities ρf = ρwf = ρ0wf . Our implementation supports two ways to compute face-

centered densities ρf . Centered advection uses two-point averaging of densities to faces, and is non-

dissipative and thus preserves DFDB [18]. However, in order to prevent nonphysical oscillations

in mass densities in high Péclet number flows with sharp gradients, we also use the Bell-Dawson-

Shubin (BDS) second-order Godunov advection scheme [20]; more details about how the BDS

scheme is used in our numerical implementations can be found in [17]. We note that BDS advection

adds artificial dissipation and does not obey a fluctuation-dissipation principle, but is necessary

for simulations where centered advection would fail due to insufficient spatial resolution.

An additional complication that arises in the electroneutral limit is ensuring that advection

preserves electroneutrality, i.e., ensuring that the spatial discretization maintains the continuum

identity (16). Since the advection velocity used in our discretization is discretely divergence free,

advection automatically maintains linear constraints on the cell-centered densities if the face den-

sities ρf satisfy the linear constraint for each face f . For centered advection this is automatic

because the face densities are computed by linear interpolation. For BDS advection, however, the

face-centered densities are computed using a complicated space-time extrapolation that involves

nonlinear “limiters,” and are not guaranteed to satisfy the same linear constraints as the cell-

centered densities. It is therefore necessary to project the densities back onto all linear constraints.

One such constraint is the mass conservation ∑s ρs = ρ0 and the other is the electroneutrality∑
s zsρs = 0. Assume we are given a composition wf = ρf/ρ0 on face f , which does not necessar-

ily satisfy the two constraints 1Tw = 1 and zTw = 0. The projection onto both constraints can be
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accomplished with the following sequence of updates:

wf ← wf −
zTwf

zTz
z,

wf ←
wf

1Twf
.

The first update is a standard L2 projection onto the plane zTw = 0, and the second is a simple

rescaling that preserves 1Tw = 1. This choice of projections is not unique and does not affect the

second-order accuracy for smooth problems.

B. Temporal Discretization

Our second-order temporal integrator is taken from our prior work [6] and is summarized in

Section III C. Unlike the trapezoidal predictor-corrector used in [1], here we use the midpoint

predictor-corrector method described in [6] to accommodate our treatment of chemical reactions,

and to dramatically improve the robustness for large Schmidt number [6]. Furthermore, the Boussi-

nesq approximation allows us to simplify the algorithm compared to the low Mach version pre-

sented in [1]. Note that relative to the algorithm in [6] we need to precompute some terms related

to charged species; however, the overall update strategy remains the same. In particular, in the

absence of charged species our algorithm is equivalent to that presented in [6].

Our algorithm introduces an important correction term in the right-hand side (r.h.s.) in the

modified elliptic equation (18) in the corrector step. Namely, numerical tests revealed that errors

due to finite tolerances in the iterative elliptic solver lead to a slow drift away from electroneutrality

over many time steps. This drift can be prevented by modifying the elliptic equation as follows.

Consider an Euler update of the form

w (t+ ∆t)−w (t)
∆t = −∇ ·

(
Fd −

(
m̄ρ

kBT
WχWz

)
∇Φ

)
.

Requiring electroneutrality at the end of the step, zTw (t+ ∆t) = 0, without assuming electroneu-

trality at the beginning of the step, we obtain the corrected elliptic equation at time t,

∇·
[(

m̄ρ

kBT
zTWχWz

)
∇Φ

]
= ∇·

(
zTFd

)
−
(
zTw

∆t

)
. (33)

In our numerical algorithm, we only employ this correction to the elliptic equation in the corrector

step. We have found this to be sufficient and to lead to a stable algorithm that maintains the charge

neutrality to a relative error below solver tolerances 4. In practice, we find that the numerical errors

4 We have found that in some cases (e.g., equal diffusion coefficients for all species) the r.h.s. of (33) is analytically
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introduced by the iterative geometric multigrid elliptic solvers create localized charges but not a

global charge; therefore the spatial average of the r.h.s. of (33) is zero within roundoff tolerance.

Nevertheless, in order to ensure that the elliptic equation (33) is solvable, in our implementation

we subtract from the r.h.s. it’s spatial average.

By adding charges to the 3-species mixture test described in Section III.C.1 of [11], we have

verified (not shown) that our algorithm/code reproduces the correct spectrum of electroneutral

equilibrium fluctuations (31), for both ideal and non-ideal mixtures, for either periodic, reservoir,

or impermeable boundaries. This validates our formulation and implementation of the stochas-

tic mass flux (including boundary conditions). We have also verified (not shown) second-order

deterministic accuracy for the acid-base fingering example by initializing the simulations from a

smoothly perturbed sine-wave interface.

C. Summary of Algorithm

We now summarize the nth time step that computes state at time tn+1 = (n+ 1) ∆t from

the state at time tn = n∆t. Superscripts denote the time point at which certain quantities are

evaluated, for example, fn+1/2,∗ = f
(
wn+1/2,∗, (n+ 1/2) ∆t

)
denotes the buoyancy force esti-

mated at the midpoint. We denote with (Wmom)n and
(
Wmass

(1)

)n
(for the predictor stage) and(

Wmass
(2)

)n
(for the corrector stage) collections of i.i.d. (independent and identically distributed)

standard normal random variables generated on control volume faces independently at each time

step, and Wmom ≡ Wmom +
(
Wmom)T . We denote collections of independent Poisson random

variables generated at cell centers independently at each time step with P(1) (predictor stage) and

P(2) (corrector stage), and denote [•]+ ≡ max(•, 0). The notation for computing the divergence of

the advective fluxes using the BDS scheme is defined and explained in Section III.B.1 in [17]. We

remind the reader that ρ = ρ0 is a constant in the Boussinesq approximation, maintained by our

code to roundoff tolerance.

The nth predictor-corrector update consists of the following steps:

1. Calculate predictor diffusive fluxes (deterministic and stochastic),

F n
d = (−ρWχΓ∇x)n +

√
2m̄ρ

∆V∆t/2
(
Wχ

1
2
)n (

Wmass
(1)

)n
. (34)

(nearly) zero so that numerically it is dominated by numerical noise. This make the elliptic solver do unnecessary
work if we use a standard relative error tolerance based on the magnitude of the r.h.s. Instead, we use a tolerance
δ∇·

(
|z|T Fd

)
based on the absolute values of the charges per mass, where δ ∼ 10−12− 10−9 is a relative tolerance

for the iterative solver.
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2. Solve the predictor elliptic equation for Φn,
∇· (εn∇Φn) = −Zn if charged-fluid, otherwise

∇·
[(

m̄ρ
kBT

zTWχWz
)n

∇Φn
]

= ∇·
(
zTF n

d

)
.

(35)

3. Calculate predictor electrodiffusive fluxes F n and chemical production rates Rn,

F n =F n
d −

(
m̄ρ

kBT
WχWz

)n
∇Φn, (36)

Rns = 1
∆V∆t/2

∑
r

∑
α=±

∆ναsrP(1) ((aαr )n ∆V∆t/2) . (37)

4. Solve the predictor Stokes system for vn+1,∗ and πn+1/2,∗: ∇·vn+1,∗ = 0 and

(ρv)n+1,∗ − (ρv)n

∆t + ∇πn+1/2,∗ = ∇·
(
ρvvT

)n
+ 1

2∇·
(
ηn∇vn + ηn∇vn+1,∗

)
+ fn

+ ∇·

√ηnkBT

∆V∆t
(
Wmom)n+

[
(∇·(ε∇Φ)) ∇Φ

]n
.

5. Calculate predictor mass densities,

ρn+1/2,∗
s = ρns + ∆t

2 [−∇·F n
s +msR

n
s ]− ∆t

2 ∇·


ρns

(
vn+vn+1,∗

2

)
if centered

BDS
(
ρns ,

vn+vn+1,∗

2 ,∇·F n
s ,

∆t
2

)
.

(38)

6. Calculate corrector diffusive fluxes,

F
n+1/2,∗
d = (−ρWχΓ∇x)n+1/2,∗ +

√
2m̄ρ

∆V∆t/2
(
Wχ

1
2
)n+1/2,∗


(
Wmass

(1)

)n
+
(
Wmass

(2)

)n
√

2

 .
(39)

7. Solve the corrector elliptic equation for Φn+1/2,∗,
∇·
(
εn+1/2,∗∇Φn+1/2,∗

)
= −Zn+1/2,∗ if charged-fluid, otherwise

∇·
[(

m̄ρ
kBT

zTWχWz
)n+1/2,∗

∇Φn+1/2,∗
]

= ∇·
(
zTF

n+1/2,∗
d

)
−∆t−1

(
zTwn+1/2,∗

)
.

(40)

8. Calculate corrector diffusive fluxes F n+1/2,∗ and chemical production rates Rn+1/2,∗,

F n+1/2,∗ =F n+1/2,∗
d −

(
m̄ρ

kBT
WχWz

)n+1/2,∗
∇Φn+1/2,∗, (41)

Rn+1/2,∗
s =1

2

[
Rns + 1

∆V∆t/2
∑
r

∑
α=±

∆ναsrP(2)

((
2(aαr )n+1/2,∗ − (aαr )n

)+
∆V∆t/2

)]
. (42)
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9. Update the mass densities,

ρn+1
s = ρns+∆t

[
−∇·F n+1/2,∗

s +msR
n+1/2,∗
s

]
−∆t∇·


ρ
n+1/2,∗
s

(
vn+vn+1,∗

2

)
if centered

BDS
(
ρns ,

vn+vn+1,∗

2 ,∇·F n+1/2,∗
s ,∆t

)
.

(43)

10. Solve the corrector Stokes systems for vn+1 and πn+1/2: ∇·vn+1 = 0 and

(ρv)n+1 − (ρv)n

∆t + ∇πn+1/2 = −1
2∇·

[(
ρvvT

)n
+
(
ρvvT

)n+1,∗
]

+ 1
2∇·

(
ηn∇̄vn + ηn+1∇̄vn+1

)
+ 1

2∇·

√ηnkBT

∆V∆t +

√
ηn+1kBT

∆V∆t

(Wmom)n+ fn+1/2,∗

+
[
(∇·(ε∇Φ)) ∇Φ

]n+1/2,∗
.

IV. NUMERICAL STUDY OF ACID-BASE NEUTRALIZATION

In our previous work [6] we studied the development of asymmetric fingering patterns arising

from a gravitational instability in the presence of a neutralization reaction. In particular, we

performed the first three-dimensional simulations of a double-diffusive instability occurring during

the mixing of dilute aqueous solutions of HCl and NaOH in a vertical Hele-Shaw cell, as studied

experimentally in [7]. In this prior study, as in all other theoretical and computational studies of

this kind of instability [7, 9], we treated HCl, NaOH, and NaCl as uncharged species in the spirit

of the ambipolar approximation described in Section II B 3. The acid-base neutralization reaction

was written as

HCl + NaOH→ NaCl + H2O. (44)

In reality, however, the acid, the base, and the salt are all strong electrolytes and essentially

completely disassociate into Na+, Cl−, H+, and OH− ions, and the neutralization reaction is simply

the (essentially irreversible) formation of water,

H+ + OH− → H2O,

with Na+ and Cl− being spectator ions. An important feature of this system is that the trace

diffusion coefficients of the four ions are very different; specifically, using cgs units (cm2/s) the

literature values are DNa+ = 1.33 · 10−5, DCl− = 2.03 · 10−5, DH+ = 9.35 · 10−5, and DOH− =

5.33 · 10−5. Although the ambipolar approximation is only strictly valid for dilute binary systems,

we define effective diffusion coefficients for the neutral species by harmonic averages of the anion
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and cation diffusion coefficients following (23) to obtain: DHCl = 3.34 · 10−5, DNaOH = 2.13 · 10−5,

and DNaCl = 1.61 · 10−5.

Simulating this instability using the charged-fluid formulation would be infeasible because the

length scales of interest are on the millimeter scale. In this work we use the electroneutral for-

mulation to study this instability and assess the (in)accuracy of the commonly-used ambipolar

approximation. Numerical studies based on the ambipolar approximation showed that the finger-

ing instability can be triggered on a realistic time scale (as compared to experiments) purely by

thermal fluctuations, without any artificial perturbations of the initial interface [6]. The studies

also demonstrated that the effect of fluctuations is dominated by the contribution of the stochastic

momentum flux, and not by fluctuations in the initial condition, the stochastic mass flux, or the

stochastic chemical production rate. This can be understood as a consequence of the fact that

advection by thermal velocity fluctuations, which are driven by the stochastic momentum flux,

leads to giant concentration fluctuations in the presence of sharp concentration gradients [21–23].

These nonequilibrium fluctuations completely dominate equilibrium fluctuations at the scales of

interest, and are sufficiently large to drive the fingering instability. We have confirmed that the

same conclusions apply when charges are accounted for. Therefore, in the simulations reported

here we do not include stochastic mass fluxes and reaction rate fluctuations, and initialize the

simulations from a deterministic initial condition with a sharp interface between the acid and the

base and zero fluid velocity.

Because of the importance of giant concentration fluctuations to the formation of the instability,

in Section IVA we first validate our algorithm and implementation by computing the spectrum of

giant fluctuations in a ternary electrolyte. Then, we study the fingering instability at an acid-base

neutralization front in Section IVB.

A. Giant Nonequilibrium Fluctuations in Electroneutral Ternary Mixtures

In this section we examine the giant concentration fluctuations in a non-reactive dilute elec-

troneutral ternary electrolyte in the presence of a steady applied concentration gradient. Giant

fluctuations in a binary electrolyte were studied using the charged-fluid formulation in Section

V.B.2 in [1]. It was concluded there that for small wavenumbers, kλD � 1, the electroneutral

nonequilibrium fluctuations in a binary electrolyte can be described using the ambipolar formula-

tion, as expected. Specifically, the spectrum of the giant fluctuations is the same as it would be

in a solution with a single neutral species diffusing with the ambipolar diffusion coefficient (23).
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However, this conclusion no longer holds for solutions with three or more charged species, even if

dilute.

Therefore, here we examine the spectrum of the giant fluctuations in a dilute solution of three

ions with valencies V1 = V2 = 1 and V3 = −1, in the absence of gravity or reactions. In order to

focus on the nonequilibrium fluctuations we omit the stochastic mass flux from (7), so that the

fluctuations are generated entirely by the random velocity. In arbitrary units in which kB = 1 and

e = 1, we set ρ = 1, T = 1 and assume equal molecular masses m1 = m2 = m3 = 1, and trace

diffusion coefficients D1 = 1, D2 = 1/2, and D3 = 3/2. The viscosity is set to η = 103 to give a

realistically large Schmidt number Sc ∼ 103, and we set ε = 0, which makes λD = 0 and removes

the (fluctuating) Lorentz force from the momentum equation. The domain is quasi-two dimensional

with Lx = Ly = 64 discretized with 64 × 64 cells with grid spacing ∆x = ∆y = 1. The thickness

of the domain is set to ∆z = 106 to give weak fluctuations that can be described by the linearized

fluctuating hydrodynamics equations. We impose equal and opposite macroscopic gradients for

the co-ion species and no gradient for the counter-ion using reservoir boundary conditions, with

imposed w1 = 4.5 ·10−3, w2 = 5.5 ·10−3, and w3 = 10−2 at the y = 0 boundary, and w1 = 5.5 ·10−3,

w2 = 4.5 ·10−3, and w3 = 10−2 at the y = Ly boundary. We set the time step size to ∆t = 0.05 and

perform a total of 106 time steps skipping 105 steps in the beginning to allow the system to reach

the steady state, after which we collect statistics on the spectrum of fluctuations S (kx, ky = 0).

The theoretical spectrum of the giant fluctuations for a dilute ternary electrolyte can be com-

puted by following the computation described in Section III.C in [1], and then taking the elec-

troneutral limit kλD → 0. The same result can also be obtained from the electroneutral equations

directly; with the help of a computer algebra system the limit kλD → 0 of the charged-fluid S (k)

is straightforward to compute, so we follow that route. Just as for non-ionic solutions, a k−4
x power

law is observed until the confinement effect becomes significant for small kx � L−1
y . Following [1],

we multiply the theoretical result for an unconfined bulk system by a confinement factor [24] to

obtain

Ss,s′ (kx, ky = 0) = fss′
kBT

ηD1

1
k4
x

[
1 + 4 (1− cosh(kxLy))

kxLy (kxLy + sinh(kxLy))

]
, (45)

where our theoretical calculations predict f11 = 147/124, f22 = 219/124, and f12 = −177/124.

Note that it is sufficient to examine only the part of S corresponding to two of the charged

ions (here the two co-ions), since electroneutrality dictates the spectra involving the third ion, and

conservation of mass dictates the spectra involving the solvent. In Fig. 1 we compare our numerical

results to the theoretical predictions (45), and find good agreement for all three structure factors.

22



0 0.5 1 1.5 2
Modified wavenumber k

1×10-13

2×10-13

3×10-13

4×10-13

k4 S(
k)

S11
S22
-S12

Figure 1: Spectrum of giant nonequilibrium concentration fluctuations in a ternary electrolyte mixture in the

presence of an imposed concentration gradient of the two co-ions. To account for errors in the discrete approx-

imation to the continuum Laplacian, the x axis shows the modified wavenumber k̃x = sin(kx∆x/2)/ (∆x/2)

instead of kx. Numerical results (symbols) for the components of k̃4
x S (kx, ky = 0) corresponding to the

co-ions (positive S11 and S22, and negative S12) are compared to the theoretical prediction (45) (lines).

B. Fingering Instability at an Acid-Base Front

In this section we investigate the development of asymmetric fingering patterns arising from

a diffusion-driven gravitational instability in the presence of a neutralization reaction. This sys-

tem has been studied experimentally and theoretically using a two-dimensional Darcy advection-

diffusion-reaction model [7, 9] based on an ambipolar approximation where the acid, base, and

salt are treated as uncharged species instead of as disassociated ions. Here we perform large-scale

three-dimensional simulations with the ions treated as individual species.

Since the fingering instability is driven by the small changes of density with composition, it is

crucial to first match the dependence of density on composition between the ambipolar diffusion

(molecule-based) model used in Section IV.D in [6] and the electrodiffusion (ion-based) model used
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in this work. Following [6, 7, 9], we assume that the solution density is linearly dependent on the

solute concentrations in both cases, which is reasonable since the solutions are dilute. This gives

the buoyancy force

f(w) = −ρ
( ∑

solute s

αs
Ms

ws

)
gey, (46)

where αs is the solutal expansion coefficient, Ms is the molecular weight (in g/mol) of solute s,

and the gravitational acceleration g = −gey acts in the negative y direction. For the ambipolar

model, the values of αs for s = HCl, NaOH, NaCl are obtained from Table II in [7]. For the ionic

model, we compute the four unknown coefficients αs for s = Na+, Cl−, H+, OH− by matching the

dependence of density on composition between the two models for electroneutral binary solutions

of HCl, NaOH, and NaCl. Only three independent coefficients αs matter because electroneutrality

fixes the concentration of the fourth ion, so we arbitrarily require that Na+ and Cl− have the

same coefficient αNa+ = αCl− . It is important to observe that this procedure matches the density

between an arbitrary dilute solution of HCl, NaOH, and NaCl and the corresponding ionic solution

resulting after the molecules disassociate completely into Na+, Cl−, H+, and OH− ions. The

reverse is not possible, that is, one cannot take an arbitrary solution of the ions and uniquely

determine a corresponding molecular solution. In particular, a solution of only H+ and OH−

would not have a physically-reasonable density according to our model. We will validate shortly

that any differences we see between the molecular and ionic models of the instability stem from

the difference between standard Fickian diffusion and electrodiffusion, and not from our procedure

for matching the buoyancy force.

For the model setup and physical parameters, we follow Section IV.D in [6] and mimic the

experiment of Lemaigre et al. [7]. We use cgs units unless otherwise specified and assume T = 293

and atmospheric pressure, neglecting any heat release in the reaction as justified in [9]. We set

g = 981, ρ = 1, and η = 0.01. We consider a Hele-Shaw cell with side lengths Lx = Ly = 1.6 and

Lz = 0.05, with the y-axis pointing in the vertical direction, and the z-axis being perpendicular

to the glass plates. The domain is divided into 512 × 512 × 16 grid cells, which is twice finer

than the grid used in [6] in order to better-resolve the sharp interface in the early stages of the

mixing. We start with a gravitationally stable initial configuration, where an aqueous solution of

NaOH with molarity 0.4 mol/L is placed on top of a denser aqueous solution of HCl with molarity

1 mol/L. We impose periodic boundary conditions in the x direction, no-slip impermeable walls in

the z direction, and in the y direction we use free-slip reservoir boundary conditions with imposed

concentrations that match the initial conditions of each layer. We use BDS advection because of
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the presence of an initially sharp interface.

Since the neutralization equilibrium lies far to the product side, we only consider the forward

reaction. We use the law of mass action for a dilute solution (A4), and express the reaction

propensity in terms of number densities, a+ = k nHCl nNaOH for the molecule-based model, and

a+ = k nH+ nOH− for the ion-based model 5. In reality, neutralization is a diffusion-limited reaction

that occurs extremely fast (with rate λ ∼ 1011 s−1), essentially as soon as reactants encounter each

other. The estimated value of k ∼ 10−11 cm3s−1 is impractically large, and would require an unrea-

sonably small grid spacing to resolve the penetration depth (which would be on molecular scales),

and an unreasonably small time step size to resolve the reactions. For our simulations, we choose a

smaller value k = 10−19 that is an order of magnitude smaller than the one used in [6], and enlarge

the time step size to ∆t = 10−2 by an order of magnitude accordingly. Deterministic numerical

studies presented in Appendix B in [6] show that increasing the rate beyond k = 10−19 − 10−18

hardly changes the results, so we believe our simulation parameters are realistic. Nevertheless, our

main goal here is to compare molecule- and ion-based models and assess the accuracy of the am-

bipolar approximation, so in this study it is more important to resolve the spatio-temporal scales

in the problem than to match experimental observations.

In Fig. 2 we compare the density profiles of Na+ between the model based on electroneutral

electrodiffusion with ions, and that based on molecules using ambipolar diffusion coefficients. For

the molecule-based simulations, we compute the density of Na+ assuming that the acid is com-

pletely disassociated. To enable a direct comparison between the two cases, we employ the same

sequence of pseudorandom numbers for the stochastic momentum flux in both cases. Although the

development of the instability follows similar trends in the two cases, there are clearly-visible differ-

ences between the top and bottom rows in the figure. For example, the Na+ fingers develop sooner

and diffuse more for the ion-based simulations. These differences can also be seen by comparing

the lines in Fig. 3, where we show the norm of the y component of velocity (corresponding to the

progress of the instability) and the total mass of consumed H+ (corresponding to the production

of salt in the molecule-based model) as a function of time. Our findings clearly demonstrate that

quantitative predictions can only be made by solving the complete electroneutral electrodiffusion

equations presented here. The ambipolar approximation can only be used as a qualitative model

of the instability.

5 Observe that the reaction rates are matched between the molecule-based model and the corresponding ion-based
model because the number density of HCl/NaOH in the non-ionic mixture matches the number density of H+/OH−
in the corresponding ionic mixture.
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Figure 2: Asymmetric growth of convective fingering patterns in a Hele-Shaw cell, induced by a gravita-

tional instability in the presence of a neutralization reaction. The top row corresponds to electroneutral

electrodiffusion of ions, while the bottom row corresponds to ambipolar diffusion of acid, base, and salt

molecules; both simulations use the same random numbers for the stochastic momentum flux. The density

of Na+ is shown with a color scale at 20, 30, and 40 seconds (columns going left to right) from the beginning

of the simulation, initialized without any fluctuations. Two-dimensional slices of the three-dimensional field

ρNa+(x, y, z) are shown. The square images show ρNa+(x, y, z = Lz/2) (halfway between the glass plates)

and the thin vertical side bars show the slice ρNa+(x = 0, y, z) corresponding to the left edge of the square

images.

To demonstrate that the clear difference between electrodiffusion and ambipolar diffusion is

caused by the large difference in the true diffusion coefficients of the ions (DNa+ = 1.33 · 10−5,

DOH− = 5.33 · 10−5, DH+ = 9.35 · 10−5, and DCl− = 2.03 · 10−5), we also perform simulations

where we artificially match the diffusion coefficients for the reactant ions and molecules by setting

them to fake values, DNa+ = DOH− = DNaOH = 2.13 · 10−5 (i.e., Na+ and OH− ions diffuse

with the same coefficient as NaOH) and DH+ = DCl− = DHCl = 3.34 · 10−5 (i.e., H+ and Cl−

ions diffuse with the same coefficient as HCl). In the molecule-based simulations, the diffusion

coefficient of NaCl is set to the harmonic average of the two fake diffusion coefficients of Na+ and

Cl− ions, DNaCl = 2.6 · 10−5. Figure 4 compares the density of Na+ in ion- and molecule-based

simulations using these artificial (fake) values of the diffusion coefficients. The two panels in Fig.
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Figure 3: Time dependence of the norm of vertical velocity (left panel) and of the total mass of H+ consumed

in the neutralization reaction (right panel). We compare simulations where the species are ions versus those

where the species are neutral molecules (see legend). Lines are results based on the true tabulated diffusion

values for the ions, while symbols show results for fake values of the ion diffusion coefficients, artificially

made to be closer to each other.

Figure 4: Density of Na+ at time t = 30s for the ion-based model (left panel) or the molecule-based model

(right panel); both simulations use the same random numbers for the stochastic momentum flux. These

simulations use fake values of the ion diffusion coefficients, artificially made to be closer to each other in

order to make the difference between electrodiffusion and ambipolar diffusion smaller.

4 are visually almost indistinguishable, showing very little difference between electrodiffusion and

ambipolar diffusion, unlike the panels in Fig. 2. This is further demonstrated by the symbols

in Figure 3. This demonstrates that the difference between electrodiffusion and standard Fickian

diffusion is large when the multiple ions involved diffuse with widely varying coefficients.
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V. CONCLUSIONS

We formulated the electroneutral reactive generalized PNP equations and included thermal

fluctuations using fluctuating hydrodynamics and the chemical master equation. The only differ-

ence between the charged-fluid equations and their electroneutral limit is in the elliptic equation

for the electric potential. We presented a second-order midpoint predictor-corrector scheme for

both sets of equations. We studied giant nonequilibrium fluctuations in ternary electrolytes in

the electroneutral limit, and demonstrated that our numerical algorithm accurately reproduces

theoretical predictions. We also modeled a fingering instability at an acid-base mixing front and

demonstrated that modeling the acid, base, and salt as neutral species diffusing with ambipolar

diffusion coefficients leads to quantitatively-incorrect results unless the diffusion coefficients of the

ions are very similar.

The temporal discretization we used in this work treats mass diffusion explicitly. It can be

shown that the electroneutral integrator used here is the limit ∆t � λ2
D/D of a method for the

charged-fluid equations in which only the potential is treated implicitly, i.e., the Poisson equation

(2) is imposed at the end instead of the beginning of an Euler update. A major challenge for

the future is to develop algorithms that treat electroneutral electrodiffusion implicitly. This would

require solving a coupled linear system for both the composition and the electric potential at the

end of the time step. This is in some ways similar to our treatment of the velocity equation where

we solve a Stokes problems for both velocity and pressure. The main challenge in developing im-

plicit electrodiffusion discretizations is the development of effective preconditioners for the coupled

electrodiffusion system.

In this work we used Neumann boundary conditions for the potential that were consistent

with electroneutrality under the assumption of no surface conduction. Future work should care-

fully derive appropriate boundary conditions for the electroneutral electrodiffusion equations using

asymptotic analysis, at least in the deterministic context. In this work we used the same velocity

boundary conditions for the charged-fluid and electroneutral formulations because of the absence of

any asymptotic theory for the effective slip for multispecies mixtures. It is important to carry out

such asymptotic theory, even if only for the case of small zeta or applied potentials/fields. Finally,

allowing for surface reactions in the formulation also requires changing the boundary conditions.

Future developments in these directions would allow us to model catalytic micropumps [25] without

having to resolve the thin Debye layers around the catalytic surfaces.
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Appendix

Appendix A: Chemical Production Rates

In this Appendix we summarize how we compute the (deterministic or stochastic) chemical pro-

duction rates Ωs. We consider a liquid mixture consisting of Ns species undergoing Nr elementary

reversible reactions of the form
Ns∑
s=1

ν+
srMs 


Ns∑
s=1

ν−srMs (r = 1, . . . , Nr), (A1)

where ν±sr are molecule numbers, and Ms are chemical symbols. We define the stoichiometric

coefficient of species s in the forward reaction r as ∆ν+
sr = ν−sr−ν+

sr and the coefficient in the reverse

reaction as ∆ν−sr = ν+
sr − ν−sr. We assume that each reaction r conserves mass, ∑Ns

s=1 ∆ν±srms =

0, and charge , ∑Ns
s=1 ∆ν±srmszs = 0, which is suitable for bulk reactions in liquids (we do not

consider surface reactions here). It is important to note that all reactions must be reversible for

thermodynamic consistency, although in practice some reactions can be effectively considered to

be irreversible sufficiently far from thermodynamic equilibrium.

The mean number of reaction occurrences in a locally well-mixed reactive cell of volume ∆V

during an infinitesimal time interval dt is given as a±r ∆V dt, where a±r are the propensity density

functions for the forward/reverse (+/−) rates of reaction r. Accordingly, the mean production rate
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of species s in the deterministic equations is given as

Ωs =
Nr∑
r=1

∑
α=±

∆ναsraαr . (A2)

The propensity density functions are given by the Law of Mass Action (LMA) kinetics, suitably

generalized to non-dilute mixtures [6],

a±r = κ±r

Ns∏
s=1

(xsγs)ν
±
sr , (A3)

where κ±r (T, P ) is the rate of the forward/reverse reaction r, and γs(x, T, P ) is the activity coef-

ficient of species s (for an ideal mixture, γs = 1). It is important to note that propensity density

functions (A3) are expressed in terms of mole fractions xs (for ideal mixtures) or activities xsγs,

and not in terms of number densities. For reactions in a dilute solution (which is necessarily

an ideal solution for sufficiently dilution), mole fractions and number densities are proportional,

xs ≈ m̄solvns/ρ, and one can alternatively write the LMA in the form

a±r = k±r

Ns∏
s=1

nν
±
sr
s for dilute solutions. (A4)

Following [6, 26], we use the Chemical Master Equation (CME) to describe fluctuations in the

reaction rates for small numbers of reactive molecules. For reactions in a closed well-mixed cell

of volume ∆V , the change in the number of molecules Ns of species s in a given cell during an

infinitesimal time interval dt is expressed in terms of the number of occurrences P(a±r ∆V dt) of

each reaction r,

Ωs∆V dt =
Nr∑
r=1

∑
α=±

∆ναsrP(aαr∆V dt), (A5)

where P(m) denotes a Poisson random variable with mean m. Note that the instantaneous rate of

change is written as an Ito stochastic term. In the numerical algorithm described in Section III,

we use a second-order tau leaping method [27], which discretizes (A5) with a finite time step size

∆t.

Appendix B: Electroneutral Fluctuations of Composition for a Binary Electrolyte

For a binary electroneutral electrolyte, the covariance of the fluctuations of the two charged

species (32) is the matrix

S
(eln)
ions = ρ

1 + b

 m1w1 bm2w1

bm2w1 bm2w2

 ,
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where b = −m1z1/m2z2 = V1/V2 is the ratio of the number of atoms of the two species in one

neutral salt molecule. It is important to observe that this is not what would be predicted from a

naive ambipolar approximation where one considers the two ions to be bound and diffusing with the

ambipolar diffusion coefficient (24), notably, such an approximation would not give the prefactor

(1 + b)−1.

One can understand the prefactor (1 + b)−1 by computing the entropy of mixing of the solution

under the constraint of charge neutrality. Consider a dilute ideal solution of N0 molecules of a

solvent species and N1 � N0 molecules of one ion and N2 � N0 molecules of another counter-ion.

For an electroneutral mixture we have the constraint N2 = bN1. The mixture has a free energy of

mixing

(kBT )−1 ∆Gmix ≈ N1

(
ln N1
N0
− 1

)
+N2

(
ln N2
N0
− 1

)
= N1

(
ln N1
N0
− 1

)
+ bN1

(
ln bN1

N0
− 1

)
.

The second derivative of the free energy of mixing, which determines the width of the Gaussian

approximation of the entropy and thus the inverse of S11, is(
∂2∆Gmix
∂N2

1

)
= (1 + b) kBT

N1
,

which has the additional prefactor (1 + b) relative to the standard result without the electroneu-

trality constraint.
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