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This work investigates the motion of neutrally-buoyant, slightly deformable straight and curved
prolate fluid-filled capsules in unbounded simple shear flow at zero Reynolds number using direct
simulations. The curved capsules serve as a model for the typical crescent-shaped sickle red blood
cells in sickle cell disease (SCD). The effects of deformability and curvature on the dynamics are
revealed. We show that with low deformability, straight prolate spheroidal capsules exhibit tumbling
in the shear plane as their unique asymptotically stable orbit. This result contrasts with that for
rigid spheroids, where infinitely many neutrally stable Jeffery orbits exist. The dynamics of curved
prolate capsules are more complicated due to a combined effect of deformability and curvature. At
short times, depending on the initial orientation, slightly deformable curved prolate capsules exhibit
either a Jeffery-like motion such as tumbling or kayaking, or a non-Jeffery-like behavior in which
the director (end-to-end vector) of the capsule crosses the shear-gradient plane back and forth. At
long times, however, a Jeffery-like quasiperiodic orbit is taken regardless of the initial orientation.
We further show that the average of the long-time trajectory can be well approximated using the
analytical solution for Jeffery orbits with an effective orbit constant Ceff and aspect ratio `eff. These
parameters are useful for characterizing the dynamics of curved capsules as a function of given
deformability and curvature. As the capsule becomes more deformable or curved, Ceff decreases,
indicating a shift of the orbit towards log-rolling motion, while `eff increases weakly as the degree
of curvature increases but shows negligible dependency on deformability. These features are not
changed substantially as the viscosity ratio between the inner and outer fluids is changed from 1 to
5. As cell deformability, cell shape, and cell-cell interactions are all pathologically altered in blood
disorders such as SCD, these results will have clear implications on improving our understanding of
the pathophysiology of hematologic disease.
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I. INTRODUCTION

A healthy human red blood cell (RBC) is a fluid-filled biconcave discoid with an incompressible membrane comprised
of a fluid lipid bilayer tethered to an elastic spectrin network [1]. In the past decades, experimental and computational
studies have revealed a rich spectrum of dynamical modes for RBCs in shear flow over a vast domain of parameter
space in terms of membrane mechanics of RBC and flow conditions [2–11]. In pathological cases where normal blood
flow is altered, the dynamics of diseased RBCs can be very different from those of healthy ones because of differences
in cell properties. In sickle cell disease (SCD), for example, the intracellular polymerization of sickle hemoglobin
(HbS) leads to an abnormality in the shape of individual sickle RBCs, but a large variation in cell morphology has
been revealed within the population of sample cells. Using diffraction phase microscopy, Byun et al. [12] performed
optical measurement for individual sickle RBCs, and classified them into echinocytes, discocyte, and the typical
crescent-shaped irreversibly sickled cells (ISCs) based on their morphological features. Numerical simulations have
also enhanced the understanding of the nature of HbS polymer fiber formation and growth [13–17], and corroborated
experimental observations of considerable heterogeneity in cell morphologies [13, 15, 18]. In addition, using various
techniques for the characterization of cell membrane mechanics, a general decrease in deformability of sickle RBCs
compared to that of normal RBCs has been determined; the extent of membrane stiffening varies greatly depending on
the states and conditions of individual sickle RBCs [12, 19–22]. The decrease in membrane deformability for non-ISCs
(namely, all sickle RBCs other than ISCs [23]) is found to be slight under oxygenated conditions [20], but substantial
upon deoxygenation [19], while ISCs exhibit much lower deformability than non-ISCs in both states [19–21].

All these variations for individual sickle RBCs mentioned above pose challenges to understanding the dynamics of
sickle RBCs in flow. The present work aims to take a step toward this understanding by performing a systematic
computational investigation of the dynamics of a model sickle cell in simple shear flow and illustrating the effects of
initial orientation, membrane deformability and curvature of the cells on their dynamical motions.

A sickle RBCs might be thought of as a perturbed case of a deformable spheroidal capsule, and this is how we
model it below, so here we review relevant literature on this class of particles in flow. The canonical example of this
class is a simple rigid neutrally-buoyant spheroid, whose motion in simple shear flow at zero Reynolds number can be
described by trajectories known as Jeffery orbits [24]. During flow the center-of-mass position of the spheroid remains
on its initial streamline with no drift in any direction, while its major axis of symmetry traces out a closed periodic
orbit depending on its initial orientation. Each orbit corresponds to a specific non-negative orbit constant C, so the
quantity Cb = C/(1+C) is bounded by zero and one. When C = Cb = 0, the particle rolls with its major axis aligned
with the vorticity direction, while Cb = 1(C =∞) corresponds to a pure tumbling motion in the shear plane. For any
intermediate value of Cb, the major axis of the particle undergoes a so-called kayaking motion. Bretherton [25] later
showed that Jeffery’s solution can be applied to describe the dynamics of any axisymmetric rigid body with fore-aft
symmetry.

Jeffery orbits are highly degenerate because of the combination of symmetry, Stokes flow reversibility and rigidity.
Many efforts have been made to examine the behaviors of particles immersed in shear flow when these conditions
are not strictly satisfied. For example, large changes in the orbital behaviors were observed in a number of studies
when deviations from axisymmetric geometry were introduced. Hinch and Leal [26] derived the equations for the
motion of general (non-axisymmetric) ellipsoids in simple shear flow, observing that the motion of a triaxial ellipsoid
with comparable axes has doubly periodic (quasiperiodic) dynamics. For triaxial ellipsoids with one axis significantly
longer than the other two, Yarin et al. [27] numerically observed chaotic behavior and proposed an analytical theory
to explain the onset of this chaotic motion. Subramanian and Koch [28] found through a theoretical investigation that
when small but finite inertia was considered, the degeneracy of Jeffery orbits is broken and particular orbits become
attractors for the long-time dynamics. In particular, they predicted that the attractor of a slightly prolate spheroid
would evolve from the shear plane via an intermediate orbit towards the vorticity axis, as the ratio of particle density
to fluid density decreased. Using numerical simulations, Mao and Alexeev [29] examined the effects of fluid inertia
and particle inertia on the dynamics of a solid spheroidal particle in simple shear flow, finding that at zero Reynolds
number, particle inertia would cause the orientation of a prolate spheroid to drift toward a tumbling orbit in the
shear plane, but the drift direction would change from in-plane tumbling to rolling around the vorticity axis when the
Reynolds number exceeded a critical value.

Many computational studies have also addressed how the degeneracy of Jeffery’s solution is broken in the presence
of deformability as for capsules and solid elastic particles. Here capillary number, which represents the ratio of viscous
stresses to elastic restoring stresses on the particle, characterizes the deformability of the particle. We mainly focus
on the works regarding prolate particles which are of direct pertinence to the present paper. Most numerical studies
regarding prolate capsules focused on the case where the inner and outer fluids have the same viscosity. Walter et al.
[30] investigated the behavior of a prolate capsule in simple shear flow with the revolution axis of the capsule initially
lying in the shear plane. The membrane was modeled as a hyperelastic surface with no bending resistance. They
observed that the prolate capsule took a rigid-body like tumbling motion at low shear rate (i.e. capillary number), and
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exhibited a fluid-like behavior termed swinging at high shear rate in which the membrane rotates around its deformed
shape and the capsule elongation and orientation oscillate in shear flow. This tumbling-to-swinging transition was
even found for a spheroidal compound capsule consisting of a spherical inner capsule enclosed by a spheroidal outer
capsule at vanishing viscosity mismatch by increasing the inner capsule size alone [31]. Out-of-shear plane dynamics
of prolate capsules have also gained an increasing understanding in recent years. Dupont et al. [32] and Cordasco and
Bagchi [33] numerically studied three-dimensional orbital dynamics of isolated prolate capsules in simple shear flow
with off-plane initial orientations, and revealed rich dynamics of the capsules irrespective of the initial orientation.
In Dupont et al. [32], the capsule membrane was modeled as an isotropic hyperelastic surface with shear elasticity
and area dilatation described by either the Skalak law [34] or the neo-Hookean law and in the absence of bending
rigidity. They showed that at low and high capillary number regimes, the dynamics of a prolate capsule in Stokes
flow converge towards a rolling motion about the vorticity axis and an oscillating-swinging motion about the shear
plane as the stable orbit, respectively, and a wobbling motion in which the capsule precesses around the vorticity axis
is taken at equilibrium at intermediate capillary number. This qualitative transition of motions, characterized by the
change in the elastic energy stored in the membrane, was generally observed in the parameter regimes considered
in this work regardless of the aspect ratio of the capsule or the membrane law. Later Cordasco and Bagchi [33]
incorporated bending stiffness into a Skalak membrane for a prolate capsule with zero spontaneous curvature, and
observed a procession-to-kayaking (oscillating-swinging) transition with increasing capillary number similar to the
findings by Dupont et al. [32]. Solid elastic particles have also been studied [35, 36]. Gao et al. [35] theoretically
predicted two in-plane dynamical modes for a neo-Hookean elastic spheroidal particle immersed in shear flow, namely
trembling (similar to swinging for capsules) and tumbling, depending on the shear rate, elastic shear modulus and
asphericity of the initial shape. These two regimes of motion were later observed in the numerical simulations by
Villone et al. [36]. These authors also revealed that a particle initially oriented out of the shear plane evolved in time
towards in-plane trembling or tumbling, which differs from the stable orbits for prolate capsules observed by Dupont
et al. [32] and Cordasco and Bagchi [33]. Despite all these promising results, none of the studies to date regarding
deformable spheroidal particles, however, have ever considered any distortion to the original shape such as curvature,
which has formed one motivation of the present work.

A limited number of studies have addressed the dynamics of curved particles such as sickle-shaped cells. Wang et
al. [37] simulated the motion of isolated rigid slightly curved fibers in simple shear flow at zero Reynolds number.
As with triaxial ellipsoids, quasiperiodic orbit dynamics are sometimes observed. More importantly, for some initial
orientations the fibers drift in the gradient direction as a result of the combined effects of the so-called “flipping,
scooping, and spinning” motions. The drift rate strongly depends on the initial orientation, aspect ratio, and curvature
of the fibers – in particular drift only occurs for fibers of high aspect ratio. Crowdy [38] derived a dynamical system
governing the motion of a curved rigid two-dimensional circular-arc fiber in simple shear flow, and the analytical
solutions of this dynamical system display the “flipping” and “scooping” motions observed in [37]. Only a small
number of numerical studies have addressed the behavior of sickle cells per se. Examples are [39–41], in which
simulations were performed to investigate and quantify the heterogeneous adhesive interaction between sickle RBCs
and the endothelium during flow, and the influence of cell morphologies and membrane rigidities. The aim of these
studies was to shed light on the vasoocclusion crisis associated with SCD. None of these studies have focused on the
fundamental dynamics or orbital behavior of single sickle cells in shear flow.

The aim of the present study is to take a first step toward understanding the dynamics of sickle cells in blood flow,
by characterizing the dynamics of a model sickle cell in shear flow and examining this behavior in the context of
what we know about the dynamics of other prolate objects in flow. Specifically, we investigate the dynamics of single
straight and curved prolate capsules in unbounded simple shear flow at zero Reynolds number and discuss the effects
of initial orientation, membrane deformability, and degree of curvature on their dynamics. The rest of the paper is
organized as follows: in Section II we present the model for sickle RBCs and the numerical algorithm employed to
obtain the fluid field, followed by a validation of our model and numerical simulation; in Section III we provide detailed
results and discussion on the dynamics of single straight and curved prolate capsules; lastly, concluding remarks are
presented in Section IV.

II. MODEL FORMULATION

A. Model and discretization

We consider an isolated neutrally-buoyant fluid-filled deformable capsule with a straight or curved prolate rest
shape in unbounded simple shear flow (FIG. 1). The shear rate is γ̇, and the undisturbed flow velocity is given as
u∞ = (γ̇y, 0, 0). Both the suspending fluid and the fluid inside the capsule are assumed to be incompressible and
Newtonian, and the viscosity ratio between the fluids inside and outside the capsule is λ. The prolate spheroidal
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FIG. 1: Schematic of the initial orientation of a curved prolate capsule in unbounded simple shear flow.

shape of the capsule derives from polar stretching and equatorial compression of a spherical capsule with radius s
centered at the origin. The equation for this transformation is given by

xp =

c/s 0 0
0 a/s 0
0 0 a/s

 · xs, (1)

where xs and xp are the positions of a point on the membrane of the original spherical capsule and the mapped point
on the membrane of the resulting prolate spheroidal capsule with a polar radius c and an equatorial radius a (aspect
ratio rp = c/a > 1). The resulting prolate spheroidal capsule thus aligns with the x axis. To generate a curved
capsule, we then impose a quadratic unidirectional displacement of membrane points perpendicular to the polar axis
of the prolate spheroidal capsule (here in the y direction),

xc1 = xp1, (2a)

xc2 = xp2 − k
[
xp1 −

1

2
(xpl1 + xpr1 )

]2
, (2b)

xc3 = xp3, (2c)

where xpl and xpr are the positions of the two ends (left- and right-most membrane points) of the prolate spheroid,
and xc = (xc1, x

c
2, x

c
3) is the position of a membrane point of the resulting curved prolate capsule mapped with the

membrane point of the prolate spheroid at position xp = (xp1, x
p
2, x

p
3); k has units of inverse length, which can be

nondimensionalized by c to define the degree of curvature K = kc.
The instantaneous orientation of a curved prolate capsule is defined by two unit vectors, namely p and n. The

vector p is the normalized end-to-end vector that connects the left- and right-most membrane points of the capsule.
In this work, the midpoint of the p vector of the capsule is initially placed at the origin of the unbounded domain.
To define n, we first mark a membrane point A lying in the plane of symmetry of the capsule that contains p. The
vector n is then uniquely defined as the unit vector passing through A and perpendicular to p that bisects p when
the capsule is not deformed, as illustrated in FIG. 1. Note that for a deformed capsule, the intersection of n and
p can be off-center of p. In this work, initial conditions are chosen so that p is initially in the x-z plane, and the
initial angle between p and the x axis is denoted as α. The initial angle between n and its projection n′ onto the x-z
plane is β (note that n′ ⊥ p). Thus the initial orientation of the capsule is given by α and β. For example, [α, β] =
[0,π/2] means that the capsule is initially in the x-y plane with p aligned with the x axis and n with the y axis. If
the capsule is not curved, then β is irrelevant to its orientation and dynamics.
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The total energy E of the capsule membrane S is given as:

E =
KB

2

∫
S

(2κH + c0)2dS +KB

∫
S

κGdS +

∫
S

WdS, (3)

where KB and KB are the bending moduli, and W is the shear strain energy density; κH and κG are the mean
and Gaussian curvature of the membrane surface, respectively; c0 = −2H0 is the spontaneous curvature, H0 being
the mean curvature of the spontaneous shape. In this equation, the first two terms represent the Canham-Helfrich
bending energy [42, 43], and the third term corresponds to the shear strain energy stored in the capsule membrane.
To describe the behavior of the capsule membrane in response to the in-plane shear elastic force, a membrane model
by Skalak et al. [34] is utilized, in which the shear strain energy density W is given by

WSK =
G

4
[(I2

1 + 2I1 − 2I2) + CaI
2
2 ], (4)

where G is the in-plane shear modulus of the membrane, and Ca characterizes the energy penalty for area change of
the membrane. The strain invariants I1 and I2 are functions of the principal stretch ratios λ1 and λ2, defined as

I1 = λ2
1 + λ2

2 − 2, I2 = λ2
1λ

2
2 − 1. (5)

Barthès-Biesel et al. [44] showed that for Ca & 10.0, the tension of a Skalak membrane becomes nearly independent
of Ca under a simple uniaxial deformation, so Ca is set to 10.0 for all of the simulations in the present work. This
model predicts a strain hardening behavior of the membrane, consistent with the experimentally determined response
of an RBC membrane to stretching [10, 45]. The deformability of the capsule is characterized by the nondimensional
capillary number Ca = ηγ̇c/G, where c is the half-length of the prolate capsule. In this work the capsules are taken
to be stiff in accordance with the biomechanical properties of the membrane of a sickle RBC, with Ca lower than 0.2
assuming the shear rate γ̇ of blood flow in the microcirculation ∼ 10 − 103 s−1 [46], the characteristic length c of a
typical sickle RBC ∼ 5− 6 µm [12], the viscosity of plasma η ∼ 1.71 mPa s [47], and the in-plane shear modulus of a
sickle RBC membrane G ∼ 29.8 µN/m [12]. The bending modulus of the capsule KB is expressed nondimensionally
by κ̂B = KB/c

2G, which is O(10−4−10−2) in the physiological context [48, 49]; here we set κ̂B = 0.04 for all capsules.
In this work, the natural shape for shear and the spontaneous shape for bending elasticities of the capsule membrane
are both chosen to be the same as its rest shape, so that any in-plane or out-of-plane deformation would lead to an
increase in the membrane energy and thus to an elastic restoring force. The total membrane strain force density fm

can be obtained by taking the first variation of the total membrane energy E, which then gives:

fm = fb + f s, (6)

where fb and f s are bending and shear elastic force densities, respectively. The capsule membrane is discretized
into 320 piecewise flat triangular elements, resulting in 162 nodes. We have verified that increasing the number of
nodes makes no difference to the cell dynamics. Based on this discretization, the calculation of the total membrane
force density fm follows the work of Kumar and Graham [50] and Sinha and Graham [10] using approaches given by
Charrier et al. [51] for the in-plane shear force density f s and Meyer et al. [52] for the out-of-plane bending force
density fb, respectively. Details regarding these calculations are found in [50] and [10].

B. Fluid motion

As noted in Section II A, the characteristic shear rate γ̇ of blood flow in the microcirculation is ∼ 10− 103 s−1 [46],
the length scale c of a typical sickle RBC ∼ 5− 6 µm [12], the viscosity of plasma η ∼ 1.71 mPa s [47], and its density
ρ ∼ 103 kg/m3. The magnitude of the particle Reynolds number Rep = ργ̇c2/η obtained using these parameters
is ∼ O(10−4 − 10−2), which is assumed to be sufficiently small so that the fluid motion is governed by the Stokes
equation. To determine the velocity field at each time instant, we employ a boundary integral method [50, 53] for
simulation in unbounded simple shear flow. The fluid velocity u at any point x0 in the unbounded domain can be
written as:

uj(x0) = u∞j (x0) +

∫
S

qi(x)Gji(x0,x)dS(x), (7)

where q(x0) is a single-layer density that satisfies

qj(x0) +
λ− 1

4π(λ+ 1)
nk(x0)

∫
S

qi(x)Tjik(x0,x)dS(x) = − 1

4πµ

(∆fj(x0)

λ+ 1
+
λ− 1

λ+ 1
f∞j (x0)

)
. (8)
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Here u∞(x0) is the undisturbed fluid velocity at a given point x0, S denotes the surface of the particle; f∞(x0) is the
traction at a given point due to the stress generated in the fluid corresponding to the undisturbed flow u∞(x0); ∆f(x)
is the hydrodynamic traction jump across the membrane interface, which relates to the total membrane force density
by ∆f(x) = −fm assuming the membrane equilibrium condition; G and T are the Green’s function and its associated
stress tensor for Stokes flow in an unbounded domain. Details of the numerical method are described in [50]. Once
the flow field is determined, the positions of the element nodes on the discretized capsule membrane are advanced
using a second-order Adams-Bashforth method with time step ∆t = 0.02Cal, where l is the minimum node-to-node
distance.

C. Model validation
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FIG. 2: Evolution of inclination angle φ for a stiff prolate spheroid (Ca = 0.06) with (a) rp = 2.0 and (b) rp = 4.8,
respectively. Solid blue lines are predictions by Jeffery’s theory and red dashed lines are simulation results.

The implementation of the numerical methods used in this work has been validated with test problems on the
velocity of rigid particles and drops between parallel walls in pressure driven flow, and the numerical algorithms for
the capsule membrane mechanics including in-plane shear elasticity and out-of-plane bending elasticity have been
validated with the deformation of spherical capsules in simple shear flow. For details, see [50] and [10]. As a further
validation, we compare here the numerically determined inclination profile for a stiff prolate spheroid (Ca = 0.06)
with the prediction by Jeffery’s theory [24],

tan φ = rptan

(
γ̇t

rp + rp−1
+ φ0

)
, (9)

where φ is the inclination angle between the major axis of the prolate spheroid (p) and the y direction, and φ0

its initial value; here φ0 = π/2 since the prolate spheroid is initially aligned with the x axis. FIG. 2 shows the
evolution of φ with nondimensionalized time γ̇t. Good agreement between numerical simulation and Jeffery’s theory
(Eq. 9) is observed for the prolate spheroid with either a low (rp = 2.0) or a high (rp = 4.8) aspect ratio. The very
small discrepancy in each case derives from the non-zero deformability of the prolate spheroid, and vanishes as Ca
approaches zero.

III. RESULTS AND DISCUSSION

A. Dynamics of deformable straight prolate capsules

In this section, we investigate the dynamics of a stiff prolate spheroidal capsule (rp = 4.8, Ca = 0.12). Here we
keep the viscosity ratio λ = 1. We first consider the case where the prolate capsule is initially aligned with the x axis,
i.e., α = 0. The long-time trajectories (up to γ̇t = 2000) of the end-to-end vector p and the normal vector n on the
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(a) (b)

FIG. 3: Trajectories on the unit sphere of (a) p and (b) n for a prolate spheroid (rp = 4.8, Ca = 0.12) with initial
orientation α = 0 (up to γ̇t = 2000).

unit sphere are plotted in FIG. 3. In this case, both p and n appear to trace out a closed circle, indicating that the
capsule is taking a steady symmetric tumbling motion in the x-y plane.

We then consider a perturbation of the initial orientation by a small angle α = π/36. The trajectories of p and n
vectors on the unit sphere are shown in FIG. 4. It can be observed that both pz and nz show an oscillation around
zero whose amplitude decays to zero as time increases (FIG. 5), where pz and nz are the components of p and n in the
vorticity direction, respectively. The director p crosses the x-y plane back-and-forth (as indicated by the sign change
of pz in FIG. 5), exhibiting non-Jeffery-like dynamics, in the sense that for Jeffery orbits, the director p never crosses
the shear-gradient plane. The dynamics of n are much more complicated. The trajectory reaches a quasisteady state
position on either hemisphere alternately every time pz changes its sign, as observed in FIG. 4(d), and the quasisteady
state position gets closer and closer to zero, which is consistent with the damped oscillation of nz (FIG. 5). All these
behaviors indicate that under small perturbation, the orbit of a slightly deformable prolate spheroidal capsule evolves
back towards the symmetric tumbling motion in the x-y plane, indicating that the symmetric tumbling orbit in the
x-y plane is stable.

By further increasing the initial angle α of the prolate spheroid off the x axis, we observe that for an arbitrary α,
the orbit of the prolate spheroid evolves towards the symmetric tumbling in the x-y plane regardless of the initial
orientation. This shows that the in-plane symmetric tumbling is the globally stable state for the prolate spheroidal
capsules in the parameter regime considered. This result is similar to that by Villone et al. [36] for a neo-Hookean
elastic solid prolate spheroid: when initially oriented off the shear plane, a stiff particle with a high aspect ratio
would evolve towards tumbling motion in the shear plane with pz approaching zero. In addition, this stable in-plane
tumbling orbit that we find for an inertialess slender prolate capsule was also observed in the analytical prediction
by Subramanian and Koch [28] and the numerical investigation by Mao and Alexeev [29] for a solid prolate particle
considering particle inertia, except that in our work the degeneracy of Jeffery’s solution [24] due to the linearity of
the Stokes flow is broken by deformability of the capsule instead of inertial effect.

Prior to our work, Dupont et al. and Cordasco and Bagchi [32, 33] both investigated the out-of-shear plane dynamics
of isolated prolate capsules in simple shear flow, revealing that a prolate capsule takes rolling, or a drifting precession
towards the vorticity axis, as the stable dynamical mode at lower capillary numbers, which is different from our result.
In our work, the spontaneous shape used for modeling the bending resistance of the membrane is chosen to be the
same as the rest shape of the prolate capsule, while in Cordasco and Bagchi [33] the spontaneous curvature was set
to zero everywhere for the membrane surface, i.e. the spontaneous shape was a flat sheet; in Dupont et al. [32],
bending resistance was not even incorporated into the membrane mechanics. In addition, both Dupont et al. [32]
and Cordasco and Bagchi [33] used a much lower value for the area dilatation parameter Ca in the Skalak membrane
model [34], i.e., Ca = 1.0, while we set Ca to 10.0 which allows less area change of the membrane; they focused on
prolate capsules with much lower asphericity (rp 6 3.0) as compared to the more elongated prolate capsule (rp = 4.8)
in our study. We have been able to reproduce Cordasco and Bagchi’s result [33] for a prolate capsule at Ca = 0.2
with the spontaneous curvature, aspect ratio, and membrane area dilatation parameter of the capsule tuned to the
same corresponding values as used in their work, which demonstrates that the difference in the stable orbits originates
from the differences in model as described above, with an indication that the capsule dynamics may be sensitive to
its spontaneous shape.
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(a) (b)

(c) (d)

FIG. 4: Trajectories on the unit sphere of p ((a) and (b) (y-z view)) and n ((c) and (d) (x-z view)) for a prolate
spheroid (rp = 4.8, Ca = 0.12) with initial orientation α = π/36.

B. Dynamics of deformable curved prolate capsules

In this section, we perform a systematic investigation of the dynamics of curved prolate spheroids at low Ca as
described in Section II A. The results for λ = 1 are presented and discussed first.

We first examine the early-stage dynamics (0 < γ̇t . 500) of curved prolate capsules in the case of Ca = 0.12 and
K = 0.36 with various initial orientations, beginning with the case where p is initially aligned with the x direction
and n with the z direction. Here the trajectory of p traces out a closed circle on the unit sphere (FIG. 6(a)), while
n remains fixed (FIG. 6(b)), which indicates that the capsule is taking a sideways Jeffery-like tumbling motion. In
the case of [α, β] = [0,π/6] (FIG. 7(a) and 7(d)), p is observed to cross the x-y plane back and forth, exhibiting a
wobbling motion which is not Jeffery-like, as shown in FIG. 8(a). We then consider the case where [α, β] = [0,π/2],
i.e., the capsule is completely lying in the x-y plane initially, with p aligned with the x direction and n with the y
direction. The closed circular orbits on the unit sphere indicate that the capsule is taking a rigid-body-like symmetric
tumbling motion as its early-stage dynamics (FIG. 7(b) and 7(e)). In the case [α, β] = [π/6,π/3], a more Jeffery-like
orbit is observed (FIG. 7(c) and 7(f)), in the sense that p does not cross the shear plane. Here it is noteworthy that
in a Jeffery-like orbit, the trajectory of n spans both hemispheres divided by the shear plane on the unit sphere (FIG.
7(f)), while it only appears on one hemisphere of the unit sphere in the non-Jeffery-like orbit observed in the case of
[α, β] = [0,π/6] described above (FIG. 7(d)).

The early-stage dynamics of the curved prolate capsules described above, however, are all found to be long-lived
transients. FIG. 9 shows the long-time (γ̇t > 1000) trajectories of the p vector of curved prolate capsules with
different initial orientations on the unit sphere. The long-time dynamics of the capsules, regardless of their early-
stage orbits, all evolve into a quasiperiodic kayaking motion that might be described as a “modulated Jeffery orbit”.
We will elaborate below on the connection to Jeffery orbit, but for the moment we simply note that the long-time
motion of p is independent of the initial orientation of the capsules, as indicated by the nearly identical trajectories
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FIG. 5: The evolution of the pz and nz for a prolate spheroid (rp = 4.8, Ca = 0.12) with initial orientation α = π/36.

(a) (b)

FIG. 6: Trajectories of p (a) and n (b) for a curved prolate capsule with initial orientation [α, β] = [0,0] at the early
stage of simulation (0 < γ̇t < 500).

of p on the unit sphere (FIG. 9). Qualitatively, these orbits have a fast time scale corresponding to one cycle of
kayaking, with a much longer time scale describing a slow modulation of the orbit. Each kayaking cycle is slightly
different than the previous, a fact that can be attributed to the dynamics of n, which are coupled to those of p for a
curved particle (or indeed any nonaxisymmetric particle). FIG. 8(b) shows snapshots of a long-time orbit. Recall that
quasiperiodic orbits are also found for triaxial ellipsoids [26] and curved rigid fibers [37]. In all case this is associated
with the breaking of axisymmetry and the coupling between p and n. We do not observe chaotic dynamics under any
conditions considered here.

The two time scales noted above are also observed in the long-time center-of-mass position profiles shown in FIG. 10,
with a shorter time scale representing one cycle of the kayaking motion described above superimposed onto a longer
time scale corresponding to the orbit modulation. In the parameter regime considered here, we have seen no evidence
of drift in the y (“wall normal”) direction. This is in contrast to the observations of [37] for curved rigid fibers in the
“flipping and scooping” regime; we believe the difference arises from the modest aspect ratios considered here, which
are much smaller than those studied by [37]. We do, however, observe a transient phase of spanwise drift in the case
of the capsule initialized to perform a sideways tumbling motion. This vanishes once the cell reaches its long-time
orientational trajectory. Although there is no drift at long times, both the y and z components of the center of mass
oscillate as the cell kayaks.

Now we return to the issue of the connection with Jeffery orbits. The blue curve in Figure 11(a) shows the long-time
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FIG. 7: Early-stage trajectories on the unit sphere of the p (blue) and n (red) vectors of a curved prolate capsule
with initial orientation [α, β] = [0,π/6] (0 < γ̇t < 500) (a,d), [0,π/2] (0 < γ̇t < 100) (b,e), and [π/6,π/3]
(0 < γ̇t < 400) (c,f), respectively.

trajectory for the case Ca = 0.12, K = 0.36 (for which FIG. 9 shows the trajectory of p on the unit sphere), expressed
in spherical coordinates φ and θ based on the coordinate system used in Jeffery’s theory [24], i.e., φ is the azimuthal
angle with respect to the y axis and θ is the polar angle with respect to the z axis. With this representation, we
can find a mean trajectory θ̄(φ) by averaging θ over the trajectory at each φ. This result is represented by the black
circles in FIG. 11(a). For a true Jeffery orbit of a rigid spheroid with orbit constant C and aspect ratio `, the relation
between φ and θ is given by

tan θ =
C`(

`2 cos2φ+ sin2φ
)1/2

. (10)

We have found that in all cases considered here, we can approximate, with very good accuracy, the curve θ̄(φ) as a
Jeffery orbit for a spheroid with an effective orbit constant Ceff and effective aspect ratio `eff. That is, we can use Ceff

and `eff as fitting parameters in the expression

tan θ̄ =
Ceff`eff(

`2eff cos2φ+ sin2φ
)1/2

. (11)

The red curve in FIG. 11(a) shows this approximation for Ca = 0.12, K = 0.36.
This observation enables us to succinctly characterize the effects of deformability and curvature on the long-time

dynamics. We have computed long-time trajectories over a range of Ca and K and computed the resulting values
of Ceff and `eff . These results are summarized in FIG. 12. It is observed that `eff increases weakly as K increases
but shows very little dependency on Ca (FIG. 12(b)). More importantly, Ceff decreases as either Ca or K increases
(FIG. 12(a)), indicating a shift of the orbit towards log-rolling motion as curvature or deformability increase.

For completeness, we briefly consider the deviations of the instantaneous trajectories from the mean curve θ̄(φ).
The maximum positive and negative deviations from the mean when φ = π are denoted as ∆θ+ and ∆θ− (FIG. 11(a)).
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FIG. 8: Time sequence images (front view) of the early-stage (a) and long-time (b) motions of a curved prolate
capsule with initial orientation [α, β] = [0,π/6]. The dashed arrow in each image represents the p vector at the
corresponding time spot.

(a) (b) (c)

(d) (e) (f)

FIG. 9: Long-time trajectories on the unit sphere of the p (blue) and n (red) vectors of a curved prolate capsule
with initial orientation [α, β] = [0,π/6] (a,d), [0,π/2] (b,e), and [π/6,π/3] (c,f), respectively.

The relative deviations ∆θ/θ are found to be insensitive to the parameters in the range considered here, with 0.16 <
∆θ+/θ < 0.19, and −0.35 < ∆θ−/θ < −0.30.

Under physiological conditions, the cytoplasmic fluid inside an RBC has a higher viscosity than the surrounding
plasma [12]; λ ≈ 5. We have therefore also performed simulations with λ = 5, finding that the long-time trajectory of
a curved prolate capsule within the parameter space considered in this work still indicates a quasiperiodic kayaking
motion with no net cross-stream drift, similar to what is observed for λ = 1. Furthermore, the θ̄(φ) can still be well
approximated using Jeffery’s analytical solution (Eq. 11), with Ceff and `eff determined by fitting. FIG. 11(b) shows
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FIG. 10: Evolution of y- and z-components ycm and zcm of the center-of-mass position of curved prolate capsules
with initial orientations [α, β] = [0,π/6] (a), [0,π/2] (b), and [π/6,π/3] (c).

an example of this fit, with Ca = 0.06, K = 0.39, λ = 5. FIG. 12 shows the values of Ceff and `eff for λ = 5 over the
same range of Ca and K considered for λ = 1. The values of either parameter only show minor differences between
the two viscosity ratios, so the trends with Ca and K for λ = 1 still hold qualitatively for λ = 5.

IV. CONCLUSION

We investigated the dynamics of neutrally-buoyant, slightly deformable straight and curved prolate capsules sub-
jected to unbounded simple shear flow at zero Reynolds number using direct simulations. The curved prolate capsules
in this work serve as a model for the typical crescent-shaped sickle RBCs in sickle cell disease (SCD), and we aimed
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FIG. 11: The long-time trajectory (blue curve) of a curved prolate capsule in terms of φ and θ and the average
trajectory (black circles). The red curve represents the fit of the average trajectory using Eq. 11. The black dashed
line corresponds to φ = π. ∆θ+ and ∆θ− denote the maximum positive and negative deviations, respectively, of the
instantaneous trajectory from the mean when φ = π. (a) Ca = 0.12, K = 0.36, λ = 1; (b) Ca = 0.06, K = 0.39, λ =
5.

(a) (b)

FIG. 12: The dependencies of (a) the effective orbit constant Ceff of the long-time orbit and (b) the effective aspect
ratio `eff on the deformability Ca and the degree of curvature K of the curved prolate capsules.

to show the effects of initial orientation, membrane deformability and curvature of the capsules on their dynamics.

The dynamics of the capsules are simulated using a full model incorporating both shear and bending elasticities.
The parameter regime is based on the range of experimentally determined values for blood flow in the microcirculation.
We revealed that with low deformability, straight prolate spheroidal capsules take tumbling in the shear plane as the
unique globally stable orbit independent of the initial orientation. As the trajectories of the straight prolate capsules
transiently evolve towards this in-plane tumbling, the director can cross the x-y plane back and forth, showing a
non-Jeffery-like motion.
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Curved prolate capsules exhibit complicated and interesting dynamics due to the combined effects of membrane
deformability Ca and the curvature K of the capsules. At short times, a non-Jeffery-like behavior, in which the
director (end-to-end vector) of the capsule crosses the shear-gradient plane periodically, is observed for specific initial
orientations. Steady drift of the center of mass in the vorticity direction is also observed for some initial orientations.
At long times, however, the trajectories of the curved capsules, regardless of their initial orientations, all evolve
towards a Jeffery-like quasiperiodic kayaking orbit with the center-of-mass position of a curved capsule crossing the
shear plane periodically instead of remaining in it. No cross-stream drift is found. Under all conditions studied,
the average of the long-time orbit can be well approximated using the analytical solution for Jeffery orbits with an
effective orbit constant Ceff and aspect ratio `eff. A parameter study further reveals that Ceff decreases as the capsule
becomes more deformable or curved, indicating a shift of the orbit towards log-rolling motion. This conclusion holds
qualitatively as the viscosity ratio between the fluids inside and outside the capsule increases from λ = 1 to λ = 5.

Overall, these results represent an effort to understand the motion of single sickle RBCs, taking into account the
pathologically altered shape as well as the elastic and bending moduli of these diseased cells. Major aspects of the
pathophysiology of SCD remain poorly understood and currently, there is an increased focus on how aberrant cell
interactions, between sickle RBCs and other blood cells (i.e. platelets and leukocytes) or between sickle RBCs and
endothelial cells, may contribute to phenomena such as thrombosis or vascular inflammation that are known to be
vital part of the process of SCD. In particular, the effective orbit constant of a sickle cell moving near a blood vessel
wall may reflect the propensity for that cell to collide with and potentially damage the wall. For example, a sickle
cell with a high orbit constant tends to tumbling or kayaking motion, which physically will have a greater chance to
poke and damage the vessel wall than a rolling cell with a much lower orbit constant. In addition, the comparison of
our results with those by Cordasco and Bagchi [33] with different membrane mechanics suggests that the dynamics
of the capsules have a nontrivial dependence on the membrane behavior. Future work, both computational and
experimental, will need to address how best to model this behavior for sickle cells in order to reflect the dynamical
motions of sickle cells in blood flow. More broadly, the results of this work demonstrate how the mechanical properties
and distorted cell shape of sickle RBCs lead to distinct trajectories that may, in turn, cause pathologic biophysical
activation of other cells, and may provide insight into how these disparate aspects of SCD are ultimately linked. That
knowledge will then lead to improved methods to diagnose complications of and new therapeutic targets for SCD.
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