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The objective of this work is to develop the framework and governing equations needed to analyze
internal energy interactions and its spectral distribution in a manner similar to that of kinetic
energy analysis. To emulate the role of velocity in kinetic energy analysis, a new variable (φ ∼ √p
where p is pressure) is introduced to enable the examination of internal energy dynamics. Evolution
equations for the mean and fluctuating components of φ are derived. These equations enable precise
examination of mean–turbulent flow internal energy interactions, internal–kinetic energy exchange
and spectral distribution of internal energy.

Kinetic energy dynamics such as inter-scale transfer and spectral distribution are key features of turbulence and
have been the subject of several investigations over many decades [1]. In incompressible flows, wherein density is
constant and uniform, the velocity (ui) evolution equation, Navier-Stokes or the momentum conservation equation,
forms the basis of kinetic energy analysis. For example, scale-to-scale energy transfer characteristics are dictated by
the triadic interactions incumbent in the advective term of the spectral Navier-Stokes equation [2, 3]. The kinetic
energy spectrum is computed from Fourier-transforming the auto-covariance function of the velocity field [4].

The advent of compressibility renders the kinetic energy dynamics more complicated due to two factors: (i) spatio-
temporal variations in density; and (ii) interactions with internal energy. Some of the complexities in kinetic energy
dynamics due to density variations can be adequately addressed by considering density-weighted velocity field – ρui
leading to Favre-averaging [5]. But investigation of scale-to-scale transfer and spectral distribution require additional
considerations. A new variable √ρui, first proposed by Kida and Orszag [6], has been utilized in many works for
computing kinetic energy spectrum in compressible turbulence [6–9].

The focus of this paper is on the investigation of internal energy dynamics and its interaction with kinetic energy.
It is desirable to investigate and characterize internal energy interactions in turbulence in a manner similar to that of
kinetic energy analysis. Many studies perform insightful investigations of turbulent fluctuations of pressure [10–13].
However, such studies do not address internal energy spectral distribution or transfer in a manner similar to that of
kinetic energy. For example, the scale-to-scale transfer of internal energy cannot be computed from the advection
term in the spectral pressure equation. Further, the turbulent internal energy spectrum is not the same as the
turbulent pressure spectrum. To overcome these limitations, Miura and Kida [14] propose a new internal energy
variable (φ ∼ √p) corresponding to velocity for investigating the internal energy spectrum.

The objective of this paper is to extend the proposal of Miura and Kida [14] and develop the mathematical framework
and evolution equations required for performing a comprehensive and rigorous analysis of turbulent internal energy
dynamics based on φ. Similar to kinetic energy analysis, we aim at partitioning the internal energy into two parts
corresponding to contribution of the mean field and the fluctuating field. The equations based on φ will enable rigorous
investigations of (i) internal–kinetic energy interactions at each scale; (ii) mean–turbulent internal energy exchange;
and (iii) spectral distribution of internal and total energies in a turbulent flow field. The proposed framework is very
important for a comprehensive understanding of total energy dynamics and spectral energy distribution in high-speed,
compressible transition and turbulent flows.

The compressible Navier-Stokes equations for a calorically perfect ideal gas form the basis of this analysis:

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (1a)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+
∂τij
∂xj

, (1b)

∂

∂t

(
p

γ − 1

)
+

∂

∂xj

(
puj
γ − 1

)
=

∂

∂xj

(
κ
∂T

∂xj

)
− p∂uk

∂xk
+ τij

∂ui
∂xj

, (1c)

p = ρRT, (1d)
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where ρ is the fluid density, ui is velocity component, τij is the viscous stress tensor, p is the gas pressure, γ is ratio
of specific heats at constant pressure and volume, κ is the coefficient of thermal conductivity, T is the temperature,
xi is the spacial coordinate and t is time. The viscous stress tensor is given by:

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ

∂uk
∂xk

δij , (2)

where µ is the coefficient of dynamic viscosity, λ is the coefficient of second viscosity and δij is the Kronecker delta.
We will first present the kinetic (K), internal (e) and total (E) energy equations to identify the key interactions.

The energy equations can be derived using eqs. (1b) and (1c):

∂K

∂t
+
∂(Kuk)

∂xk
+

∂

∂xk

[
puk − τikui

]
= p

∂uk
∂xk
− τij

∂ui
∂xj

, (3a)

∂e

∂t
+
∂(euk)

∂xk
+
∂qk
∂xk

= −p∂uk
∂xk

+ τij
∂ui
∂xj

, (3b)

∂E

∂t
+
∂(Euk)

∂xk
+

∂

∂xk

[
puk − τikui + qk

]
= 0, (3c)

where,

K =
1

2
ρuiui, e =

p

γ − 1
, qk = −κ ∂T

∂xk
and E = K + e. (4)

Equations (3a) and (3b) indicate interactions between kinetic and internal energy via pressure-dilatation and viscous
action. Pressure-dilatation permits a two-way exchange while viscous action can only lead to a one-way transfer from
kinetic to internal energy.

The velocity field is decomposed into a Favre average and a corresponding fluctuation field [5]:

ui = Ũi + u′′i , (5)

while other variables (ψ) are decomposed using Reynolds averaging:

ψ = ψ + ψ′. (6)

For some interactions Reynolds averaging of the velocity field is also considered. Throughout the paper (̃·) corresponds
to Favre averaging and (·) to Reynolds averaging. The evolution of the mean kinetic (K) and internal (e) energies is
given by,

∂K

∂t
+
∂(ŨkK)

∂xk
+

∂

∂xk

[
Ku′′k − τikui + puk

]
= p

∂Uk
∂xk

+ p′
∂u′k
∂xk
− τij

∂U i
∂xj
− τ ′ij

∂u′i
∂xj

, (7a)

∂e

∂t
+
∂(Ũke)

∂xk
+

∂

∂xk

[
eu′′k + qk

]
= −p∂Uk

∂xk
− p′

∂u′k
∂xk

+ τij
∂U i
∂xj

+ τ ′ij
∂u′i
∂xj

. (7b)

It is important to recognize that the mean kinetic energy of the flow has two contributions: the kinetic energy
associated with the mean flow field and that associated with the fluctuations.

K = Km + k where, Km =
1

2
ρŨiŨi and k =

1

2
ρu′′i u

′′
i . (8)

The mean field (Ũi) kinetic energy is Km and turbulent field (u′′i ) kinetic energy is k in eq. (8).
Governing equation for Km can be derived using the Favre averaged Navier-Stokes equation [15]:

ρ
∂Ũi
∂t

+ ρŨj
∂Ũi
∂xj

+
∂ρu′′i u

′′
j

∂xj
= − ∂p

∂xi
+
∂τij
∂xj

(9)

The equation for the mean-flow kinetic energy (Km) can be obtained by multiplying eq. (9) with Ũi:

∂Km

∂t
+
∂(KmŨj)

∂xj
+

∂

∂xj

[
ρu′′i u

′′
j Ũi + pU j − τij U i

]
= ρu′′i u

′′
j

∂Ũi
∂xj

+ p
∂Uk
∂xk

− τij
∂U i
∂xj

+ u′′k
∂p

∂xk
− u′′k

∂τkj
∂xj

. (10)
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Here we have used the relation Uk = Ũk + u′′k to simplify some terms. The evolution of turbulent kinetic energy (k)
in compressible flows follows from [16, 17]:

∂k

∂t
+
∂(kŨj)

∂xj
+

∂

∂xj

[
1

2
ρu′′i u

′′
i u
′′
j + p′u′′j − τ ′iju′′i

]
= −ρu′′i u′′j

∂Ũi
∂xj

+ p′
∂u′′k
∂xk

− τ ′ij
∂u′′i
∂xj
− u′′k

∂p

∂xk
+ u′′k

∂τkj
∂xj

. (11)

Utilizing u′′k = Uk − Ũk + u′k and ψ′ = 0, we can establish that:

ψ′
∂u′′k
∂xk

= ψ′
∂u′k
∂xk

. (12)

Therefore, equation for turbulent kinetic energy (k) can be re-written as,

∂k

∂t
+
∂(kŨj)

∂xj
+

∂

∂xj

[
1

2
ρu′′i u

′′
i u
′′
j + p′u′j − τ ′iju′i

]
= −ρu′′i u′′j

∂Ũi
∂xj

+ p′
∂u′k
∂xk
− τ ′ij

∂u′i
∂xj
− u′′k

∂p

∂xk
+ u′′k

∂τkj
∂xj

. (13)

The various terms in these equations and the incumbent physics will be discussed further below. In incompressible
flows, the spectral transfer and distribution of kinetic energy across different scales of motion can be examined
by performing Fourier transform of u′i. As proposed by Kida and Orszag [6], similar spectral energy analysis of
compressible flows requires a new variable,

wi =
√
ρu′′i , (14)

to account for spatio-temporal variations in density. The Fourier transform of the auto-correlation function of wi
yields the kinetic energy spectrum. The quartic interactions for turbulent kinetic energy cascade are also reduced to
triadic interactions as:

∂

∂xj

[
1

2
ρu′′i u

′′
i u
′′
j

]
=

∂

∂xj

[
1

2
wiwiu

′′
j

]
. (15)

Unlike kinetic energy, it is more complicated to clearly identify the internal energy associated with the mean (or
background field) and the turbulent internal energy. In the linear regime, when the density fluctuations are small,
Sarkar et al. [10] identified that the potential energy incumbent in pressure fluctuations can be approximated as
p′p′/(2γp). However, this representation is inadequate when the density fluctuations are large. Miura and Kida [14]
propose a more general approach which is valid for strongly compressible flows. They propose a new variable,

φ ≡
√
e =

√
p

γ − 1
, (16)

for examining the internal energy spectrum in simple isotropic flows. The justification is that φ2 corresponds to
internal energy.

In this study we develop the framework of equations based on φ to investigate flows with strong mean fields and more
importantly to examine internal–kinetic energy interactions. First the choice of φ as the internal energy equivalent
of velocity is further justified on the following physics-based argument. Using the relation γp = ρa2, where a is the
speed of sound, φ can be written as:

φ =
1√

γ(γ − 1)

√
ρa. (17)

Eq. (17) shows that φ includes density-weighted acoustic speed information which relates to the internal energy of
the system. The state variable φ for internal energy is thus analogous to wi for turbulent kinetic energy. φ can now
be decomposed using Reynolds averaging:

φ = φ+ φ′ where, φ =

√
p

γ − 1
and φ′ =

√
p

γ − 1
−
√

p

γ − 1
. (18)

With this formulation, it is possible to clearly separate the mean internal energy of the flow into a mean field and a
fluctuating field contribution,

e = φ2 = φ φ+ φ′φ′ therefore, em = φ φ and et = φ′φ′. (19)



4

The strong similarity of internal energy decomposition in eq. (19) and kinetic energy partitioning in eq. (8) is clearly
evident. The spectral transfer and spectral distribution of turbulent internal energy can be characterized from the
behavior φ′ much in the same manner as the turbulent kinetic energy transfer/distribution can be analyzed using
wi =

√
ρu′′i . The Fourier transform of the auto-correlation of φ′ yields the turbulent internal energy spectrum. Thus,

φ′ − wi interactions hold the key to examining internal–kinetic energy exchange.
In the linear limit, as indicated by small turbulent Mach number - Mt ≡ u′/a � 1 [10], the pressure fluctuations

can be considered small relative to mean pressure. Therefore, higher order moments are negligible
(
p′p′

p2
≈ 0, p′p′p′

p3
≈

0, ...
)
and can be ignored. φ and φ′ can now be approximated as:

φ =

√
p

γ − 1

[
1 +

p′

p

]1/2
≈
√

p

γ − 1
and φ′ ≈ p′

2
√
p(γ − 1)

+O

(
p′p′

p3/2

)
. (20)

Then the turbulent internal energy in the linear limit can be shown to be:

et = φ′φ′ ≈ 1

4(γ − 1)

[
p′p′

p

]
. (21)

The above expression is similar to the linear limit potential energy of pressure fluctuations as identified in literature
[10, 18].

The mean and the fluctuation pressure field can be written in terms of the internal energy velocity variable φ as:

p = (γ − 1)
[
φ φ+ φ′φ′

]
and p′ = (γ − 1)

[
φ′φ′ + 2φφ′ − φ′φ′

]
. (22)

We can clearly see that mean and fluctuating pressure have a linear and nonlinear component:

p = pm + pt and p′ = p′m + p′t (23)

where,

pm = (γ − 1)φ φ and pt = (γ − 1)φ′φ′,

p′m = 2(γ − 1)φφ′ and p′t = (γ − 1)
[
φ′φ′ − φ′φ′

]
.

(24)

Here, pm and pt are the components of mean pressure associated with the mean field and the perturbation field
respectively. Similarly, p′m and p′t are the components of fluctuating pressure associated with the mean field and the
perturbation field. pm and p′m can also be understood as linear (or rapid) components while pt and p′t as nonlinear
(or slow) components.

We can now derive the evolution equations for em = φ φ and et = φ′φ′. We start with the internal energy equation,
eq. (3b) and use definitions e = φ2 and p = (γ − 1)φ2 to obtain an equation for φ:

∂φ

∂t
+ uk

∂φ

∂xk
= −γ

2
φ
∂uk
∂xk

+
f

2φ
where, f =

[
− ∂qk
∂xk

+ τij
∂ui
∂xj

]
. (25)

The Reynolds average of the thermal flux and viscous terms (f) can be written as:

f =

[
− ∂qk
∂xk

+ τij
∂U i
∂xj

+ τ ′ij
∂u′i
∂xj

]
. (26)

The last term in eq. (25) can be simplified as:

f

2φ
=

f

2φ
− fφ′

2φφ
which gives,

(
f

2φ

)
=

f

2φ
− 1

2φ

(
fφ′

φ

)
. (27)

Reynolds-averaging eq. (25) gives an equation for φ as:

∂φ

∂t
+ Ũk

∂φ

∂xk
+ u′′k

∂φ

∂xk
+ u′′k

∂φ′

∂xk
= −γ

2

[
φ
∂Ũk
∂xk

+ φ
∂u′′k
∂xk

+ φ′
∂u′′k
∂xk

]
+

f

2φ
− 1

2φ

(
fφ′

φ

)
. (28)
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Multiplying eq. (28) by 2φ yields the governing equation for the mean field contribution of mean internal energy (em).
Using Uk = Ũk + u′′k and eq. (26), the simplified equation for em becomes:

∂em
∂t

+
∂(emŨk)

∂xk
+

∂

∂xk

[
φ φ u′′k + 2φ φ′u′′k + qk

]
= τij

∂U i
∂xj

+ τ ′ij
∂u′i
∂xj
− (γ − 1)φ φ

∂Uk
∂xk

+ 2u′′kφ
′ ∂φ

∂xk

+ (2− γ)φφ′
∂u′′k
∂xk

−
(
fφ′

φ

)
.

(29)

The above equation is further simplified using the expression in eq. (12) and the definitions in eq. (24):

∂em
∂t

+
∂(emŨk)

∂xk
+

∂

∂xk

[
φ φ u′′k + 2φ φ′u′′k + qk

]
= τij

∂U i
∂xj

+ τ ′ij
∂u′i
∂xj
− pm

∂Uk
∂xk

+ 2u′′kφ
′ ∂φ

∂xk

+
(2− γ)
2(γ − 1)

p′m
∂u′k
∂xk
−
(
fφ′

φ

)
.

(30)

We can now determine the φ′ equation by subtracting eq. (28) from eq. (25):

∂φ′

∂t
+ Ũk

∂φ′

∂xk
+ u′′k

∂φ

∂xk
+ u′′k

∂φ′

∂xk
− u′′k

∂φ

∂xk
− u′′k

∂φ′

∂xk
=− γ

2

[
φ′
∂Ũk
∂xk

+ φ
∂u′′k
∂xk

+ φ′
∂u′′k
∂xk

− φ
∂u′′k
∂xk

− φ′
∂u′′k
∂xk

]

+

(
f

2φ

)′
.

(31)

To obtain the governing equation for turbulent internal energy (et) we multiply eq. (31) with 2φ′ and take average:

∂et
∂t

+ Ũk
∂et
∂xk

+ 2φ′u′′k
∂φ

∂xk
+ u′′k

∂φ′φ′

∂xk
= −γ

[
φ′φ′

∂Ũk
∂xk

+ φ φ′
∂u′′k
∂xk

+ φ′φ′
∂u′′k
∂xk

]
+

(
f

φ

)′
φ′. (32)

The last term in eq. (32) can be simplified as:

(
f

φ

)′
φ′ =

[(
f

φ

)
φ′ +

(
f

φ

)′
φ′

]
=

(
fφ′

φ

)
. (33)

Simplifying eq. (32) and using the relation, Ũk = Uk − u′′k we get,

∂et
∂t

+
∂(etŨk)

∂xk
+

∂

∂xk
[φ′φ′u′′k ] =− (γ − 1)φ′φ′

∂Uk
∂xk

− (γ − 1)(φ′φ′ + 2φφ′ − φ′φ′)
∂u′′k
∂xk

− 2u′′kφ
′ ∂φ

∂xk

− (2− γ)φφ′
∂u′′k
∂xk

+

(
fφ′

φ

)
.

(34)

Now we can use the relations in eqs. (12), (22) and (24) to obtain the simplified form of the above equation:

∂et
∂t

+
∂(etŨk)

∂xk
+

∂

∂xk
[φ′φ′u′′k ] = −pt

∂Uk
∂xk

− p′
∂u′k
∂xk
− 2u′′kφ

′ ∂φ

∂xk
− (2− γ)

2(γ − 1)
p′m

∂u′k
∂xk

+

(
fφ′

φ

)
. (35)

The triadic interactions of turbulent internal energy cascade can now be analyzed similar to turbulent kinetic energy
via ∂

∂xk
(φ′φ′u′′k). The equations for φ, em, φ′ and et in eqs. (28), (30), (31) and (35) constitute the framework required

to describe internal energy interactions.
The mean total energy (E = Km + k + em + et) obtained through this framework can be written as:

∂E

∂t
+

∂

∂xk

[
EŨk + ρu′′i u

′′
kŨi +

1

2
ρu′′i u

′′
i u
′′
k + puk − τikuk + qk +

pu′′k
γ − 1

]
= 0. (36)

The mean total energy (E) of a system changes only due to energy flux from the outside. Therefore, E for an isolated
system remains constant. This is an important property of the chosen variables.
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FIG. 1: Interactions between kinetic and internal energies in the nonlinear regime using eqs. (10,13,30,35)

We now discuss important aspects of kinetic–internal energy interactions and summarize the exchanges amongst
Km, k, em and et (figure 1).

(Km − k) Interactions: The most important interaction between mean–turbulent kinetic energy is production
of turbulent kinetic energy (k) via ρu′′i u′′j

∂Ũi

∂xj
as seen in eqs. (10) and (13). Production draws energy from the mean

flow and deposits it into the fluctuating field. Other interactions appear as a consequence of compressibility and
Favre-averaging. Both pressure work (u′′k

∂p
∂xk

) and viscous action (u′′k
∂τkj

∂xj
) can lead to two-way exchange between

the mean and fluctuating fields. For an incompressible flow, only production remains active among all (Km − k)
interactions.

(em − et) Interactions: The terms 2u′′kφ
′ ∂φ
∂xk

, (2−γ)
2(γ−1)p

′
m
∂u′

k

∂xk
and ( fφ

′

φ ) in eqs. (30) and (35) lead to exchange
between the mean field internal energy (em) and the turbulent internal energy (et). The first term is analogous to
production in the kinetic energy equations. The second term causes exchange due to the linear or rapid component of
fluctuating field pressure-dilatation mechanism while the last term is exchange due to viscous and thermal flux action.

(Km − em) Interactions: The mean field kinetic–internal energy interact via the linear or rapid component of
mean field pressure-dilatation (pm

∂Uk

∂xk
) and viscous action (τij ∂Ui

∂xj
) as evident in eqs. (10) and (30). The pressure-

dilatation action causes a two-way exchange and is represented with a double solid arrow in figure 1. On the other
hand, viscous action dissipates mean field kinetic energy to mean field internal energy and is shown with a dashed
one-way arrow. As mentioned by Huang et al. [16], the Reynolds-averaged velocity field (U i) contributes towards the
internal–kinetic exchange and not the Favre-averaged mean field (Ũi).

(Km − et) Interactions: The mean field kinetic energy and turbulent internal energy only interact via the
nonlinear or slow component of mean field pressure-dilatation (pt

∂Uk

∂xk
). This exchange is identified using eqs. (10)

and (35).
(k− em) Interactions: The turbulent kinetic energy dissipates energy into the mean field internal energy via the

fluctuating field viscous action (τ ′ij
∂u′

i

∂xj
) as seen from eqs. (13) and (30).

(k − et) Interactions: The exchange between turbulent kinetic and turbulent internal energy is caused via the

fluctuating field pressure-dilatation mechanism (p′ ∂u
′
k

∂xk
) as evident in eqs. (13) and (35). This exchange includes

contribution of both linear (or rapid) and nonlinear (or slow) pressure fluctuations. It is also synchronous with
(em − et) exchange via the linear or rapid component of fluctuating field pressure-dilatation.

In conclusion, we have established a framework for examining internal energy of any fluid flow governed by the
compressible Navier-Stokes equations. Analogous to fluid velocity, a suitable thermodynamic state variable for internal
energy is identified (φ ∼ √p). Defining internal energy in terms of φ allows partitioning of the mean internal energy of
the flow into the mean field and perturbation field contributions, similar to mean kinetic energy. It is also established
that spectral behavior of turbulent internal energy can be rigorously examined using φ′. Governing equations for em
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and et are derived to identify key internal–kinetic energy interactions. It is anticipated that this framework will be
important for analysis and modeling of energy dynamics in high-speed compressible transition and turbulent flows.
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