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Abstract6

Tidal flow over oceanic topography generates internal waves when the natural frequency (N) of7

the water is greater than the tidal frequency (ω). When N < ω, evanescent waves are generated.8

Although the amplitude and kinetic energy of evanescent waves decay rapidly, if the wave reaches a9

turning depth, where N = ω, and moves into a region where N > ω, the evanescent wave becomes10

an internal wave. This work expands upon previous research of varying stratifications by investi-11

gating the kinetic energy density in internal waves generated by evanescent waves passing through12

a turning depth. An analytical model is presented and compared to synthetic schlieren experiments13

of two Gaussian shaped topographies. The model and experiments both indicate that the kinetic14

energy density of internal waves increases with decreasing topographic slope, when the distance15

between the topography and the turning depth decreases, and when the average Froude number in16

the evanescent region is close to one. The model is used to estimate the normalized kinetic energy17

density of internal waves generated from an oceanic feature located within an evanescent region.18
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I. INTRODUCTION19

Internal waves are uniquely formed in stratified fluids such as the atmosphere and ocean.20

The strength of the stratification is proportional to the variation in density in a fluid and is21

defined by the natural frequency of unforced oscillations, N which is defined as22

N2 =
−g
ρ0

dρ

dz
(1)23

where g is the gravitational constant, ρ0 is a reference density, and dρ/dz is the change in24

density with respect to height. One well known generator of internal waves in the ocean is25

tidal flow over oceanic bathymetry, specifically the M2 semidiurnal tide, with a frequency26

ωM2 = 1.4052 × 10−4 s−1 [1]. The kinetic energy of internal waves generated from oceanic27

topography depends on many factors, including the strength of the stratification and the28

shape of the topography. The strength of the stratification defines whether internal waves29

or evanescent waves will be formed. Internal waves are formed when N is greater than the30

excitation frequency (ω) and they suffer little to no viscous dissipation as they propagate.31

Figure 1a depicts an internal wave generated by tidal motion across an idealized oceanic32

topography. Evanescent waves form in the opposite scenario, where N < ω as depicted in33

Fig. 1b. An evanescent wave has no vertical structure as a propagating wave does and as it34

transmits energy vertically the amplitude decays at an exponential rate [2]. King et al. [1]35

used data from the World Ocean Circulation Experiment (WOCE) to estimate variations in36

N across the oceans in order to locate evanescent regions and turning depths, or locations37

where the natural frequency is equal to the forced wave frequency associated with ωM2.38

They found that these turning depths occur frequently in deep oceans where east-west tides39

dominate. If an evanescent wave reaches a turning depth, it becomes a propagating internal40

wave, as shown in Fig. 1c where the evanescent wave reaches the turning depth (dashed41

line) and then forms a propagating internal wave [2]. While internal waves are known to42

have significant energy and are widely studied, evanescent waves are not often considered43

to have an impact on the ocean due to the rapid decay rate of the amplitude and energy44

content. However, if a significant portion of the original evanescent wave energy reaches a45

propagating region, the internal waves formed may have an important impact on the ocean46

energy budget.47

Significant research has been accomplished in both varying stratifications and internal48

waves approaching evanescent regions. Pedlosky [3] used linear theory and the WKB ap-49
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FIG. 1. A propagating internal wave is shown in (a) and the vertically decaying evanescent wave

is seen in (b). In (c), the a turning depth indicates the boundary between the evanescent and

propagating regions, with the evanescent wave becoming an internal wave as it pass through the

turning depth.

proximation to account for wave propagation in non-uniform stratifications in propagating50

regions. For multi-layered stratification profiles, internal waves have been shown to tunnel51

through an evanescent region of fluid and the transmission coefficient of incident internal52

wave energy across the evanescent region can be calculated with linear theory [4]. Further53

work on tunneling includes smooth changes in natural frequency and the inclusion of a54

shear flow [5, 6]. Gregory and Sutherland [7] found that the transmission coefficient was55

larger for internal waves that tunneled through a weakly stratified region instead of a well-56

mixed region. Mathur and Peacock [8] extended this work for transmission and reflection57

of internal waves and varied the scale of the transitional region. They found that a wave58

beam will adjust to a varying stratification and be either amplified or diminished based on59

the characteristics of the stratification, as long as the changes in the stratification occurred60

over a sufficiently large distance. Rapid changes in stratification led to wave scattering.61

Sutherland [9] found an analytical solution for the transmission coefficient for an arbitrary62

number of density staircases that are all equal in size, and also used simulations to calculate63

the transmission coefficient for uneven length staircases. Sutherland found, similar to the64

results of Ghaemsaidi et al. [10], that density staircases can act as a filter allowing only65

internal waves with long horizontal wavelengths and high frequencies to completely pass66

through the staircase region. Paoletti and Swinney [11] used exponential density profiles67
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and stratifications to investigate internal wave reflection and transmission from a turning68

depth. Their results compared well with the viscous theory of Kistovich and Chashechkin69

[12] which allowed for arbitrary stratifications. Each of these cases assumed that internal70

waves were formed in a propagating region and then pass into an evanescent region, but did71

not investigate waves formed in an evanescent region passing into a propagating region.72

Few studies have been conducted which investigate both evanescent and propagating73

regions. Using linear theory, Nappo [2] showed that in a two-layer, constant N fluid, with an74

abrupt change from an evanescent to a propagating region, propagating internal wave energy75

is dependent upon the strength of the stratification in the propagating region. Paoletti et76

al. [13] used numerical simulations validated with experiments to characterize the radiated77

power of internal waves generated from a turning depth with varying stratifications and78

compared their results to an estimated maximum tidal power. The radiated power was79

calculated at a fixed location near the topography while the turning depth location was80

varied. They found that steep-sloped topography generated waves with less power than81

topography with more gentle slopes. They also saw that the presence of a turning depth82

greatly reduced the radiated power compared to the internal waves formed in a propagating83

region from the same topography. Their work provides valuable insight on relative power84

transferred from the tides into wave motion near topography. In this work, we investigate85

the kinetic energy transmitted to propagating waves only. We will use experiments and a86

linear theory analysis to explore the effect of non-uniform stratification on wave generation87

in evanescent regions and focus on the resultant internal wave kinetic energy in propagating88

regions.89

As mentioned previously, the shape of the topography from which waves are generated90

has an important affect on the energy content of the waves. When investigating topograph-91

ically generated internal waves, topographies are frequently divided into different categories92

based on criticality. Criticality is defined ε = Stop,m/Swave where Stop,m is the maximum to-93

pographical slope and Swave =
√
ω2/(N2 − ω2) is the slope of the generated waves (assuming94

no rotation). Topographies in propagating regions are considered subcritical (ε < 1), critical95

(ε = 1), or supercritical (ε > 1). Internal wave energy has been estimated for subcritical96

topography for constant stratifications [14], depth varying stratifications and a finite depth97

ocean [15, 16]. Work has also been done for supercritical topographies both experimentally98

and with a viscous linear theory model [17, 18]. However, for evanescent waves, ε is unde-99
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fined because Swave is imaginary in an evanescent region. Paoletti et al. [13] used a novel100

technique to define an effective height of the topography, based on both the slope of the101

topography and the stratification profile. Using this, they could estimate radiated power102

for internal waves generated from evanescent waves formed from topography. They found103

that internal wave power is significantly decreased in the presence of a turning depth. Their104

results compared well with previous research on topographically generated internal waves105

and varying stratifications.106

In this work we account for the effects of topography shape and the distance from the107

topography to the turning depth in realistic stratifications to investigate the influence of108

turning depths on the local kinetic energy of internal waves generated from evanescent109

regions. Specifically, experiments and a new linear model are used with an exponential N110

profile such that waves are generated in an evanescent region and pass into a propagating111

region. Average internal wave kinetic energy is quantified in the propagating region as a112

function of average Froude number in the evanescent region (Fr1 = ω/N) and H/D, the113

relative distance between the topography and the turning depth. These results represent114

the first ever analytical model of an evanescent wave generating an internal wave through a115

turning depth with varying natural frequency and the kinetic energy associated with each116

wave. The numerical theory is supported by experiments.117

The paper is outlined as follows. Section II describes the experimental setup and analysis,118

and details the analytical model. Results are given in Section III, with an oceanic case study119

in IV. Section V concludes with a summary of the work.120

II. METHODOLOGY121

A. Experimental Procedures122

All experiments were performed in an acrylic tank with a length, width, and height of123

2.45 m, 0.15 m, and 0.91 m, respectively. To create the density profile, a modified version124

of the double bucket method was used [19]. Two peristaltic pumps controlled the flow rates125

of fresh and salt water which were joined and slowly filled the tank. Density measurements126

using an Anton Par density meter were taken every 2 cm before experiments began, and then127

5



FIG. 2. The measured density is shown in red points and the exponential curve fit is the black

line.

every 5 cm after every fourth experiment. Density measurements were fit to the equation128

ρ = a exp(bz) + c (2)129

where ρ and z have units of kg/m3 and meters, and a (kg/m3), b (m−1), and c (kg/m3) are130

coefficients calculated from the exponential fit with an average R2 = 0.997 for all cases. This131

density profile ensures a varying N profile for every experiment, with N defined by Eq. (1)132

and ranging from 0.3 to 2.0 s−1. In Fig. 2 the measured density and calculated exponential133

curve fit is shown. These data come from Case 17 shown in Table I. The density increases134

with decreasing height, starting at the top of the tank (z = 0.6 m) and moving down to the135

bottom at z=0 m.136

As shown in Fig. 3, the ocean-topography system is inverted with the topography at the137

surface and lower values of N at the base of the topography. As z decreases, N increases.138

A stepper motor controls the oscillation frequency and excursion length of the topography139

generating waves. Matting was placed at the bottom of the tank to dampen reflections.140

Two Gaussian topographies were used in the experiments with curves of the form141

h = H exp(−x2/B2) (3)142

where H is the peak height of the topography and B2 = W 2/18. Here, W is the width143

of the topography when the height of the topography has decayed to 1% of H. The first144
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FIG. 3. Experimental tank and visualization system schematic. In (a), the front view of tank is

shown with internal wave regions and turning depth as labeled. In (b), the side view of the setup

with camera for synthetic schlieren imaging is shown.

topography is defined by W/H = 1.8 (medium topography) and the second by W/H = 0.45145

(steep topography). H = 10 cm for both topographies.146

Two non-dimensional numbers were used to describe each each experimental setup. First,147

H/D is a ratio of the height of the topography to the distance between the tip of the148

topography and the turning depth (D in Fig. 3a). This ratio provides a relative measure149

of the number of topographic heights between the source and propagating region. Values of150

H/D ranged from 0.311 to 2.128, where the higher values indicate the topography is closer151

to the turning depth. The other non-dimensional number is the average Froude number in152

the evanescent region which is defined as153

Fr1 = ωf/N1 (4)154

where the subscript “1” refers to the evanescent region (see Fig. 3a) and ωf is the forcing155

frequency of the topography. The Froude number is used to characterize the stratification156

profile in the evanescent region. Table I provides the details of each case, including the157

coefficients for the density profile [Eq. (2)], the height of the water in the tank, the horizontal158

wavenumber, the oscillation frequency of the topography, the height of the turning depth,159

the excursion length of the topography, and values for H/D and Fr1.160161162

The topography was forced at an oscillation frequency ωf . The location of the Gaussian163
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TABLE I. A summary of experiments and experimental parameters. Cases 1-14 used the medium

topography (W/H = 1.8), while cases 15-24 used the steep topography (W/H = 0.45). Water

height, ztd, and L are given in centimeters.

Case
a

(kg/m3)
b (m−1)

c

(kg/m3)

Water

Height
kd (m−1) ωf (s−1) ztd L H/D Fr1

1 100 -2.36 993 57.5 28.39 1.04 32.7 4.13 0.67 1.15

2 97.7 -2.35 994 57.3 28.26 1.00 34.9 4.23 0.81 1.14

3 95.2 -2.55 998 57.3 28.48 0.95 38.1 4.07 1.09 1.13

4 110.4 -1.35 975 67.3 28.57 0.95 35.9 3.99 0.47 1.11

5 101.6 -1.51 984 67.2 28.26 1.04 21.9 4.23 0.28 1.18

6 89.8 -2.17 999 63.4 28.29 0.85 45.3 4.21 1.23 1.10

7 84.9 -2.48 1005 63.3 28.09 0.85 42.4 4.37 0.92 1.14

8 92.6 -2.39 997 61.7 28.28 0.86 45.5 4.22 1.62 1.10

9 86.9 -2.81 1004 61.1 28.51 0.81 46.5 4.04 2.15 1.11

10 92.6 -2.39 997 57.5 28.26 0.93 38.4 4.24 1.10 1.12

11 95.2 -2.64 1003 61.7 32.29 1.21 19.8 1.46 0.31 1.30

12 95.2 -2.64 1003 61.4 31.04 1.08 28.1 2.24 0.43 1.24

13 119 -1.87 982 63.5 28.39 1.13 28.8 4.14 0.41 1.17

14 117 -1.76 981 63.3 28.15 1.00 40.3 4.32 0.77 1.10

15 88.8 -3.71 1008 69.3 67.64 1.04 29.7 4.34 0.38 1.41

16 87.8 -3.50 1007 69.3 62.85 1.24 19.3 5.05 0.28 1.50

17 87.8 -3.50 1007 60.6 63.95 1.17 22.6 4.88 0.41 1.37

18 92.2 -4.01 1011 60.5 70.96 0.96 34.1 3.90 0.71 1.29

19 94.7 -4.49 1014 61.0 57.67 0.81 41.2 5.94 1.25 1.24

20 85.1 -4.27 1014 60.9 67.38 0.86 36.9 4.38 0.85 1.28

21 89.6 -4.38 1014 60.8 65.76 0.86 37.8 4.61 0.91 1.27

22 91.8 -4.54 1014 60.5 67.57 0.77 42.7 4.35 1.62 1.22

23 91.8 -4.54 1014 60.4 67.52 1.00 31.1 4.36 0.60 1.37

24 89.8 -4.52 1015 60.2 66.03 1.00 30.6 4.57 0.59 1.37
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profile in space and time is described as164

ztop(x, t) = H exp

[
−(x− L sinωt)2

B2

]
(5)165

where L is the excursion length of the topography, −0.09 ≤ x ≤ 0.09 m for the medium166

topography, and −0.0225 ≤ x ≤ 0.0225 m for the steep topography. After 15 oscillation167

periods of the topography, which allowed the waves to reach steady state, images were168

recorded with a jAi Cv-M4+Cl progressive scan camera for three minutes at 6 fps and169

processed with the commercial software DigiFlow [20]. The camera shown in Fig. 3b was170

focused on the mask of random dots illuminated by a light box behind the tank and synthetic171

schlieren was used to calculate variations in density for each experiment. Digiflow calculates172

values of∇ρ′/ρ0, where ρ′ is the density perturbation. Using the z derivative and multiplying173

these values by the gravitational constant, an equation for the variation in the natural174

frequency between the initial undisturbed image and each subsequent image, similar to Eq.175

(1) is derived:176

∆N2 =
−g
ρ0

∂ρ′

∂z
(6)177

With ∆N2, the kinetic energy of the internal waves can be estimated using the method178

described by Wunsch and Brandt [21]. By using the continuity equation179

∂u

∂x
+
∂w

∂z
= 0 (7)180

and defining181

∂∆N2

∂t
= −∂(N2w)

∂z
(8)182

the WKB approximation is used to approximate kinetic energy. Internal wave velocities and183

the natural frequency are defined as planar waves multiplied by slowly varying amplitudes:184

u(x, z, t) =

∫
Ũ exp [i(kx+mz − ωt)]dkdω (9)185

w(x, z, t) =

∫
W̃ exp [i(kx+mz − ωt)]dkdω (10)186

∆N2(x, z, t) =

∫
∆Ñ2 exp [i(kx+mz − ωt)]dkdω (11)187

where Ũ , W̃ and ∆Ñ2 are Fourier amplitudes. Using Eqs. (7) and (8), where the derivatives188

of the amplitudes are assumed negligible, and taking a two dimensional Fourier transform189

along the horizontal (x) direction and through time (t), Wunsch and Brandt derive190

KE2 =
ω2N2

k2(N2 − ω2) + (ω∂zN2/N2)2

∣∣∣∣∣∆Ñ2

N2

∣∣∣∣∣
2

(12)191
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where KE = |Ũ |2 + |W̃ |2, k is the horizontal wavenumber, and the subscript “2” indicates192

the propagating region. Unfortunately, this equation is not valid in the evanescent region193

because of the exponential decay of evanescent wave amplitudes and imaginary vertical194

wavenumber. These are accounted for by first defining195

q2(z) = k2(1−N2(z)/ω2) (13)196

where m = iq is the imaginary vertical wavenumber in the evanescent region [2, 3]. The197

velocities and natural frequency then become198

u(x, z, t) =

∫
Ũ exp(qz) exp[i(kx− ωt)]dkdω (14)199

w(x, z, t) =

∫
W̃ exp(qz) exp[i(kx− ωt)]dkdω (15)200

∆N2(x, z, t) =

∫
∆Ñ2 exp(qz) exp[i(kx− ωt)]dkdω (16)201

Following the same methodology described above for Eq. (12), we find202

KE1 =

∣∣∣∣∣ −qω∆Ñ2

k(∂zN2 + qN2)

∣∣∣∣∣
2

+

∣∣∣∣∣ iω∆Ñ2

∂zN2 + qN2

∣∣∣∣∣
2

(17)203

for the evanescent region. We will denote this as KE1 as it is the first region where waves204

are formed.205

To use Eq. (12) and Eq. (17), the experimental data is first filtered by performing a206

Fourier transform in the vertical direction. The vertical wavenumber will vary throughout207

the experiment due to the variation in N . The Fourier coefficients corresponding to the208

lowest possible vertical wavenumber (m = 0) and above the highest expected wavenumber209

are zeroed. The highest expected wavenumber is defined as m2
max = k2(N2

max/ω
2 − 1). An210

inverse Fourier transform is then applied to the filtered data and is sorted into a timeseries211

of rows representing horizontal slices of the experimental data. Each row is the height of212

a single pixel. A 2D Fourier transform in x and t is then performed on a timeseries row213

to create ∆Ñ2. Results are shown for Case 2 at two different locations in Fig. 4 with214

contours of ∆Ñ2 plotted against frequency (ω) and horizontal wavenumber (k). In Fig.215

4a, the horizontal slice is at z = 0.4 m, in the evanescent region, while the data in Fig.216

4b is in the propagating region at z = 0.22 m. The excitation frequency for this case is217

ωf = 1.00. Comparing the two figures, this frequency peak is seen clearly. The expected218
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FIG. 4. Fourier amplitudes of ∆N2 in the evanescent region (a) and propagating region (b) are

shown in contours increasing by 0.0025 for each line. Both figures uses the same scaling. The

highest value for the contour lines for (a) is 0.01 s−2 and for (b) is 0.0125 s−2.

dominant horizontal wavenumber, kd, for a specific case is found by defining the horizontal219

wavelength, λx, as the width of the topography plus the excursion length or220

λx = W + L (18)221

Then the wavenumber for each case, kd = 2π/λx, gives kd = 28.26 m−1 for Fig. 4. Although222

the Fourier amplitudes show a peak near the expected wavenumber and excitation frequency,223

∆Ñ2 amplitudes do not match exactly with the expected frequency and wavelength and there224

is some leakage into nearby frequencies and wavenumbers. The kinetic energy is calculated225

at all wavenumbers and frequencies for each individual row with its corresponding N2 and226

∂zN
2 values using Eq. (12) and Eq. (17). Kinetic energy data is then filtered by summing227

energy values for the three wavenumbers and three frequencies nearest to the expected228

values. This is done to allow for a comparison to the linear theory model, which uses only229

one wavenumber, kd, and the forcing frequency, ωf , while also preventing an underestimate230

of kinetic energy due to the k−ω spreading. Also, because of the topography and the local231

turbulence in its wake, the kinetic energy of the evanescent region is only calculated below232

the tip of the topography.233
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B. Theory234

Using the WKB approximation, a linear, Boussinesq, 2D model was used calculate the235

kinetic energy that passes from the evanescent region through the turning depth and into236

the propagating region, accounting for the exponential natural frequency profile. Linear237

theory is a good approximation because utop/(ωfW ) < 1 for all cases [15], where utop is238

the average velocity of the topography. The maximum value in our cases is 0.38 and the239

effects of this will be discussed further in Section III. The WKB approximation is valid away240

from the turning depth where N2 >> λz(∂N
2/∂z) [3]. In the following sections we will241

analytically calculate kinetic energy in the evanescent region and the propagating region,242

and then demonstrate how the two regions can be matched at the turning depth where the243

WKB approximation is not valid. Within each region the vertical velocity (w) is defined244

and the horizontal velocity (u) is found from continuity [See Eq. (7)].245

With both u and w defined, the kinetic energy is defined as246

KE = u2 + w2 (19)247

for comparison with experiments. Each case in Table I is reproduced with a linear theory248

analysis using the given experimental parameters, including the calculated λx and kd from249

Eq. (18). No other data from the synthetic schlieren experiments are needed to initialize250

the theoretical analysis.251

1. Evanescent Region252

The vertical velocity in the evanescent region varies due to the variation in the N profile253

which affects the vertical wavelength. In the same manner as the experimental energy254

calculations in Section II A, the vertical wavenumber will be defined as m = iq, with q255

defined by Eq. (13). Following the work of Pedlosky [3] in a propagating region with256

N = f(z), for the evanescent region we introduce θ1,257

θ1(z) =

∫ z

z1,0

qdz (20)258

where the subscript “1” refers to the evanescent region. A1,0 and q1,0 are defined at the259

height z1,0 = h(B) as shown in Fig. 3a for the medium Gaussian topography. Using q and260
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θ, the vertical velocity can be defined as261

w1(x, z, t) = A1 exp[i(kx− ωt)] exp(θ1) (21)262

A1(z) = A1,0/(q/q1,0)
1/2 (22)263

Assuming a slip condition at the topography [22], the wave velocity can be calculated by264

using the time derivative of Eq. (5) and setting it equal to Eq. (21) such that dztop/dt =265

w1(x = B, t = 0) [See Eq. (3)].266

Using continuity [Eq. (7)], the horizontal velocity is computed as267

u1(x, z, t) =
−w1

ik

[
−dq/dz

2q
+ q

]
(23)268

The kinetic energy of the evanescent region is calculated using KE1 = u21 + w2
1.269

2. Propagating Region270

Following the work of Pedlosky [3], velocities in the propagating region, assuming a271

varying natural frequency, are defined by272

w2(x, z, t) = A2 exp(i(kx− ωt+ θ2)) (24)273

u2(x, z, t) =
−w2

k

[
−dm/dz

2im
+m

]
(25)274

A2(z) = A2,0/(m/m0)
1/2 (26)275

θ2(z) =

∫ z

z0

mdz (27)276

m2(z) = k
[
N(z)2/ω2 − 1

]
(28)277

where continuity has again been used to define u2. Note that the subscript 2 refers to the278

propagating region. The kinetic energy in the propagating region is calculated by KE2 =279

u22 +w2
2. In both the evanescent and propagating regions, the amplitude, A, of the velocities280

varies with height. This is due to the varying natural frequency, which causes the varying281

vertical wavenumber, and is necessary to conserve energy [3].282

3. Airy Integral Matching283

As the evanescent wave moves from the topography toward the turning depth, the WKB284

assumptions are violated near the turning depth because N2 ∼ λz(∂N
2/∂z). This also causes285
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q to decrease to zero, creating a discontinuity at the turning depth. The Airy function can286

be used to patch over the discontinuity [23, 24] if the WKB approximation is extended past287

where it is valid [6]. This patch is used to match the vertical velocity of the evanescent wave288

to the propagating region. Following Lighthill [23], the vertical wave velocity with the Airy289

integral is290

wa(x, z, t) = Q0,w Ai(β1/3z − β1/3ztd) exp[i(kx− ωt)] (29)291

where β is defined by β = m2/(ztd − z). The amplitude of Q0,w is found by matching Eq.292

(29) to Eq. (21) at z1,a = ztd + 0.01(2π/q), or 1% of the average vertical wavelength (λz)293

above the turning depth in the evanescent region. A range of percentages from 0.1% to 10%294

were compared to understand the effect of the start and end points of the Airy integral.295

Decreasing the percentage causes a decrease in the average kinetic energy, but the changes296

of kinetic energy below 1% were minimal, both for the medium and steep topographies. This297

percentage should be altered if there is a significant increase in the model domain and may298

be dependent on the vertical resolution of the model.299

Continuity and wa, Eq. (7) & Eq. (29) are used to derive the form of the horizontal300

velocity in the Airy integral301

ua(x, z, t) = Q0,u
iβ1/3

k
Ai′(β1/3z − β1/3ztd) exp[i(kx− ωt)] (30)302

where Ai′ is the first derivative of the Airy function with respect to z.303

Above the turning depth, the vertical velocities are set equal such that w1 = wa at304

z = z1,a and Q0,w is solved. This procedure is repeated for the horizontal velocity with305

u1 = ua at z = z1,a to find Q0,u. While continuity is used to find the form of ua, using the306

same amplitude as wa defines a horizontal velocity in the Airy region that is inconsistent307

with the horizontal velocity in the evanescent and propagating regions. The amplitude Q0,u308

provides better consistency throughout the Airy region, but is not used in the propagating309

region. Instead, the wave amplitude below the turning depth, A2,0 is calculated by setting310

wa = w2 at za,2 = ztd − 0.01(2π/m), and continuity is used to define u2 from w2, as defined311

in the previous section. It is assumed that both Q0,w and Q0,u are constant through the312

Airy integral region as the variation in the natural frequency is small over the small change313

in height.314
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4. Completed Model315

We now explore the importance of the terms (−dq/dz)/2q and (−dm/dz)/2im in Eqs.316

(23) and (25), respectively. These higher order terms, which are not usually found in the317

horizontal velocity, appear because the amplitude of the velocity is a function of depth. When318

assuming that the amplitude, natural frequency, and vertical wavenumbers vary slowly, the319

variation of the vertical wavenumbers (dq/dz or dm/dz) is relatively small and can be320

neglected. This assumption breaks down near the turning depth, due to the rapid variation321

of q and m in that region, indicating they should remain in the equations for velocity.322

However, the use of the Airy integral to connect the evanescent and propagating regions323

does not include these terms. Figure 5 depicts the two different scenarios for Case 4 with324

height on the ordinate and kinetic energy on the abscissa. The dashed line indicates the325

location of the turning depth with the evanescent region above the turning depth and the326

propagating region below. The horizontal dash-dot line below the turning depth marks the327

height corresponding to a 10% increase in N relative to the excitation frequency of 0.95 s−1.328

Kinetic energy with the higher order terms included is indicated by the solid line, while the329

dotted line represents kinetic energy when these terms are neglected. For both scenarios,330

kinetic energy begins at a maximum at the top of the figure and then decreases as the wave331

moves through the evanescent region. An increase in energy is seen near the turning depth,332

with a larger increase when the higher order terms are included. Below the turning depth,333

both scenarios decrease in kinetic energy through the propagating region. Away from the334

turning depth, the kinetic energy collapses to a single line. Each of the 24 experimental335

cases were compared with and without the higher order terms and the average error from336

the region between the end of the Airy integral and a 10% increase in N is 20%. However337

the majority of this error is due to the sharp increase comes from the sharp increase in338

amplitude at the end of the Airy integral. Neglecting this increase and again comparing339

the kinetic energy, the average error is 13%. We will ignore the higher order terms in this340

work, but it may be necessary to retain them in future work if more rapid changes in natural341

frequency are of interest.342
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FIG. 5. The kinetic energy as a function of height is shown for the scenarios of including or

excluding dq/dz and dm/dz when calculating the horizontal velocity. The turning depth is shown

by the dashed horizontal line and the dash-dot line indicates the height of a 10% increase in N

from the turning depth.

III. RESULTS343

First, the normalized kinetic energy, KE∗, over the height of the experiment is analyzed.344

Figure 6 shows both the experimentally calculated and theoretically predicted KE∗ over345

height for four cases. The ordinate is height in meters where z = 0 is at the bottom346

of the tank. The abscissa is KE∗, or KE/KEnorm where KEnorm is the average of the347

kinetic energy of the three pixel locations below the topography height, z = ztotal − H.348

Because the presence of the topography generated spurious values near the topography in the349

experimental data, only data below the topography was analyzed. To maintain consistency350

between the model and the experimental analysis, the kinetic energy at the same three height351

locations were averaged to calculate KEnorm in the theoretical model as well. However, the352

model was averaged over only one period and one horizontal wavelength because of its353

periodic nature. All experimental tests were run for three minutes which provided between354

21 and 35 periods for the different test cases. At least two horizontal wavelengths were355

captured in the field of view in the experiments for the medium topography and at least356

five for the steep. Figures 6a and 6b compare the model and experimental KE∗ values for357
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Cases 1 and 8 respectively, where the medium topography was explored. Figures 6c and 6d358

are Cases 18 and 20, steep topography test cases. In all graphs, the solid line represents359

experimental data while the dotted line represents model results. The horizontal dashed360

line shows the location of the turning depth (ztd), which is determined by N(ztd) = ωf .361

Although the ordinate is the same across all four plots, the abscissa varies for each. Starting362

in the upper right hand corner of each plot (near the topography), normalized kinetic energy363

is at a maximum and as height decreases, and N increases, the normalized kinetic energy364

decreases exponentially as the evanescent wave travels downward and decays. At the turning365

depth there is a slight increase in energy due to the decrease in q as N approaches ωf which366

causes an increase in the amplitudes of u and v [See Eqs. (21) and (22)]. The Airy integral367

is used to connect the two evanescent and propagating region. Below this, a propagating368

internal wave exists with relatively constant normalized kinetic energy. Within Fig. 6,369

there are variations in the vertical structure of the experimental energy, the model generally370

overestimates the kinetic energy for the medium topography, and the model significantly371

underestimates kinetic energy of the steep topography. Each of these results will be explored372

in the following paragraphs.373374

Differences in the vertical structure of KE∗ between the model and the experiments may375

be partially explained by the density profile. In Fig. 2, although the curve fit used in376

the model follows the density measurements well, with R2 = 0.997, there are some local377

variations in the density profile within the experimental tank that do not match exactly378

with the curve fit. Density values vary both slightly above and slightly below the curve379

fit. These local fluctuations can lead to variations in the experimental energy profile that is380

not reflected in the model. Also, because each of the four cases shown here have different381

density profiles and experimental setups, they all have different structures so an averaging382

scheme is introduced below. The experimental energy for Fig. 6a and b show an added383

decay in kinetic energy far from the turning depth. This decay is possibly due to reflected384

wave beams destructively interfering with the main propagating wave as it nears the bottom385

of the tank. For all cases, this interference was not seen near the turning depth. Because386

of this, the kinetic energy in the propagating region was averaged over a region below the387

turning depth by388

KE2 =
1

∆zFr2

∫
KE dz (31)389

where ∆zFr2 is the height from the end of the Airy integral (z2,a) to the height where the av-390
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FIG. 6. Normalized kinetic energy is shown as a function of height for two cases. The solid lines are

experimentally calculated KE∗ while the dotted represent model results. Data from (a) and (b)

come from Cases 1 and 8 which used the medium topography, while (c) and (d) are Cases 18 and

20 and used the steep topography. The turning depth location, ztd is marked with a dashed line.

The black x markers indicate the distance over which kinetic energy is averaged in the propagating

region.

erage Froude number in the propagating region is 0.952. This corresponds to a 10% increase391

in N from the turning depth into the propagating region. This relatively short distance is392

considered here to focus directly on kinetic energy transferred through the turning depth393

and into the propagating region. Starting and ending locations of ∆zFr2 are demarcated in394

Fig. 6 with black x’s for each case. This average kinetic energy is also normalized giving395

KE∗2 = KE2/KEnorm.396

For the medium topography in Figs. 6a and 6b, the average, normalized kinetic energy397

of the experiment is KE∗2 = 0.048 and KE∗2 = 0.335, respectively. This means that ap-398

proximately 5% and 34% of the kinetic energy near the topography is transferred into the399

propagating region. The model predicts percentage of kinetic energy transfer for these two400

cases to be 9% and 48%. This overestimate is most likely due to non-linearities, such as401

viscosity, within the experiment that are not accounted for in the model.402

In the steep topography cases shown in Fig. 6c and Fig. 6d, the experiment and model403
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follow the same qualitative trends, however the model underestimates KE∗ throughout the404

majority of both the evanescent region and propagating region. For Fig. 6c, the model405

predicts KE∗2 = .00028 while the experiment indicates KE∗2 = 0.049. Similarly for Fig.406

6d, KE∗2 = 0.00026 for the model and KE∗2 = 0.033 for the experiment. We explain this407

difference by noting the movement of the steep topography creates turbulence near the to-408

pography and turbulence generated internal waves are seen within the experiments. These409

turbulence generated waves have a variety of wavelengths, but also show signs of resonant410

triad behavior in some cases. Near the turning depth, an exchange of energy was seen411

between the turbulence generated waves and the topographically generated waves. For ex-412

ample, in Cases 15 and 16 the turbulence generated waves had a frequency of approximately413

half of the forcing frequency, and as the topographically generated evanescent wave passed414

into the propagating region, the turbulence waves lost energy while the newly formed inter-415

nal waves increased in energy. Similar to Fig. 4, Fig. 7 shows the Fourier amplitudes of416

∆Ñ2 (scaled by a factor of 103) in the evanescent (a) and propagating (b) regions of Case417

15. The scales for both (a) and (b) are the same, but here the frequency is normalized by418

the forcing frequency, ωf , and the horizontal wavenumber is normalized by kd from Table419

I. In Fig. 7a, there are peaks at k∗ = 0.15 and 0.95, with ω∗f = 0.5. These peaks are no420

longer clear in Fig. 7b, but these two waves approximately sum to 1 in both frequency421

and wavenumber, forming a triad with the expected frequency and wavenumber, and could422

be feeding into the peak seen at (1,1) in Fig. 7b. Because the linear theory model does423

not take into account the generation or interaction of turbulence generated waves, there are424

steep topography cases where the model underestimates KE∗. Further investigation into425

the combined effect of turning depths and resonant triads could provide new information426

into the influence of turbulence generated waves in the ocean, but is beyond the scope of427

this work.428

To understand the effects of topography placement relative to the turning depth (see D429

in Fig. 3a) on propagating internal wave energy, Fig. 8 shows KE∗2 as a function of H/D430

for all 24 cases. Circles represent the medium topography and triangles represent the steep431

topography. Filled in markers are values from experiments and open markers are calculated432

using the linear theory model. Normalized average kinetic energy is shown on the ordinate433

with a logarithmic scale, and H/D is the abscissa with a linear scale. Four trend lines have434

been added to the data, one for each of the four symbols. In all cases, the data show that435
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FIG. 7. Contours of ∆Ñ2 for Case 15 as a function of ω∗ and k∗ in the evanescent (a) and

propagating (b) regions. ∆Ñ2 values have been scaled by a factor of 103.

increasing H/D, which decreases the relative distance from the topography to the turning436

depth, leads to an increase in kinetic energy in the propagating region. Since the evanescent437

wave decays over a shorter distance for high values of H/D, more kinetic energy is present438

at the turning depth and is subsequently transferred to the propagating region.439

For the medium topography, the model trend line is similar to the experimental trend440

line. Each fit is defined by441

KE∗2 = exp[C1(H/D)C2 ] (32)442

The experimental values of C1 and C2 are -1.68 and -1.89 with R2 = 0.86, while the model443

values are -1.42 and -1.40 with R2 = 0.98. Here R2 refers to the goodness of fit between444

the trend line and the data points, with R2 = 1 indicating a perfect fit. For H/D < 0.72,445

both the model and the experiment trend lines show KE∗2 < 0.1 and further decreases in446

H/D leads to a large decrease in kinetic energy transmitted into the propagating region.447

For H/D > 0.72, the model over estimates the normalized kinetic energy of the experiment.448

At H/D = 2.2, the experiment trend indicates that 43.5% of the initial energy from the449

evanescent region will pass into the propagating region, while the model predicts 62.5%.450

When H/D > 0.72, the experiment and model values match well, with the model indicating,451

on average, 11.9% more energy passing into the propagating region.452
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FIG. 8. The average, normalized, kinetic energy in the propagating region as a function of H/D

for both the medium and steep topographies with experimental and model values. Red circles

represent the medium topography, with closed filled circles representing experimental data and

open for the model. Steep topography data is represented with black triangles, again with the

filled triangles representing experimental data and open for the model. The inset contains five

steep topography model points with normalized kinetic energy values less than 10−5.

For the steep topography, the model generally underestimates the experimental values.453

Equation (32) was also used to fit trend lines to the data with C1 = −5.04, C2 = −0.42454

and R2 = 0.53 for the experimental data and C1 = −5.13, C2 = −1.30 and R2 = 0.99 for455

the model data. As mentioned previously, some of the tests showed an interaction between456

the turbulence generated waves and the internal waves in the propagating region. The457

large difference in experimental and model values occurs for low values of H/D and for458

KE∗2 < 0.001. It is possible that the turbulence generated waves contribute a relatively459

constant amount of energy to the internal wave field, and at lower values of H/D this460

is more significant because less topographically generated energy is present. Also, one of461
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FIG. 9. KE∗2 is shown as a function of Fr1. The symbols and lines follow the same legend as

shown in Fig. 8.

the requirements for using linear theory is that the utop/(ωfW ) < 1, meaning that the462

excursion length must be less than the length scale of the topography [15]. While the463

medium topography always met this criteria with values of O(10−2) the steep topography464

had values of O(10−1).465

Figure 8 also indicates that for H/D > 0.25, the medium topography has a higher relative466

kinetic energy in the propagating region than the steep topography. Linear theory shows467

that without a turning depth present, a steep, narrow topography generates internal waves468

with higher kinetic energy than shallower, wide topography [25]; however, the presence of469

a turning depth introduces new dynamics. The medium topography, which has a larger470

wavelength, generates more kinetic energy in the propagating region than the steep topog-471

raphy, which has a smaller wavelength. This phenomena was seen by Paoletti et al. in their472

experiments and numerical models [13]. They also used a medium and steep topography473

with the same W/H ratios as reported here and found that in the presence of a turning474

depth, the medium topography has about an order of magnitude higher radiated internal475

wave power. We also see this trend for normalized kinetic energy for H/D > 0.25.476

An approximation of the strength of the evanescent region can be represented by Fr1477

[Eq. (4)]. As Fr1 increases, the strength or size of the evanescent region also increases.478

The averaged, normalized kinetic energy in the propagating region as a function of Fr1 is479
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shown in Fig. 9. For both the medium and the steep topographies, increasing Fr1 decreases480

KE∗2 and at Fr1 > 1.2, KE∗2 decreases rapidly. A higher value of Fr1 is indicative of a481

high ωf or low N and thus a relatively weak wave as the fluid cannot sustain the motion482

of the evanescent wave [See Eqs. (20-23)]. Fr1 has less of an influence on normalized,483

propagating kinetic energy for the steep topography in the experiments than is seen for484

the medium topography. The greatest discrepancy between the model and the experiments485

for the steep topography occurs when Fr1 > 1.3 and KE∗2 < 10−3. This discrepancy for486

the steep topography is likely due to the non-linear effects seen in the steep topography487

experimental data that are not accounted for in the model.488

The curve fits follow Eq. (32), replacing H/D with Fr1. The medium topography489

experimental curve fit to the data (C1 = −0.90, C2 = 6.29, R2 = 0.37) follows the general490

trends of the model curve fit (C1 = −0.35, C2 = 12.72, R2 = 0.94), but with greater kinetic491

energy when Fr1 > 1.16. The curve fits for the steep topography experiment (C1 = −1.76,492

C2 = 2.68, R2 = 0.36) and model (C1 = −0.49, C2 = 9.85, R2 = 0.90) show significant493

differences, but the model line follows the trend of the medium topography curves, especially494

for the experimental values. While not all of the cases are shown in Fig. 9, each curve was495

fit to the entire applicable set of data. For high Fr1, the steep topography maintains more496

kinetic energy in the propagating region than the medium topography. This will be explored497

further with the model in the following paragraphs. The medium and steep topography trend498

lines for the model predict a maximum KE∗2 of 0.30, meaning 30% of the original kinetic499

energy is retained in the propagating region. However, the experiment trend line for the500

medium topography indicates almost 20%, while the steep topography experiments are just501

over 10%.502

With the experimental and model relation established, we now exercise the model further503

to explore a more direct relationship between the different dimensionless variables. Figure504

10 shows KE∗2 as a function of both H/D (shown with different line markers) and Fr1505

(abscissa). Here three different values of H/D are chosen for each topography and Fr1 is506

varied by changing the height of the evanescent region and the height of the topography507

while other variables (ωf , W/H, and N profiles) are held constant. As seen in the previous508

figures, increasing H/D and decreasing Fr1 leads to an increase in relative kinetic energy.509

For the medium topography at Fr1 = 1.11, the average kinetic energy transmitted into the510

propagating region increases from 6% to 78% by increasing H/D = 1 to H/D = 3. This511

23



FIG. 10. KE∗2 as a function of H/D and Fr1 for the analytical model. The solid red line indicates

the medium topography, while the dashed black line is the steep topography. Markers for H/D as

shown.

increase is larger for the steep topography under the same condition and KE∗2 increases512

from less than 0.001% to 8%. The model also shows that with a high H/D for the steep513

topography and low H/D for the medium topography, the steep topography can transmit514

greater kinetic energy to the propagating region than the medium topography for the same515

Fr1. This was seen in Fig. 8 where some cases of the steep topography had higher kinetic516

energy than the medium topography, but only when the steep topography has a higher H/D517

value.518

Figure 11 depicts scenarios for varying topographic slope and stratification profiles. In519

Fig. 11a, KE∗2 increases with increasing W/H, which represents the relative slope of the520

topography. The width of the topography was varied while maintaining a constant height521

of 10 cm, which also varied the horizontal wavelength according to Eq. (18). The Gaussian522

parameter B [Eq. (3)] was varied based on W . Parameters for the density profile were held523

constant and follow Case 4 from Table I. The excursion length and excitation frequency524

were also maintained as values from Case 4. With W/H = 10, almost 80% of the kinetic525

energy from the evanescent region is transmitted into the propagating region. For Case526

4, with W/H = 1.8, marked on Fig. 11a as a red circle, only 2.5% of the initial kinetic527

energy passes into the propagating region. As shown previously, in the presence of a turning528
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depth, topography with steep slopes generate internal waves with less kinetic energy in the529

propagating region for a given H/D or Fr. Also W , the width of the topography, indicates530

an increase in the wavelength of the topography. A topography with a larger wavelength531

will generate evanescent waves with higher kinetic energy which will then pass into the532

propagating region.533

In Fig. 11b and 11c, the influence of the exponential stratification is explored. With a534

density profile of ρ = a exp(bz)+c, the stratification is defined as N2 = −gab exp(bz)/ρ0. For535

both Fig. 11b and 11c, H/D, ωf , W/H, L, and Fr1 are held constant and match Case 4. The536

topography height varies to maintain H/D, and width is defined by W = 1.8H, maintaining537

the same W/H ratio as the medium topography. In Fig. 11b, a is normalized by the reference538

density ρ0. Increasing a/ρo from 0.092 to 0.149 causes a 95% decrease in the normalized,539

average kinetic energy in the propagating region. Although a weaker stratification leads540

to initially more energetic evanescent waves, the stratification also increases more rapidly541

throughout the evanescent region with a larger value of a, causing an overall decrease in542

the kinetic energy in the propagating region. However, as shown in Fig. 11c, increasing543

bH causes an overall increase in the kinetic energy in the propagating region. Here, b is544

normalized by H, the height of the topography. Increasing bH causes an initially weaker545

stratification but a larger b, meaning a value that is less negative, causes the stratification546

to increase at a slower rate. Thus the evanescent wave does not decay as rapidly and more547

kinetic energy passes through the evanescent region into the turning depth. Although bH548

changes by less than one order of magnitude, KE∗ increases by three orders of magnitude.549

IV. OCEAN CASE STUDY550

We now use the linear model to investigate the propagating internal wave kinetic energy551

generated by an oceanic feature. To use the linear model we estimate the shape of the552

topography, the natural frequency profile, and the velocity of the tide and assume a frame553

of reference where the topography moves through quiescent water. Feature data comes from554

the Ocean Data View 4 using a GEBCO 2014 6’ worldwide bathymetry map [26]. The555

feature is at 15◦ N, ranges from 129.6◦ to 130.2◦ E, and can be approximated as a Gaussian556

topography as seen in Fig. 12. In the figure, the data from the GEBCO bathymetry map is557

shaded and the Gaussian curve fit laid over the feature of interest with a dashed line. For558
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FIG. 11. KE∗2 is shown as a function of W/H, a/ρo, and bH, showing the effects of topographic

shape (a) and an exponential density profile in (b) and (c). In (a), the square and circle indicate

W/H = 0.45 and 1.8, or the steep and medium topographies, respectively.

use in the linear theory model, the Gaussian curve fit is centered at zero. The equation for559

the fit is given by560

ztop,ocean = 5868− 831.3 exp

(
−x2

109702

)
(33)561

with −20000 < x < 20000 m and the base of the feature at a depth of 5868 m. In order to562

apply the feature to the model, it is assumed that the feature is two dimensional. We assume563

a tidal velocity of 4 cm/s for the M2 semidiurnal tide based on the work by Poulain and564

Centurioni [27], who also indicate that in the Philippine Sea the M2 tide oscillates zonally,565

or left to right over the topography shown in Fig. 12.566

Using data from the World Ocean Circulation Experiment (WOCE) for cruise P08N567

located at 129.99◦ E, 15.01◦ N, the natural frequency profile was calculated. This location is568

the closest data near the chosen oceanic topography [28]. We followed the method of King569

et al. [1] to smooth and average the CTD data. Temperature and salinity data is averaged570

over a set depth or bin size and then the natural frequency is calculated with the Gibbs Sea571
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FIG. 12. Data from the GEBCO worldwide bathymetry map is indicated by the shaded portion,

with a Gaussian curve fit through topographical feature analyzed in this work.

Water TEOS-10 Matlab tool box [29]. King et al. recommend a bin size of between 100572

and 200 m and we chose 200 m for this data set because it provided a smooth curve while573

retaining the major characteristics of the profile. The natural frequency profile indicates a574

turning depth at a height of 4367 m, which is above the topography. However, the profile575

does not extend down to the bottom of the oceanic feature. A curve fit was applied to the576

smoothed data to extend the profile to the bottom of the topography. The curve fit is given577

by578

ln(N2) = a1 exp

[
−(z − b1)

c1

2
]

+ a2 exp

[
−(z − b2)

c2

2
]

(34)579

where a1 = −15.14, b1 = 4831, c1 = 6553, a2 = −5.788 × 1012, b2 = 3.658 × 104, and580

c2 = 5993 and ln refers to the natural logarithm. The natural frequency profile is plotted581

in Fig. 13a. To maintain consistency between this figure and those given previously, the582

evanescent region is at the top of the figure with the propagating region beginning at 4367 m.583

584585

Based on the oceanic feature and natural frequency profile, we use the analytical model to586

calculate a kinetic energy profile shown in Fig. 13b. Kinetic energy is again normalized by587

the evanescent wave energy at the tip of the topography to be consistent with the previous588

results. Starting at the top left corner, KE∗ decreases rapidly through the evanescent589
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FIG. 13. WOCE data is used to calculate N2 indicated by the red dashed line in (a), while the

black line is the curve fit of the data used for the model analysis. The normalized kinetic energy

calculated from the model is shown in (b) as a function of depth.

region until it reaches the turning depth. The Airy integral provides the needed patch590

into the propagating region, where the kinetic energy of the internal wave at first decreases591

and then increases. In the experimental cases, shown previously, this increase was not592

seen due to the limited depths of the propagating region. Kinetic energy increases due to593

increasing N which causes an increase in m as well. Although the velocity amplitudes are594

inversely proportional to m1/2, kinetic energy is proportional to A2 and m2, leading to an595

overall increase in energy. However, the energy flux, cgz{E} = −ρ0A2mω/(2k2), is constant596

throughout the propagating region [3].597

The Airy integral in Fig. 13b uses a smaller percentage of the vertical wavelength than598

the experiments. Testing the model with the experiments indicated that using 1% of the599

vertical wavelength to start and end the Airy integral minimized the effects of the matching600

condition (See Section II B 3). For this oceanic scenario, this percentage is reduced to 0.001%.601

Increasing or decreasing this value led to an increase in the overall kinetic energy in the602

propagating region. The minimum value was chosen to prevent an overestimate of the603
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kinetic energy.604

The average, normalized kinetic energy from the end of the Airy region to Fr2 = 0.952605

at a depth of 4587 m is KE∗2 = 0.57. The minimum KE∗ in the propagating region occurs606

near the turning depth at a depth of 4466 m with a value of 0.25. This 25% transmission607

could be taken as the energy that is able to pass through the turning depth and into the608

propagating region, and is a nontrivial portion of the original kinetic energy of the evanescent609

wave. While this model is a linear approximation of a non-linear event, it does indicate that610

internal waves generated from evanescent waves passing through the turning depth can still611

maintain a significant portion of the original kinetic energy formed from M2 tidal oscillations612

across oceanic bathymetry within evanescent regions.613

V. CONCLUSION614

Past investigations of the influence of evanescent regions on internal waves have focused615

on an internal wave approaching an evanescent region and the subsequent reflection and/or616

transmission of internal wave energy at the turning depth. Here, we studied the scenario617

where evanescent waves approach a turning depth and become propagating internal waves.618

We expanded upon the work of Paoletti et al [13] by creating an analytical model which619

predicts the kinetic energy of internal waves generated from an evanescent region. The620

model is then compared to experiments and the effects of topographical shape, stratification621

profile (Fr1), and the relative distance between the topography and the propagating region622

(H/D) on internal wave kinetic energy were explored.623

Similar to Paoletti et al [13], we found that the medium Gaussian topography, with a more624

gentle slope, has a higher kinetic energy in the propagating region than the steep Gaussian625

topography. For high H/D and low Fr1, the medium topography theory showed that the626

evanescent waves transmit up to 62.5% of the kinetic energy at the topography surface627

into internal waves in the propagating region, while the experiments indicated a maximum628

of 43.5% (See Fig. 8). While not an exact match, the model predicts similar values to629

the experiment. However, the model does not match well with the steep topography as it630

approaches the limit of criticality. The experiments for the steep topography indicate the631

maximum kinetic energy in the propagating region is near 10% of the original kinetic energy632

at the tip of the topography, while the model indicates closer to 20% (See Fig. 9). As seen633
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in Fig. 11, decreasing the slope, indicated by an increasing W/H, increases the percentage634

of energy transmitted into the propagating region. Also, Fig. 10 indicates that only with635

larger values of H/D does steep topography generate internal waves with higher kinetic636

energy than medium topography.637

The experiments and model also indicate the importance of the stratification in estimating638

internal wave kinetic energy. Increasing Fr1, indicating a large, or strong, evanescent region,639

causes a decrease in propagating region kinetic energy. For the exponential density profile,640

the model indicates that low values of a/ρ and high values of bH increase KE∗2 due to a641

slow increase in the natural frequency in the evanescent region, causing a slower decay of642

the evanescent waves and more kinetic energy transferred into the propagating region.643

To show a potential use of this analytical model, an oceanic case study was also explored644

and results show the average kinetic energy that passed from the evanescent region, through645

the turning depth and into the propagating region had 25% of the original kinetic energy646

of the evanescent wave. While this is only one case, it indicates that evanescent waves that647

become internal waves could transfer significant energy from tidal motions away from the648

topography and into the general ocean.649

Future work with this model could include applying it to more oceanic topographies650

which are situated in evanescent regions (relative to the M2 tidal frequency) to provide651

an overall estimate of the kinetic energy of internal waves generated from tidal motions652

across topography. Also, continued investigations into the turbulence generated waves could653

provide insight in how to improve the model, possibly by including viscosity. As both654

topography shape and stratification profile impact the overall kinetic energy, this work655

could also be expanded upon by exploring more complex topographies and other realistic656

stratification profiles.657
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