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To date, axisymmetric internal wave fields, which have relevance to atmospheric internal wave
fields generated by storm cells and oceanic near-inertial wave fields produced by surface perturba-
tions, have been experimentally realized using an oscillating sphere or torus as the source. Here,
we use a novel wave generator configuration capable of exciting axisymmetric internal wave fields
of arbitrary radial form to generate axisymmetric internal wave modes. After establishing the the-
oretical background for axisymmetric mode propagation, taking into account lateral and vertical
confinement, and also accounting for the effects of weak viscosity, we study modes of different order.
We characterize the efficiency of the wave generator through careful measurement of the wave am-
plitude based upon group velocity arguments, and then consider the effect of vertical confinement
to induce resonance, identifying a series of experimental resonant peaks that agree well with theo-
retical predictions. In the vicinity of resonance, the wave fields undergo a transition to non-linear
behaviour that is initiated on the central axis of the domain and proceeds to erode the wave field
throughout the domain.
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I. INTRODUCTION

Since the early studies of Görtler [1] and Mowbray & Rarity [2], laboratory experiments have played a central
role in the development of understanding of internal wave fields. Initially, much of the focus was on two-dimensional
internal wave beams generated by excitation methods such as an oscillating cylinder [2, 3] or moving topography [4, 5].
For modeling purposes, such a wave field can be treated as nominally invariant in the transverse direction and thus
described in terms of plane waves via Fourier transforms [6, 7].
Inspired by oceanographic studies, and building on earlier experiments that used paddle generators to excite ver-

tical [8] or horizontal [9, 10] modes, novel internal wave generator technology [11] has been used for a variety of
studies of two-dimensional internal wave modes. We define modes as standing waves produced via the interference
between two waves of the same magnitude but different directions. In doubly-confined geometries (i.e. sidewalls, top
and bottom), two-dimensional modes of different orders, determined by the combination of stratification, imposed
frequency and dimensions of confinement, have been studied [7, 12]. The capability of the novel generator technology
to investigate wave beams and two-dimensional modes was thoroughly explored by Mercier et al [13]. Such capa-
bilities have been employed to investigate, for example, the Triadic Resonant Instability (TRI) in a vertical mode
propagating horizontally [14] or the formation of multilayered stratifications [15]. While theoretical studies for linear
stratifications describe such wave fields in terms of the natural modal basis of sines and cosines, it should be recalled
that the modal pattern can be considered as a combination of plane waves propagating and reflecting from the system
boundaries [13].
Axisymmetric wave fields have traditionally been experimentally excited using a vertically oscillating sphere and

exploring the shape of the wave beams [16–21]. While the form of the wave field close to the oscillating body is
nontrivial, modeling studies have explored the limit states of the wave beams in terms of plane waves with a spherical
amplitude decreasing as r−1/2, r being the radial distance from the sphere, computed from the Green function of
the moving source [22], or as infinite sums of Bessel functions with complex coefficients [7, 23]. The amplitude
decrease and the viscous decay of the conical wave beam emitted by an oscillating sphere has been explored in
laboratory experiments by Flynn et al [17] showing good agreement with theoretical predictions. More sophisticated
axisymmetric experimental geometries have been investigated using a vertically and a horizontally oscillating torus,
respectively [24, 25], in which case a highly non-linear process occurs due to the three-dimensional geometric focusing,
able to transport momentum and break into turbulence. None of these experimental configurations, however, readily
permitted a change in the form nor the wave number of the wave field being excited.
In [26], Maurer et al developped an axisymmetric wave generator, adapted from its planar counterpart [11] by

using oscillating concentric cylinders instead of parallel plates. It has been used to generate high-fidelity axisymmetric
internal wave fields, with substantial flexibility in the setting of the radial wavelength. Studies using this technology
reveal axisymmetric wave cones propagating in the stratified medium according to the internal wave dispersion relation
and with radial profiles imposed by the configuration of the generator, such as ring-shaped excitation or truncated
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Bessel functions [26]. Wave amplitudes and frequencies were measured, showing a good agreement with the linear
theory for axisymmetric waves in a stratified fluid of constant buoyancy, both in the non-rotating and rotating cases.
To date, there have been no experimental studies of internal wave modes in an axisymmetric geometry. Furthermore,

to our knowledge, there is no quantitative study of resonant confined modes, even in two-dimensional geometries. In
this paper, we perform laboratory experimental realizations of axisymmetric modes. In section 2 we establish the
general theory for axisymmetric modes of internal waves by considering both radial and vertical confinement as well as
weakly viscous effects. Then, in section 3, we describe our experimental apparatus, adapted from Maurer et al ’s [26].
Experimental results are presented in section 4, followed by conclusions and discussion in section 5.

II. THEORY

A. Governing Equations

In a cylindrical framework (er, eθ, ez), with ez vertically upwards, small amplitude inertia gravity waves in an
inviscid fluid with a constant background stratification satisfy the following equations in the Boussinesq approximation

ρ0

(

∂v

∂t
+ (v · ∇)v

)

= −∇p− (ρ− ρ̄)gez, (1)

∂ρ

∂t
+ (v · ∇) ρ = 0, (2)

∇ · v = 0, (3)

where v = (vr, vθ, vz) is the velocity field, p the pressure field, ρ the density field, and ρ̄ the background density
field. We define the buoyancy frequency N via the relation N2 = (−g/ρ0)∂ρ̄/∂z with ρ0 being a reference density.
Considering axisymmetric wave fields, we assume that there is no variation in the azimuthal direction and hence

all functions only depend on (r, z, t). By introducing the axisymmetric stream function ψ such that

vr = −1

r

∂(rψ)

∂z
and vz =

1

r

∂(rψ)

∂r
, (4)

equations (1), (2), and (3) become

∂2t

(

∂2zψ + ∂r

(

1

r
∂r(rψ)

))

+N2∂r

(

1

r
∂r(rψ)

)

= 0. (5)

Natural axisymmetric solutions of this equation can be found through a Fourier-Hankel decomposition. Using a modal
basis, the solutions write as linear combinations of Bessel functions of the first kind J1 and of the second kind Y1.
The later has a singularity at r = 0 so only the J1 function will be considered. As different radial wave numbers may
enter in the decomposition, the stream function ψ can then be written as a modal sum

ψ(r, z, t) =

∫∫

φ(z)J1(lr) exp(−iωt)dldω. (6)

Radial and vertical velocities can be derived from equation (6) using classic relations for the Bessel derivatives, as
follows

vr =

∫∫

φ′(z)J1(lr) exp(−iωt)dldω, (7)

vz =

∫∫

lφ(z)J0(lr) exp(−iωt)dldω. (8)

For a given frequency ω and radial mode l, φ(z) satisfies

ω2φ′′(z)− l2(N2 − ω2)φ(z) = 0. (9)

Solutions of equation (9) are exponential functions, either complex or real. They can be either propagative or
evanescent waves, depending on the frequency, as long as the vertical wave number m satisfies the dispersion relation

m2 = l2
N2 − ω2

ω2
. (10)



3

If we define β = sin−1(l/k) to be the angle between the vertical axis and the wave vector k = (l, 0,m) of magnitude

k =
√
l2 +m2, the dispersion relation (10) simplifies in

sinβ = ± ω

N
. (11)

According to equation (11), internal gravity waves propagate along a direction fixed by the angle β. In a two
dimensional geometry, four wave beams on a St Andrew’s Cross are formed [2, 3]. In a three dimensional axisymmetric
geometry, the dispersion relation sets two cones aligned along the vertical direction and connected by the apex [7, 20].

B. Radial Confinement

In a previous study, Maurer et al [26] analysed the production of a conical wave field generated by an axisymmetric
moving form at the surface, for which the radial profile was a truncated Bessel function. Although Bessel functions
form a natural basis of study for axisymmetric wave fields, the analytical form of the wave field for a truncated
Bessel function is not so simple. An illustration is presented in figure 1(a), which displays a vertical cut of the spatial
structure of the wave field studied in [26]. Immediately below the generator (region 1 in figure 1(a)), the wave field
preserves its radial form, but further below, the wave field develops a conical beam-shaped profile (region 2), which
can locally be modelled by a plane wave. Finally, due to the propagation angle set by (11), sufficiently far below
the oscillating body around the vertical axis the wave field is absent (region 3). Analytically, this evolution of the
wave field is a natural consequence of the truncated Bessel function forcing being expressed as an integral over Bessel
functions of different wavelengths, with coefficients depending on the spatial forcing. Complex models have been set
up to understand the nature of such radiated wave fields [17, 23, 27].
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Figure 1. Left: beams for downwards propagating wave generation in an (a) unconfined and (b) confined geometries produced
by a wave generator or an oscillating body (light grey rectangle). Right: (c) phase lines of two different wave beams allowed by
the dispersion relation and (d) phase lines of the wave re-recombination for vertically propagating horizontal (radial) modes.
The reader is directed to figure 2 or [26] for practical details on the wave generation process.

Given the finite spatial extent of the forcing, to generate a modal wave field described by a single radial Bessel
function, confinement can be imposed experimentally to the fluid, as illustrated in figure 1(b). As for planar geometries,
confinement prevents the wave from propagating in the bounded direction. Given the assumption of axisymmetry,
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we seek a wave field that is radially confined by a cylinder of radius R equal to the radius of the generator, and
vertically propagating, which is in contrast to the planar scenario that has vertical confinement and permits lateral
propagation [13–15]. We impose the radial boundary condition

vr(r = R, z) =

(

∂ψ

∂z

)

(r=R,z)

= 0, (12)

which means that ψ(r = R, z) is a constant, corresponding to a maximum of vertical velocity and a vanishing radial
velocity at the outer boundary, and conserving volume in the domain. Condition (12) limits possible values of the
radial wave number l, as the product lR has to be a zero of the J1 Bessel function, and if the fluid is excited with one
of these wavenumbers at frequency ω, a single propagating mode is expected to result.
Figure 1(c) shows the two directions of propagation allowed for the wave beams by the dispersion relation (11),

in a vertical planar cross-section, for a wave generation at the surface. In our experiment, the radial confinement
leads to downward propagating modes which are, as depicted in figure 1(c,d) (still in a vertical planar cross-section)
a re-combination of conically propagating beams. Due to the symmetry with respect to the vertical axis, the radial
direction of propagation cancels out and, for a downwards propagating wave at a selected frequency ω and wavenumber
k, the phase and group velocities can be computed from the dispersion relation (11)

vφ =
1

2π

∫ 2π

0

Nl

k
(ler +mez)dθ =

Nlm

k
ez, (13)

vg =
1

2π

∫ 2π

0

mlN2

ωk4
(mer − lez)dθ = −ml

2N2

ωk4
ez. (14)

Equations (13) and (14) show phase and group velocity oriented in opposite directions, illustrated in figure 1(d),
consistent with oceanic signatures identified by oceanographers looking for internal waves [28, 29]. This feature
contrasts with horizontally propagating modes, only relevant in cartesian geometry, which show phase and group
velocities pointing towards the same direction [13].
To investigate the shape of the wave field in the experimental domain, and more specifically its amplitude, we extend

the axisymmetric analysis of Sutherland [7, chapter 5], first derived for an oscillating cylinder in a two-dimensional
geometry, by applying it to our axisymmetric flat generator in a confined domain. Through a Fourier transform, the
time dependency of the streamfunction can be expressed in complex coordinates as ψ ∝ e−iωt, the velocity field being
the real part of the stream function derivatives. Neglecting rotation and introducing Γ2 = 1 −N2/ω2, equation (5)
can be rewritten

Γ2 ∂

∂r

(

1

r

∂(rψ)

∂r

)

+
∂2ψ

∂z2
= 0. (15)

Considering that the cylindrical plates of the generator are moving vertically (as shown in figure 2, and detailed
in [26]) and are injecting a vertical velocity aω, with a being a sufficiently small displacement so that the fluid surface
can be considered to reside at z = 0, the boundary conditions that apply to the streamfunction field are

vz(r, z = 0) =

(

1

r

∂(rψ)

∂r

)

(r,z=0)

= aωJ0(lr), (16)

vr(r = R, z) =

(

∂ψ

∂z

)

(r=R,z)

= 0. (17)

Equation (16) means that the generator imposes its own movement to the fluid at the top of the domain. The modal
boundary condition is expressed by equation (17) as detailed before.
For N < ω, the problem can be readily solved via a coordinate transformation: (r′ = Γr, z′ = z) so that

equation (15) becomes

∆′

hψ = 0, (18)

where ∆′

h is the horizontal Laplacian. The solution can be obtained using separation of variables. The radial part
of the equation satisfies a Bessel differential equation of first order, leading to ψ ∝ J1(lr). The vertical component
is found to be exponential (see equation (9)), and ψ ∝ exp(Γlz) as the amplitude decreases as z goes to −∞. From
the boundary conditions, the different coefficients can be set. Recasting the solution in the original coordinates, we
obtain

ψN<ω(r, z, t) = −aω
l
J1(lr) exp(mz) cos(ωt), (19)
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where we define m = Γl, which contains the influence of the stratification.
In the case N > ω, the term 1−N2/ω2 is negative. We thus define γ2 = ω2/N2 − 1 and, by analytic continuation,

the problem can be solved using the same method as before. Thanks to the second order derivatives, the problem
remains well-defined though we are using complex analysis and the final stream function belongs to the real space of
functions

ψN>ω(r, z, t) = −aω
l
J1(lr) cos(mz − ωt), (20)

with m the vertical wave number defined as m2 = −γ2l2. Hence, we obtain two different radial modes, one being
evanescent (19) and the other one propagating in the vertical direction (20).
Henceforth, we are only considering the case of propagative waves with ω < N . The vertical velocity being a radial

derivative, it behaves as vz ∝ aω

vz(r, z) =
1

r

∂(rψ)

∂r
= aωJ0(lr) cos(mz − ωt), (21)

vr(r, z) =
∂ψ

∂z
= −aωm

l
J1(lr) sin(mz − ωt). (22)

C. Vertical Confinement

In our experiments, boundaries at the top (z = 0) and at the bottom (z = −L) are to be taken into account. This
confinement creates a finite domain where a behaviour similar to an opto-electromagnetic cavity [30] or a Melde’s
string for accoustic or mechanical waves [31] can take place, with different modes and resonances. The total wave field
in the cavity is obtained by a superposition of all the reflected waves, from the top and the bottom of the tank, causing
constructive or destructive interferences. In this configuration, the generator is continuously exciting a velocity field
given by a stream function ψ1, described in complex notation by

ψ1(r, z, t) = ψ0
1J1(lr)e

i(ωt−mz), (23)

with ψ0 = aω/l. At z = −L, the downwards wave field ψ1 is reflected into an upwards wave field ψ2, and at z = 0,
the ψ2 stream function is reflected into another downwards wave ψ3. Repeated reflections occur at z = 0 and z = −L,
and as a result the total stream field is composed of an infinite sum of reflected wave fields.
We denote by odd numbers the downwards waves and by even numbers the upwards waves. At the boundaries, as

well as changing direction, reflection also induces a π phase shift, and if we assume that there is no dissipation the
amplitudes of the stream functions are equal before and after reflection. Boundary conditions at the top and at the
bottom of the tank then apply as

ψ2k−1(z = −L) = ψ2k(z = −L)eiπ, (24)

ψ2k+1(z = 0) = ψ2k(z = 0)eiπ, (25)

leading to

ψ0
2k = ψ0

2k−1e
−2imL−iπ, (26)

ψ0
2k = ψ0

2k+1e
iπ . (27)

We deduce that the general expression of these wave amplitudes are

ψ0
2k = ψ0

1e
−2ikmL+(2k−1)π , (28)

ψ0
2k+1 = ψ0

1e
−2ikmL+(2k)π . (29)

As the tank is filled by infinite wave reflections, we describe the total wave field by a sum over all the reflected waves

ψ =

∞
∑

k=1

ψk = ψ0
1J1(lr)e

iπ/2eiωt sin(m(z − L))

i sin(mL)
, (30)

hence the real field becomes

ℜ(ψ) = ψ0
1J1(lr)

cos(ωt) sin(m(z − L))

sin(mL)
. (31)
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Waves that contribute to the total wave field interact either constructively or destructively. In the first case, we
would be able to define a temporal and a spatial period, fixed by the wave parameters ω, l, and m, and by the size
of the cavity L, as in any wave resonator. Exact cavity modes are obtained if the reflection at z = −L produces a
reflected wave in phase with the incoming wave, which means that this position is already a node of the wave field.
This resonance condition can be expressed as

L = n
λ

2
, for n ∈ N, (32)

with λ = 2π/m being the vertical wavelength. A direct consequence is that the reflection at z = 0 also produces a
wave in phase with the incoming wave, so all reflected waves will be interacting constructively. Therefore, this relation
can be written as a condition involving resonant frequencies ωn

ωn

N
=

(Ll)2

π2n2 + (Ll)2
. (33)

Similar to electromagnetic waves, the cavity operates as a frequency selector, as a discrete number of frequencies ωn

fulfills the resonance condition. We present in table I a list of the first ten resonant frequencies that can be selected
in a radial mode 1 configuration with L = 60 cm and l = 19 m−1.

n 0 1 2 3 4 5 6 7 8 9 10

ωn/N 1 0, 964 0, 876 0, 771 0, 672 0, 588 0, 518 0, 460 0, 413 0, 374 0, 341

Table I. First ten resonant frequencies computed for L = 60 cm and l = 19 m−1.

D. Weakly Viscous Correction

In the preceding derivations, an inviscid fluid was assumed. This made possible the propagation of a single mode
at all frequencies without damping effect, and the existence of exact resonant cavity modes. As we will see, however,
such an approximation is only relevant for a selected range of frequencies. To quantify the viscous effects on the wave
propagation, we write the vertical wave number as the following expansion

m = m(0) + iεm(1) +O(ε2), (34)

with ε = νl2/ω, m(0) being the inviscid wave number (equation (10)), and m(1) being the first order correction.
Including viscous terms, equation (9) becomes

φ(4)(z)−
(

2l2 − i
ω2

ν

)

φ′′(z) + l2
(

l2 + i
N2 − ω2

νω

)

φ(z) = 0. (35)

Hence, with the vertical dependence being exp(imz) (complex notation of equation (20)) and m defined as in equa-
tion (34), one can extract from equation (35) the following weakly viscous correction

iεm(1) = ∓ iεl

2α3
√
1− α2

, (36)

where α = ω/N . Hence, at an altitude z below the wave generation source, the weakly viscous streamfunction ψν

writes

ψν(z) = ψ(z) exp(−εm(1)|z|). (37)

According to equation (37), the typical vertical length of viscous damping 1/εm(1) depends on the frequency ω and is
smaller at low frequencies than at high frequencies. These results will help to understand experimental measurements
of the wave field amplitudes when comparing them to the velocity amplitudes of the generator.
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III. EXPERIMENTAL APPARATUS

To conduct our experiments, the experimental setup of Maurer et al [26] was adapted. A general schematic of the
experimental apparatus is presented in figure 2. We introduce natural cylindrical coordinates with the origin taken
at the surface of the water at the center of the tank.

The generator comprises sixteen, 12 mm thick, concentric PVC cylinders periodically oscillating, each of them being
forced by two eccentric cams. The eccentricities can be configured to introduce a phase shift between the different
cylinders, and the oscillating amplitude can be set for each individual cylinder. As a result, the vertical displacement
of the nth cylinder can be described by

an(t) = An cos(ωt+ α), (38)

with An its amplitude, ω the forcing frequency, and α a phase shift. For a smooth motion of the PVC cylinders, a
1 mm gap is kept between each cylinder and the total diameter of the wave generator is then 402 mm. The generator
is mounted at the surface of the water to force downwards internal waves.

To investigate the ability of this experimental setup to produce modal wave fields, we set the generator in three
different configurations to excite first, second, and third order modes. Modes are defined by the number of nodes of
the Bessel function present in the range r ∈ [0; 20] cm (size of the generator). It sets the radial wavelength and we
computed the three associated wave numbers: l1 = 19 m−1, l2 = 35 m−1, and l3 = 51 m−1. We did not look for
modes of higher orders because the discretisation of the generator profile would not be sufficient to produce smooth
enough shapes of Bessel functions. In addition, coarse discretisation of high modes might severly compromise the
volume preserving nature of a Bessel function that is approximately preserved for low modes. The amplitudes of the
different cams for the three modes are summarized in table II. The profiles can be defined by the radial wavenumber
l and the amplitude at r = 0 that we call a. The different amplitudes an, for n 6= 0, are taken to be the discrete
approximation of the Bessel function defined by l and a. The steepness of the profile is defined as the product la.

Cams Steepness 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

mode 1 (high amplitude) 0.095 5 4.9 4.7 4.3 3.9 3.3 2.6 1.9 1.2 0.5 −0.2 −0.6 −1.2 −1.6 −1.9 −2
mode 1 (low amplitude) 0.048 2.5 2.4 2.3 2.1 1.9 1.6 1.3 0.9 0.6 0.2 −0.1 −0.3 −0.6 −0.8 −0.9 −1

mode 2 0.175 5 4.7 4 2.9 1.6 0.3 −0.8 −1.6 −2 −1.9 −1.5 −0.9 −0.1 0.6 1.2 1.5
mode 3 0.255 5 4.5 3 1.2 −0.6 −1.7 −2 −1.4 −0.4 0.7 1.4 1.5 0.9 0 −0.8 −1.2

Table II. Steepness la of the profile, and amplitudes (in mm) of the different cams of the generator in the different mode profiles
we used. The first cam is located at r = 0.

Experiments were conducted in a cylindrical acrylic tank. To respect the boundary condition (12), the tank is of
the same diameter as the generator. This transparent cylindrical tank was set into a square acrylic tank to prevent the
experiment visualisation suffering from optical deformations that would occur due to the curved interface created by
the cylinder. Both tanks were filled with salt-stratified water with the same density profile. We used the double-bucket
method to fill the tanks with a linear stratification [32, 33]. Density and buoyancy were measured as a function of
depth using a calibrated PME conductivity and temperature probe mounted on a motorized vertical axis. Buoyancy
frequency is estimated from the mean value of the N profile obtained from the density function ρ(z) measured from
the free surface to within a couple of centimeters of the bottom of the tank, due to the construction of the probe. The
wave generator was immersed at a depth of two centimeters into the stratification. Errors on the buoyancy frequency
are estimated using the standard deviation of this N profile, and are in most cases about 4% of the estimated N
value. We used buoyancy frequencies in the range N ≈ 0.6 rad · s−1 to N ≈ 1 rad · s−1.

Velocity fields were obtained via Particle Image Velocimetry (PIV). A laser sheet was created by a laser beam
(Ti:Sapphire, 2 watts, wavelength 532 nm) going through a cylindrical lens. It could be oriented either horizontally
(to measure the radial and orthoradial velocity) or vertically (to measure the vertical and the radial velocity). For
the purpose of visualisation, 10 µm diameter hollow glass spheres of volumetric mass 1.1 kg · L−1 were added to the
fluid while filling the tank. To obtain good quality velocity fields near the bottom of the tank and while imaging
in a horizontal plane, 10 µm silver-covered spheres of volumetric mass 1.4 kg · L−1 were added when needed in some
experiments. Images were recorded at 1 Hz and data processing of the PIV raw images was done using the CIVx
algorithm [34].
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Figure 2. Schematic of the experimental apparatus. Left: a cylindrical tank, inside a square tank, confines the waves produced
by the generator located at the surface, leading to a radial Bessel mode propagating downwards. Right: example of linear
stratification measured in the experiments. Vertical dimension of the generator is not to scale.

IV. RESULTS

A. Radial Modes

Figure 3 presents a summary of the experimental PIV results for the generation of modes 1 through 3 in a linear
stratification with ω/N = 0.6 for modes 1 and 2 and ω/N = 0.65 for mode 3, and a generator amplitude a = 5 mm.
The generator plate configuration for each mode is illustrated in the left hand column, with n nodes for mode n.
The vertical cross sectional plots of the vertical velocity, presented in column 2, possess the horizontal structure of
the generator, increasingly intricate for the higher modes, with associated vertical sequences of maxima and minima.
Columns 3 and 4 in figure 3 present vertical and horizontal cross sectional plots of the radial velocity component. For
every mode, the radial velocity structure possesses a left-right antisymetry in the vertical plane. The different nodes
of radial velocity, which correspond to anti-nodes of vertical velocity, are also clearly visible in plots of the velocity in
the horizontal plane, presented in column 4; these images also show the form of the generator being reproduced by
the underlying wave field. No orthoradial velocity vθ was observed in the horizontal plane.
In a previous study, Maurer et al [26] experimentally measured the internal wave dispersion relation for freely

propagating waves generated by an axisymmetric wave generator with no lateral confinement, which was consistent
with theoretical predictions. In the modal configuration, however, the dispersion relation does not explicitly contain an
angle of propagation, only a statement of the vertical wavelength as a function of the forcing frequency and horizontal
wave number. The vertical wave number m was measured for different frequencies ω/N for the three modes in our
experiments. Figure 4 compares the experimental values of m with the theoretical one extracted from equation (10)
given the control parameters. Measurements were performed by looking at the spatial vertical period of the vertical
velocity on PIV images. It shows a good agreement for the three modes considered in the study, though there is a
slight deviation at low frequencies, probably because of the error in N which was about 10% for mode 1 experiment
and 4% for mode 2 and mode 3 experiments.
To quantitatively investigate how close the experiments reproduce the theoretical modal Bessel profile, figure 5

presents radial profiles of vz and vr, fitted to the expected radial dependency of the Bessel mode, for mode 1,
mode 2, and mode 3 configurations. We see that vz(r) ∝ J0(lr) and vr(r) ∝ J1(lr), with l = 19 m−1, 35 m−1, or
51 m−1, as expected; these horizontal structures are preserved through the vertical propagation of the wave field.
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Figure 3. Radial modes 1, 2, and 3, as observed in PIV in the experiment. First column: generator configuration that sets
the mode. Second column: vertical velocity in a vertical plane. Third and fourth columns: radial velocity in a vertical and
in a horizontal plane around mid-depth. Shaded areas are outside of the confining cylinder. For the purpose of visualisation,
negative values of r are used in the vertical PIV plane, leading to antisymmetric radial velocities as predicted by equation (22).

Small deformations sometimes appear close to the boundaries at r = 20 cm, due to boundary layer effects. The
perturbation observed symetrically around 12 cm < |r| < 16 cm is actually caused by laser reflections in the cylinder,
producing locally poor PIV visualisation.

B. Generator Efficiency

The efficiency of the wave generator, being the ratio of the amplitude of the waves produced to the amplitude of the
generator motion, is investigated in order to characterize the quality of the produced wave field. Hence, it is essential
to reliably measure the amplitude of the internal wave field which is, due to unavoidable reflections in closed domains,
a delicate task and more challenging than measuring their frequency or wavelength.
A few previous studies have made direct measurements of velocity amplitude, although these are typically done

either at high frequencies or relatively high amplitudes. Mathur & Peacock [35] studied transmission and reflection of
internal wave beams across a transmission region and took a Fourier transform of the reflected and transmitted wave
fields along appropriately chosen transects, Maurer [36] measured wave amplitudes by looking at the maximum of the
velocity over a given spatial area, and Supekar [37] utilized the distribution of maxima of amplitudes for a velocity
field in a widespread two dimensional beam. In performing our experiments, it was necessary to more rigorously
define our amplitude measurement methodology based on understanding of the group velocity of the wave fields we
were studying.



10

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

120

140

160

180

ω/N

m
(m

−
1
)

Dispersion (theory) l = 19 m−1

Measurements l = 19 m−1

Dispersion (theory) l = 35 m−1

Measurements l = 35 m−1

Dispersion (theory) l = 51 m−1

Measurements l = 51 m−1

Figure 4. Measured values of the vertical wave number (data points) for modes 1, 2, and 3, compared to the theoretical
expectations from equation (10) (lines). Vertical errors were determined using measurements of m at different times, and
horizontal errors using the standard deviation on the buoyancy frequencies from the probe profiles.

−3
−2
−1
0
1
2
3
(a)

v z
(m

m
s−

1
)

Experimental profiles Bessel fits

−3
−2
−1
0
1
2
3
(c)

v z
(m

m
s−

1
)

−20 −10 0 10 20
−3
−2
−1
0
1
2
3
(e)

r (cm)

v z
(m

m
s−

1
)

−3
−2
−1
0
1
2
3
(b)

v r
(m

m
s−

1
)

−3
−2
−1
0
1
2
3
(d)

v r
(m

m
s−

1
)

−20 −10 0 10 20
−3
−2
−1
0
1
2
3

(f)

r (cm)

v r
(m

m
s−

1
)
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mode 3, taken at a given time and altitude, fitted by appropriate Bessel functions: J0(lr) for vz and J1(lr) for vr, with
l = 19 m−1, l = 35 m−1, and l = 51 m−1 respectively.
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The procedure to determine the wave amplitude was the following. In a first step, experimental amplitudes at a
given time tm were determined by fitting a Bessel function to the instantaneous horizontal profile at a given depth zm
of the vertical velocity, as illustrated in figure 5. The depth zm chosen for this profile was selected to be 15 cm below
the generator, as the wave field was properly developed at this depth. Since the stratification, the forcing frequency
and the radial wavelength are imposed, the only free parameter for the fit is the amplitude of the Bessel function.
Note that we used the vertical component of the velocity field for this fitting, since it has larger amplitudes than the
radial velocity profile (which is characterized by a node at r = 0) and so was more amenable to fitting.
Measurements were repeated for all images over a time interval tm ∈ [ti; tf ], with ti being the time when the wave

is expected to first cross the horizontal cross-section at z = zm. The time tf is the time when the reflected wave is
predicted to reach z = zm after returning from the bottom of the tank, resulting in a disturbance of the wave field.
Both ti and tf were estimated using the group velocity of the wave field established in equation (14). This series of
measurements provided a time-series of local wave amplitudes at z = zm. An example of such a time series is shown
in figure 6. One would expect this time signal to be sinusoidal. As can be seen in this example, the growth of the
wave amplitude due to the presence of other frequencies associated with the ramping up of the wave generator can
be observed for the first few periods, and the decay after tf is due to the interfering waves returning out in phase.
This illustrates the difficulty of wave amplitude measurement in a finite size tank.
In a second step, in order to best estimate the wave amplitude of the steady state before the reflected wave

returned (there is some uncertainty on the exact return time), we computed the RMS value of the time signal over
three periods close to tf half-covering each other, the middle one being just before theoretically seeing the reflected
wave, the previous period covering the first half of this one, and the following period covering the second half of
it (these measurement windows are illustrated by 3 rectangles in figure 6). The experimental global amplitude was

determined as the mean value of the 3 RMS values obtained (multiplied by
√
2), and the standard deviation of these

3 measurements gives an estimate of the associated error. We checked that the method was sound by repeating some
test measurements for other horizontal planes and obtaining consistent results.
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Figure 6. Example of time series of fitted instantaneous Bessel function amplitudes of the vertical velocity, measured at
z = zm = −15 cm for a mode 1 wave. After identifying tf (solid vertical line), three periods half-covering each other (rectangles)
are used to extract the global wave amplitude via RMS estimates.

The results of our efficiency experiments are presented in figure 7 for two different generator amplitudes. We plot
the velocity amplitude normalised by the generator velocity amplitude aω. From equation (37), without dissipation
effects, one expects this ratio to be 1 (straight line in figure 7). This proves correct in the high frequency range
(0.5 < ω/N < 0.9), except close to the buoyancy frequency as discussed further. The decrease at low frequency can
be interpreted by viscous effects. Indeed, when one includes viscous dissipation in the theoretical development, the
expression of the stream function is given by equation (21). The curve corresponding to the vertical velocity extracted
from this equation (at a depth of −15 cm since equation (21) depends on z) is plotted in figure 7, showing a similar
bahaviour as the experimental data points for the two forcing amplitudes a = 2.5 mm and a = 5 mm. The difference
in amplitude may be ascribed to boundary layer effects. Based on the approach of Beckebanze et al [38], an order of
magnitude calculation of the damping on the boundaries gives an estimate comparable to the dissipation in the bulk.
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At very low frequencies (below ω/N = 0.05), the amplitude is so low that measurements become impossible. Finally,
for ω/N = 0.9 to 1, we notice a decrease in amplitude that is expected, as shown by the theoretical curve, since the
waves are evanescent for ω/N > 1. However, this decrease comes sooner than expected.
To conclude, the generator efficiency was investigated and shows a similar behaviour as the theoretical prediction in

all frequency ranges, providing one takes viscous effects into account. In addition, we identify a range of frequencies,
from ω/N = 0.5 to ω/N = 0.9, where there is a very good agreement with the theory, making this range suitable for
axisymmetric modes experiment and for resonant enhancement.
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Figure 7. Generator efficiency measured at z = −15 cm, for two experiments with a = 5 mm and a = 2.5 mm. Results are
compared to the theoretical predictions in the inviscid case and in the weakly viscous case (viscous damping curve, computed
for N = 0.9 rad · s−1).

C. Resonance

Having established the response of the stratification to the wave generator forcing, we then conducted experiments
to detect resonance for a mode 1 excitation, due to the multiple reflections of the wave field at the top and bottom
boundaries of the tank. These experiments consisted of measuring the amplitude of the wave by looking for the
maximum value of vertical velocity in z and t at r = 0 (since J0(r = 0) is maximal and equal to 1). The time window
for these measurements was chosen to ensure the establishment of the steady state resonant wave field. In order to
allow a minimum of about 10 back and forth crossings, we chose this time window to be from 280 s after starting the
forcing, based on the minimum value of the group velocity of the waves, to 300 s, end of the experiment duration.
Our experimental results are presented in figure 8, showing the measured velocity amplitude, normalised by the

generator velocity amplitude aω. We performed two sets of experiments : one with a = 2.5 mm andN ≃ 0.90 rad · s−1

(blue circles) and another one with a = 5 mm and N ≃ 0.88 rad · s−1 (red squares). The first set of experiments
was mainly aimed at identifying the resonant peaks; the second set was more evenly spread over all frequencies (a
hundred values of ω/N from 0.625 to 1 at a regular interval). In the latter case, however, because of the larger
generator amplitude, all experiments where the frequency was too close to the resonance led to strong non-linear
effects, making the measurement of an amplitude impossible. For this reason, the corresponding data points are not
shown. The theoretical curve for the maximal amplitude of vertical velocity normalised by the generator, computed
from equation (31), is also plotted in figure 8 as a solid line.
With the generator configured at low forcing amplitude (a = 2.5 mm), the peaks corresponding to the first resonant

frequencies were observed as predicted by the theory (see table I). The measured resonance peaks are not exactly
centered on the predicted resonant frequencies, but this is not inconsistent with the characteristic 4% error on N . We
see that in the vicinity of resonant frequencies the wave field reaches twice the amplitude of the generator, and even
more for the highest frequencies. For non-resonant frequencies, however, the wave interaction is destructive and the
measured amplitude is half the amplitude of the generator.
In the vicinity of a resonant excitation frequency, we observed that the wave field amplitude kept strengthening until
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different sets of measurements run for different buoyancies or amplitudes. Red hatched regions show intervals of frequencies in
which non-linear effects are clearly seen in the experiment for a = 5 mm.

it triggered substantial non-linear effects. To illustrate this, figure 9 presents the temporal evolution of a horizontal
profile of the vertical velocity component for ω/N = 0.73 (figure 9(a), non-resonant), and ω/N = 0.77 (figure 9(b),
resonant). In the non-resonant case, each velocity profile has the shape of a Bessel profile, which is conserved during
the whole experiment. No non-linear deformation of the wave field can be observed. The beating behaviour (i.e.
low frequency fading amplitude) is because the reflected wave fields are not perfectly out of phase, due to the non-
resonance condition. In the resonant case, such oscillations do not exist as all reflections are in phase and interfer
constructively. These reflections, however, lead to an increasing amplitude that quickly triggers non-linear effects
in which waves at other frequencies than ω are excited, after 80 seconds in the example in figure 9(b). The Bessel
axisymmetric shape of the profile starts to disappear from the center of the tank due to emerging non-linear features,
as the amplitude is maximum at r = 0. The non-linearities then propagate radially towards the boundaries of the
cylindrical tank, and the velocity field does not have a modal shape anymore (after 250 seconds in figure 9(b)).
By performing a similar analysis for all frequencies in the large amplitude case (a = 5 mm), we identified four

frequency ranges in which all experiments led to non-linear effects. These ranges are marked with red hatched zones
in figure 8. These intervals show a good agreement with the predicted resonance peaks (table I) and with the increasing
amplitude observed for the low amplitude measurements (a = 2.5 mm).

V. CONCLUSIONS AND DISCUSSION

We have presented the results of a combined theoretical and experimental study of axisymmetric internal wave
modes, in which we first developed the theoretical framework of radial standing waves propagating vertically in
uniform stratifications, incorporating both radial and vertical confinement and accounting for the impact of weak
viscous damping. Then we presented the results of a laboratory experimental study of axisymmetric internal wave
mode generation. The effect of rotation was not explored in our experiments, but the governing equations predict
qualitatively similar behaviour as in the non-rotating case, the impact of rotation being foremost to influence the
vertical wavenumber of the wave field for a given forcing frequency and buoyancy frequency [20, 26]. The experimental
wave fields were produced using a novel configuration of internal wave generator technology that has previously been
primarily used to excite nominally planar wave fields; in our experiments the arrangement directly excited the Bessel
functions that are the natural basis of cylindrical modes.
For the basic structure of the wave fields, there was very good qualitative and quantitative agreement between
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Figure 9. Temporal evolution of a horizontal profile of vertical velocity located at the center of the tank, for (a) ω/N = 0.73
(non resonant case) and (b) ω/N = 0.77 (resonance case). These profiles are measured at mid-depth in the tank for a mode 1
excitation, with a = 5 mm.

experiments and theory. Modes 1 through 3 were excited, leading to vertical and radial velocity profiles consistent
with associated Bessel function forcing, and confirming the expected dispersion relation. As an additional component
of these studies, we determined the efficiency of modal excitation by carefully studying the fluid system response to
the generator forcing, fitting the PIV data to Bessel functions. A range of frequencies, from ω/N = 0.5 to 0.9, was
identified as being particularly suitable for studying axisymmetric modes as in this frequency range the wave field is
attenuated very little and has an almost full response to the forcing amplitude of the generator.

Having established the ability to excite vertical modes, the role of vertical confinement was then investigated. Such
confinement has the potential to generate a resonance effect when reflected modes constructively interfere with each
other. The resonance conditions for our system were determined and a series of experiments with different forcing
amplitudes were performed. The experimental results on the wave field amplification aligned well with resonance
predictions that incorporates weakly viscous correction for the wave field. Further refinement to account for the
enhanced attenuation by boundary layers effects, or the effects of near surface and near bottom homogeneous fluid
layers due to the filling process or diffusion could account for the minor discrepancies observed. Within the bounds of
resonant peaks, the wave field was seen to amplify sufficiently to trigger non-linear effects that then eroded the linear
wave field structure outwards from the centerline of the experimental domain, ultimately leading to a fully non-linear
wave field throughout the experimental domain.

While there have been a number of nominally two-dimensional experimental studies comparing plane wave or
mode behaviour with theoretical models, considering both their spatiotemporal form and transition to non-linear
phenomena, there have been few such studies for axisymmetric geometries and most of them have been limited to
the wave field excited by a vertically oscillating sphere. Axisymmetric wave fields are arguably more relevant as
fundamental configurations for studying scenarios such as the excitation of atmospheric internal wave fields by storm
cells [28] and the excitation of near-inertial wave fields in the ocean by surface storms [39]. This kind of laboratory
experiments may also help to shed light on the resonance of seiches in appropriately shaped water basins, lakes, and
estuaries [40, 41]. The experimental apparatus and consequent studies presented here demonstrate a new ability to
excite axisymmetric wave fields and pure radial modes, opening the path to investigation of linear (e.g. internal wave
transmission) and non-linear (e.g. TRI) internal wave phenomena in axisymmetric geometries. For example, inertial
wave breaking and rotating turbulence, which was studied by Duran-Matute et al [24] using an oscillating torus, could
be further investigated using our configuration with any desired combination of Bessel modes.
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