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The wake characteristics and force production of an aspect ratio eight flat plate rectangular wing
starting from rest at high angle of attack (α = 45◦) were examined. The first portion of this paper
presents experimental measurements that focus on circulation production at the leading edge of the
wing. Circulation production is shown to be coupled to both the wing kinematics and the wake
state. The second portion of the paper reviews the implementation of several pertinent potential
flow models from the literature, and compares the results of these models to the experimental results.
Quasi-steady and fixed wake models were found to be poor predictors of both force and circulation.
A similarity solution based model was found to make accurate predictions only at very short times.
An unsteady strength two-vortex model predicted the circulation production during the acceleration
portion of the kinematics, but did not predict the force. A multiple discrete vortex model was found
to predict both the force and circulation production well, but had difficulty after the shedding of
the first leading-edge vortex.

I. INTRODUCTION AND BACKGROUND

Unsteady aerodynamics has been studied since the
early days of the aerospace field, spurred largely by
the aeroelastic problems encountered in fixed wing
flight. As a result, the theories of attached un-
steady flow are well developed and understood, for
example, a comprehensive overview can be found in
Bisplinghoff, Ashley, and Halfman [1]. The same
cannot be said of unsteady flows with leading-edge
separation, which are still an open research topic
[2]. The original impetus for the current work
stemmed from interest in reproducing insect-like
flapping wing flight in small unmanned “micro air
vehicles” (MAVs). The realization of this dream has
not yet come to pass in a meaningful way, due in
part to limited aerodynamic understanding and a
lack of applicable models of the unsteady separated
flows that such vehicles rely on.

Study of flapping wing aerodynamics has revealed
that, in general, the flows encountered in flapping
wing flight are similar to stalled transient flows. Fur-
thermore, small fliers of any type must overcome
the difficulties inherent to the low Reynolds num-
ber flight regime [3] and MAV applications natu-
rally require operation in a Reynolds number range
of Re = O(102 − 105), much lower than traditional
aerospace applications. This reduction in Reynolds
number leads to poor performance of traditional
thick airfoils [4, 5]. The combined effect of low
Reynolds numbers and the likelihood of encounter-
ing large angles of attack makes separation and dy-
namic stall nearly a foregone conclusion for MAV
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flight. Efforts to model leading-edge separated flows
are thus applicable to a broad range of problems and
can be applied to insect flight, MAV gust encounters,
dynamic stall, and wind and tidal turbine flows.

In order to study the phenomena of leading-
edge separation from a first-principles approach, the
problem has been systematically reduced. The first
reduction is to use a rectangular flat plate wing as a
representative geometry. The wing used here, and in
many other studies, is a thin flat plate with square
edges; this is not too far removed from an insect
wing and serves as a canonical geometry for experi-
mentation.

The second reduction is to distill the flapping wing
kinematics from oscillatory three degree-of-freedom
flapping about a shoulder joint to a rectilinear surge
at constant angle of attack. These simpler kinemat-
ics are closest to the start and mid-stroke portions of
the full insect kinematics, but still differ in their dis-
regard of the rotational component of motion. Both
of these simplifications are common to the field.

As a surrogate for the complete insect wing kine-
matics, many studies have instead used translat-
ing wing motions to study the problem at hand
(e.g. Dickinson and Gotz [6]). This is generally
done to produce simpler, easier to understand flows.
As such, rectilinear pitching and surging kinemat-
ics have been particularly well documented in both
experimental [7–9] and computational studies [10–
13]. Rotating wings, i.e. a wing revolving about
its root, are another common surrogate for the in-
sect wingstroke [14–19]. These preserve the rota-
tion of the entomological flapping wing in the stroke
plane, but neglect the out-of-plane motion. In gen-
eral, studies on simplified wing kinematics have pro-
duced a large body of data that serves as a quanti-
tative reference for the cases considered here [2], but
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the need for a computationally inexpensive predic-
tive model remains.

Traditionally, those who seek to model unsteady
separated flows and predict the forces from first prin-
ciples have used only the flow visualization and force
measurements from experimental studies (e.g. Ham-
mer et al. [20], or Wang and Eldredge [21]). How-
ever, for a model of even modest complexity, the
force results are an amalgamation of all parts of the
model interacting, and using the force histories in
an attempt to diagnose the success of a model leads
to vague answers at best. This state of affairs has
led to the continued use of the leading-edge Kutta
condition while simultaneously doubting its valid-
ity. The caveat is usually then given that the Kutta
condition is inappropriate for the leading edge be-
cause flow separates here in the wing-normal direc-
tion rather than tangential to the leading edge. In
the current work, the form of Kutta condition used
is to enforce flow (and therefore the forming vortex
sheet) tangent to the plate. The separation point is
also assumed to be fixed at the leading edge. Fur-
ther discussion of the Kutta condition is reserved for
section II C.

The leading-edge vortex (LEV) is a prominent fea-
ture in both dynamic stall events [22] and insect
flight [23]. It forms when the wing motion is ag-
gressive enough to cause the flow to separate from
the leading edge of the wing and roll up into a vor-
tex above the suction side of the wing [2]. The flow
field is dominated by this vortex, which in turn dom-
inates the force production of the wing [6, 24]. The
LEV forms because the sharp leading edge forces the
boundary layer to separate there, which then rolls up
into a single vortex. Several models of LEV growth
have been developed based on the leading edge con-
ditions [25–30]. Most of these studies are concerned
with an oscillating wing (e.g. Buchholz et al. [26]
and Widmann and Tropea [30]), so the scaling laws
they present are largely based on the parameters of
the oscillation. This produces valuable insights, but
can obfuscate the underlying mechanisms for the cir-
culation growth. For example, including the ampli-
tude as a scaling factor, as in Buchholz et al. [26],
does not make it clear if the vortex is larger because
of the increased wing speed or because of the greater
distance covered during the wing motion.

On the other hand, Sattari et al. [27] proposed
using the boundary layer exterior velocity to capture
the flux of vorticity in a feeding shear layer from the
trailing edge of a waving plate. Kriegseis et al. [28]
built on this idea and used the total flow velocity
at the leading edge to successfully collapse the LEV
circulations of wings plunging with different plunge
amplitude. In their paper, the total flow velocity just
outside the shear layer is used as a surrogate for the

strength of the feeding shear layer. Wong et al. [29]
and Widmann et al. [30] use a similar philosophy to
estimate the size of the LEV.

Vorticity flux measurements similar to those con-
ducted here have been carried out by Panah et
al. [31] and Wojcik and Buchholz [25]. These studies
were primarily concerned with establishing the im-
portance of the secondary vorticity produced in the
opposite-sign boundary layer below the LEV. The
analysis of Lighthill [32] indicated that the surface
pressure gradient is directly related to the vorticity
production at a fluid/solid interface. To measure the
secondary vorticity production, Panah et al.’s study
included surface pressure measurements. Based on
these pressure measurements, both Panah et al. [31]
and Wojcik and Buchholz [25] concluded that the
opposite-sign vorticity production on the surface of
the plate contributed approximately half the magni-
tude of circulation as the shear layer from the leading
edge to the circulation of the leading-edge vortex.
Both of these studies, however, focused on kinemat-
ics dissimilar to the present surge case: Panah et
al. [31] used an oscillating plunging wing, and Woj-
cik and Buchholz [25] used a rotating wing. In both
of these cases the LEV is held nearer to the wing
than is seen in pure translation, likely resulting in a
stronger secondary boundary layer below the LEV.

To remedy these gaps in the literature, the cur-
rent work focuses on a series of experiments con-
ducted to directly measure circulation production at
the leading edge of a wing starting from rest. Cur-
rent low-order physics-based modeling techniques
are then evaluated in the context of these measure-
ments. The goal of the model evaluation presented
here is to assess the strengths and weaknesses of the
current methods and identify avenues for improve-
ment. Close inspection of these models also aids in
understanding how the forces produced relate to the
fluid processes.

II. POTENTIAL FLOW MODELING

Interest in flapping wing flight and unsteady aero-
dynamics in general has produced a plethora of ap-
proaches to predicting the forces on a wing under-
going unsteady motion. The extant models run
the gamut from rigorous analytical analysis [33–37],
to modified versions of classical theories [38, 39],
to vortex-based computational schemes [21, 40–44],
empirically based models [45–47], grid-based CFD
methods [48–50], and viscous vortex particle meth-
ods [10].

The motivation behind the choice of models
presently being examined is to focus on those models
suitable for engineering work, i.e. to trade accuracy
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for quick computation, while still including the req-
uisite physics. Which physics are required is still
something of an open question; at a minimum the
models should be able to predict the presence and
bulk characteristics of the LEV. Ideally, the model
would also include a prediction of the shedding pro-
cess. Preference is given to techniques that neatly
categorize the various contributors to the force, as
this aids in developing intuition. These requirements
point the researcher towards potential flow theory.
Potential flow has long been the bastion of pen and
paper solutions, and also gave rise to the more ver-
satile panel methods still in use today. Potential
flow, and thus panel methods, rely on a few key
simplifications, namely inviscid and incompressible
flow. These assumptions are largely appropriate for
the present class of problems, but it should be noted
that applying these models at the Reynolds numbers
considered here (O(104)) stretches the limits of the
inviscid assumption. Nevertheless, the formation of
the LEV from the shear layer presents itself as a
convection-dominated process, rather than diffusive
one.

Any unsteady potential flow model consists of
three components: a representation of the body, a
representation of the wake, and a method for deter-
mining the circulation. For a general introduction to
potential flow theory, the reader is referred to any
number of fluids texts [51–55], but an overview is ap-
propriate here to understand where the models used
in the present work come from.

A. Body Representation

The first consideration when modeling an exter-
nal flow problem is how to represent the body in
question. The body comes into the equations as a
no-penetration boundary condition for the fluid at
the body surface. Stated simply, it says that the
fluid velocity at the body surface must match that
of the body in their surface-normal components. To
enforce this, several methods have been developed
throughout history: conformal mapping, basis func-
tions for a vortex sheet, and panel methods. These
methods all converge on the same solution, and are
largely interchangeable outside of the details of their
implementation.

The oldest method for meeting the no through-
flow boundary condition is to use conformal map-
ping. It is the foundation for the basic unsteady flow
solutions that are known throughout the aerospace
field such as Wagner’s problem of an impulsively
started plate [33], or Theodorsen’s frequency re-
sponse [35]. Despite its age, the conformal mapping
method still enjoys popularity in recent work on un-

steady separated flows, and is the basis for methods
such as Wang and Eldredge [21], Xia and Mohseni
[56], Ansari et al. [41, 57], and Minotti [58]. Con-
formal mapping methods imply the use of a com-
plex potential formulation. The method works by
stretching space so that a flat plate is mapped to a
cylinder. Arbitrary body shapes can be accommo-
dated by extending the series of the mapping or by
using the Schwartz-Christoffel transform.

The no-penetration boundary condition can also
be also be fulfilled by solving for the strength of the
surface vortex sheet. When the body is infinitely
thin, a common approach is to parameterize the
strength of that sheet with a truncated series expan-
sion. One must then solve for the coefficients of the
series expansion to enforce the no through-flow con-
dition at a finite number of collocation points. The
two most common basis for the series are a modified
Fourier series (usually attributed to Glauert [59]),
and a Chebyshev series [40, 43, 60]. In either case,
the body is typically represented by a vortex sheet,
although it is also possible to use a doublet sheet.

The strength of basis function methods lies in
their ability to capture either the singularities at
the ends of the plate or naturally enforce the Kutta
condition, while still maintaining a tradeoff between
numerical and analytical computation. They also
provide a sound analytical basis for the edge suc-
tion parameter, which relies on properly capturing
the square-root singularity in sheet strength at the
edge. The primary drawback of using basis functions
is that they do not extend to arbitrary geometry
(e.g. thick airfoil profiles) without explicit modifica-
tion on the part of the user. It is still less clear how
to apply them for 3D problems.

An alternative method to solve for the vortex
sheet strength is to use a series of discrete panels,
in much the same way as a finite element method.
Instead of representing the singularity strength with
a few complicated functions that span the domain, it
is now represented with many simple functions with
limited support. Originally developed for non-lifting
flows by Hess and Smith [61, 62], panel codes have
developed into a practical and general design tool
for both 2D and 3D flows. A good overview of panel
methods is given in Katz and Plotkin [52]. While
extremely flexible, it is difficult to capture the sin-
gularities that naturally occur at the edges of bound
vortex sheets with this method.

B. Wake Representation

In addition to computing the effect of the body,
potential models for unsteady flow require the in-
clusion of vorticity in the fluid. The job of the wake
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representation is to provide a discrete representa-
tion of that vorticity and to propagate the wake for-
ward in time by solving the vorticity evolution equa-
tion. In two dimensions with the inviscid and incom-
pressible assumptions, vorticity evolution is simply
a statement that fluid particles that have vorticity
keep that vorticity, and so any vorticity must there-
fore convect with the fluid. Convecting the vorticity
with the fluid leads naturally to a Lagrangian for-
mulation, where propagating the wake in time boils
down to convecting the discrete representation with
the flow. (To fully solve the vorticity form of Navier-
Stokes also requires accounting for diffusion and, in
three dimensions, vortex stretching.) An Eulerian
approach is also possible, but these methods require
meshing the full fluid volume and are not as gen-
eralizable to low order models. They will not be
considered here.

The most convenient way to discretely represent
the vorticity field in potential models is to add point
vortices that convect with the fluid. This leads to
the class of methods known as vortex methods, dis-
cussed in detail in Cottet and Koumoutsakos [63]
and Saffman [64]. A problem with pure point vor-
tices is that their induced velocity tends to infinity
the closer one gets to them. This causes difficulties
in numerical simulations, where particles that are in
too close proximity can garner unrealistically high
induced velocities and convect themselves out of the
simulation domain. The same high velocities also
help propagate instabilities in vortex sheets, causing
the interior structure of rolled-up sheets (as in the
LEV) to fall apart and become chaotic. To counter
this, the vortex can be regularized with a vortex core
model that spreads the vorticity over a finite area
rather than a point. The first such methods were
proposed by Chorin, Krasny, and Bernard to study
the problem of vortex sheet roll-up [65–67]. They
used a non-physical model of the vortex core that
simply added a constant factor to the distance be-
tween the vortex and the interrogation point. Other
models, such as the more physical Rankine, Burgers,
or Lamb-Oseen vortex core can also be used, but
are often overlooked because of their computational
cost. An approximation of the Lamb-Oseen vortex
core is proposed by Vatistas et al. [68], and has been
used for computations such as those by Ramesh et
al. [44].

The concept of a point vortex is applicable in
both two and three dimensions, but the vorticity
evolution equation has additional terms in three
dimensions. Extra work is required to compute
vortex stretching and keep the resulting vorticity
field divergence free. That extra work is made eas-
ier when information about the arrangement of the
point vortices is kept. This leads to the implementa-

tion of higher order discretizations of the vorticity.
In two dimensions, besides point vortices (a zero-
dimensional representation) it is possible to have
vortex lines [40, 43] and patches. Constant strength
vortex patch methods are referred to as contour
dynamics methods [69]. In three dimensions, line
vortices are by far the most common element, and
lead to the vortex lattice methods (see, once again,
Katz and Plotkin [52]). It is also possible to have
sheets [70, 71], or volumes. These are attractive,
but adding this extra dimensionality also adds to
the computational cost, and often requires ad hoc
methods to manage the connection between particles
when things become tangled. An excellent, if some-
what informal, review of vortex methods is given by
Stock [72].

C. Circulation Conditions

There are three prevailing philosophies for deal-
ing with the creation of vorticity in potential meth-
ods. One is to match the full no-slip surface condi-
tion and to fully resolve the boundary layer. Meth-
ods using this approach account for separation by
capturing the boundary layer dynamics. Examples
of this class of methods can be found in Winckel-
mans and Leonard’s overview of early work in the
field [73], Eldredge’s VVPM method [10], the VRM
method [74], or Kirchart and Obi’s recent work [75].
Resolving the boundary layer requires large num-
bers of particles, however, and it is not uncommon
to see particle counts in the hundreds of thousands
to millions of particles. With such a large particle
count comes a commensurate increase in computa-
tion time, making these methods undesirable for the
present goal of low-cost computations. A second op-
tion is to use the integral boundary layer formula-
tion coupled with the potential solver, as presented
by Drela [76]. Unfortunately, outside of some pre-
liminary work, these methods are limited to steady
attached flows, and are of little use here. The third
philosophy is to allow for a slip velocity on the body
surface, thus representing the boundary layer as an
infinitely thin vortex sheet. When surface slip veloc-
ity is allowed, potential flow provides no mechanism
with which to generate circulation, and is mathe-
matically non-unique with regard to total circula-
tion. A surrogate circulation condition, such as the
Kutta condition, must be applied at the separation
point and in the case of unsteady flows, additional
vortices are added at the separation point to main-
tain both the total circulation and the specified edge
condition. This approach keeps particle counts, and
therefore the computational cost, much lower than
when resolving the full boundary layer. Note that
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the separation point must be specified from prior
knowledge, or solved for with an additional layer
of modeling. Fortuitously, the separation point in
attached flows is always the trailing edge and the
shedding of vorticity is well described by the Kutta
condition.

The de-facto standard for specifying circulation in
potential flow models is the Kutta condition. There
are many ways to express the condition and a bewil-
dering number of ways to implement it. As Sarp-
kaya [77] puts it in his vortex method overview:
“almost every paper, at least in part, represents a
new method.” The most common implementation
is to enforce that the flow leave tangent to the shed-
ding edge by adding a new wake vortex at each time
step. At a minimum, this leaves the selection of the
new vortex’s location as an open question. In prac-
tice though, most methods achieve the same end re-
sult albeit perhaps through a different implementa-
tion. (A direct comparison of the various implemen-
tations, while tedious to construct, could be very
enlightening.)

For the steady case, the Kutta condition is com-
monly implemented by enforcing zero bound vortex
sheet strength at the edge of the plate, i.e.

γ(x̃ = x̃TE) = 0, (1)

where γ is the vortex sheet strength in circulation
per distance, and x̃TE is the location of the trailing
edge in the plate frame of reference. When con-
formal mapping is used, the infinitely thin plate is
mapped to a cylinder. The complex plane with the
cylinder has locations notated with ζ, and the cylin-
der is centered at the origin with radius one. The
expression of the Kutta condition specifies that the
complex velocity, W = u − iv, at the edges of the
plate in the ζ-plane are zero, i.e.

W (ζ = ±1) = 0. (2)

This has the effect of canceling the singular fac-
tor in the mapping from the cylinder back to the
plate plane, resulting in a finite edge velocity and
streamlines leaving smoothly from the edge. For
the steady translation case, the only velocity compo-
nents present are the translation and bound vortex
components. This leads to a simple expression for
the bound vortex strength,

Γ = −πcṼ , (3)

where Γ is the circulation of the bound vortex, c
is the chord, and Ṽ is the plate-normal compo-
nent of velocity at the midchord. When substituted
back into the expressions for force and moment,
the usual results of a two-dimensional lift coefficient

Cl = 2L/ρU2c = 2π sin(α) (for a freestream velocity
U and angle of attack, α) and zero moment at the
quarter chord are obtained. For the unsteady case,
the concept of fixing the ζ-plane velocity at the plate
edges to zero at all times remains. This method is
implemented reactively, in the sense that the simu-
lation is updated with new circulation to remove the
erroneous edge velocity at each time step. Thus it
does not lend itself to an analytical expression of the
circulation rate, dΓ/dt.

Without resorting to conformal mapping, i.e.
when using basis functions or a panel method, the
correct form of the condition, according to the work
of Krasny [78, 79] and Jones [40], is to put the ul-
timate focus on removing any infinite velocities in
the flow. Doing this enforces that the pressure at
the edge of the plate remains finite, and that the
flow leaves tangential to the edge, two criteria of-
ten given as the Kutta condition. This leads to the
extremely simple result that

dΓ

dt
= γu (4)

where dΓ/dt is the rate of circulation being added
to the shed vortex sheet, γ is the bound vortex sheet
strength at the edge of the plate, and u is the tangent
velocity at the plate edge. This, like the conformal
mapping method, is difficult to use as the basis for
an analytical expression of circulation production.
The first issue is that γ ties together everything in
the flow field, including the motion of the plate and
the location and strength of all wake vorticity. Fur-
ther, the true value of γ is generally unbounded at
the plate edge unless the Kutta condition is already
precisely met. Hence most implementations, as men-
tioned previously, enforce the Kutta condition reac-
tively.

Part of the reason that a plethora of methods ex-
ist for implementing the Kutta condition is that it
is not clear from the statement of the Kutta con-
dition alone how exactly to add the new circulation
required to maintain the specified edge condition. In
a point vortex model, the question becomes where to
place the new vortices. A popular answer given by
Ansari et al. [41] is to place the new vortex one-third
of the distance from the edge to the most recently
shed vortex. For finite-angle trailing edges (i.e. on
thick airfoil shapes) Xia and Mohseni [80] recently
proposed a rigorous momentum analysis to theoret-
ically compute the angle and strength of a newly
created vortex sheet that was found to improve so-
lutions for rapid airfoil pitching.

In the present problem, separation is fixed at the
leading and trailing edges of the flat plate wing. Un-
like the trailing edge, it is not clear a priori that
the Kutta condition is valid or useful at the leading
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edge. A general statement of the Kutta condition
is that the flow must leave tangent to the separat-
ing edge. Based on flow visualization, the separated
leading-edge shear layer appears to leave in an ap-
proximately plate-normal direction. This difference
of direction calls the validity of the Kutta condition
into question. Nonetheless, it is a common choice.

The leading edge suction parameter (LESP), as
proposed by Ramesh et al. [44], is a relaxation of
the Kutta condition to allow for the presumed abil-
ity of finite thickness wing profiles to support a suc-
tion force at the leading edge [42]. This idea has
been seen elsewhere, as in the philosophy behind
the vortex shedding portion of Leishman-Beddoes
model [81] and Polhamus’s suction analogy [38]. In
their paper, Ramesh et al. argue that for a given
geometry and Reynolds number, the LESP provides
a description of whether the leading-edge flow is at-
tached or separated that is independent of wing kine-
matics. The LESP also has the enviable property of
reducing to the Kutta condition when the allowable
suction is set to zero.

Having now identified the key components and
challenges of modeling separated flows using inviscid
models, some experimental results are presented in
the next section to provide an overview of the evo-
lution of the real flow field. Following this, in Sec-
tion IV, these results are compared to those of the
models described above to identify the strengths and
weaknesses of the various approaches and so identify
the dominant physical phenomena in these types of
flows.

III. EXPERIMENTAL RESULTS

This section presents detailed results for a single
test case of an aspect ratio eight, 76.2 mm chord,
flat plate wing in rectilinear translation at a con-
stant angle of attack of 45◦. The width of the towing
tank was 1.5 m, approximately 2.5 times the span of
the wing. The plate velocity was piecewise linear in
time, a constant acceleration over two chord-lengths
of travel followed by a transition to a constant final
velocity, Uf , such that Re = 12, 500. The velocity
profile was slightly smoothed at the start and end
of the acceleration to reduce vibrations. Because
the wing mounting structure limited optical access
at the center of the wing, flowfield measurements
were acquired one chord-length off of the centerline.
This location on the aspect ratio eight wing was
shown by comparison to other spanwise locations
and on shorter aspect ratio wings to have a nearly
two-dimensional flow. Results from this motion are
averaged over 5 runs and plotted with respect to
non-dimensional time, t∗ = tUf/c. This case is rep-

resentative of the common features in wing start-up
transients at high incidence. By studying this case in
depth, the reader will be familiarized with the gen-
eral picture of the real flow so that later comparisons
to model predictions will be put in context. The
experimental methods employed are documented in
the appendix.

A. Flow Visualization

The vorticity fields for the baseline case described
above were found via particle image velocimetry
(PIV) measurements and are shown in fig. 1. Ar-
tifacts of the laser shadow are visible in the images
as the light red diagonal lines under the wing, but in
general, using vorticity as a flow visualization tool
highlights the locations of shear and rotation in the
flow, e.g. the boundary layers, shear layers, and vor-
tices. As can be seen in the first image (top left,
t∗ = 1), the vorticity in the flow is initially confined
to boundary layers very close to the wing surface.
At the edges of the wing, the leading-edge (LEV)
and trailing-edge (TEV) vortices have already be-
gun to develop. As time progresses (t∗ = 2, 3, 4, 5),
flow leaves smoothly from the trailing edge of the
wing, forming a starting vortex made up of a series of
small-scale vortices centered at the original location
of the wing’s trailing edge. Initially, the boundary
layer at the leading edge of the wing is forced back
onto the wing, but it quickly rolls up into an LEV
(see t∗ = 2, 3). As wing motion progresses, the LEV
moves slightly off of the wing surface but remains in
the vicinity of the body. While the LEV is near the
wing, it continuously gathers circulation fed to it by
a shear layer emanating from the leading edge.

Eventually, the LEV grows to a size where it
can no longer be sheltered from the free stream be-
hind the wing, and it begins to convect downstream
(t∗ = 5, 6). This is when even the two-dimensional
picture of the flow starts to get complicated. A new
TEV rolls up behind the wing at t∗ = 6 and shortly
thereafter another LEV forms as well (t∗ = 8, 9, 10),
followed by yet another TEV at t∗ = 12. Under
the right conditions (two dimensional, and Reynolds
number dependent), this alternating shedding pro-
cess continues and the wake becomes a Kármán vor-
tex street. Indeed, the details of vortex formation
after the initial LEV depend on almost every aspect
of the flow and are extremely difficult to predict. In
the present case, the wing is translating, has a finite
aspect ratio, and a moderately high Reynolds num-
ber, so the flow devolves into a chaotic separated
wake at longer times (t∗ > 30) [51].

Because the LEV remains close to the wing during
its formation, it is expected to have a large effect on
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the force and moment that the wing experiences;
this will be borne out in the force data discussed
in the next section. The development of the LEV
has a direct effect on the fluid dynamic force on the
wing even though the LEV is not fully attached to
the wing, but eventually sheds. For this reason, the
state and dynamics of the LEV are the primary focus
of both measurements and modeling efforts.

B. Forces

It is intuitive that large changes in flow structure
will correspond to an equally dynamic force history.
The forces measured on the wing are shown in fig. 2
as a function of t∗ = tUf/c. The figure shows four
different curves including the coefficients of lift, CL,
and drag, CD, in the lab frame. The force coeffi-
cients in the wing-relative frame, the wing-normal,
CN , and the wing-tangential, CT , coefficients are
also shown. All of the force coefficients are defined
with respect to the final wing velocity, Uf . Although
there are some high-frequency small-scale oscilla-
tions in force visible in each of the curves due to
the mechanical vibration of the towing carriage and
wing mounting structure, the overall shape of the
curves remains clear.

As shown in fig. 2, the lift and drag forces for the
baseline case are essentially identical. This is a coin-
cidence due to the choice of angle of attack, α = 45◦.
A more universal observation for flat plates is that
the majority of the force is concentrated in the wing-
normal component while the tangential component
is essentially zero. The lack of wing-tangential force
in this case is a byproduct of the near complete
flow separation. Neglecting viscous drag, the wing-
tangential component of force is exactly the force
associated with edge suction. Recall that the Kutta
condition can be expressed as requiring zero suction
at the edge of a wing. As in the attached-flow case,
the Kutta condition is presumed to hold at the trail-
ing edge so the lack of tangential force points to the
enforcement of the Kutta condition at the leading
edge of the wing as well.

Now focusing more on the shape of the curves,
there are several distinct features. The forces on the
flat plate wing start at zero in the quiescent flow,
and motion begins at t∗ = 0. At this time there is
a rapid rise in force as the wing begins accelerating,
with both the rise in force and wing’s transition to
full acceleration occurring over t∗ = 0.25. This is
followed by a continued rise to a distinct peak that
slightly lags the end of the acceleration. Following
that, forces slowly decay to steady state, though the
decay is punctuated by several peaks. Based on the
flow visualization given in fig. 1, one can attribute

these local force maxima to the formation and shed-
ding of LEVs above the wing. This process is partic-
ularly evident in the flowfield images at t∗ = 5 and
t∗ = 10, which show large LEVs and correspond
to the peaks in forcing visible in fig. 2. The cyclic
shedding process observed through t∗ = 12 gradu-
ally wears down, and the forces have nearly finished
settling to a steady value by the time the wing has
traveled about 30 chord-lengths (t∗ = 30).

C. Vortex Tracking

Quantitatively measuring the wake behind the
wing reveals further information about how the flow
develops, and will turn out to be critical in the evalu-
ation of potential flow models. The quantities shown
here are all derived from PIV measurements of the
LEV, as this is the dominant flow feature early in
the motion of the wing. Quantification of the LEV
helps to distinguish between cases that produce dif-
ferent forces on the wing but have visually similar
LEV development.

Trajectories of the center of the LEV are shown in
fig. 3. These figures contain tracks computed from
both the vorticity centroid and Γ1 criteria. (See Ap-
pendix for details.) Note that the Γ1 data is re-
stricted to the duration of time that the first LEV
is in the imaging frame. The Γ1 method tracks a
rotation center and more closely aligns with the in-
tuition of a vortex. Specifically, it tracks the initial
coherent dominant leading-edge vortex. The vortic-
ity centroid method has been extended to account
for vorticity leaving the frame with a frozen wake hy-
pothesis. The locations are normalized by the wing
chord, and are relative to the leading edge. The
centroid method does not make distinctions between
separate vortices and shear layers, and includes all
the vorticity shed from the leading edge. This pro-
vides a low order estimate for the net location of the
wake vorticity rather than the specific location of a
single coherent vortex.

Looking at the vortex convection in the wing
frame, shown in fig. 3a, one sees the path of the
vortex as it leaves the wing, as well as the discrep-
ancy between the centroid and Γ1 methods of vortex
identification. Note that this figure does not indi-
cate rate of convection, only location in space. Both
methods indicate that the LEV leaves the suction
surface of the wing from approximately a tenth of a
chord behind the leading edge. The vortex center as
identified using the centroid measurement method
convects nearly straight aftwards, while that of the
Γ1 method convects slightly downwards. Results ob-
tained using the centroid measurement also indicate
a distinct hump in the height of the vortex between
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FIG. 3: Vortex location measurements on a surging wing. Data from five independent trials is overlaid for
both methods.

x/c = −2 and x/c = −1. Figure 3b indicates that
the LEV is at x/c = −1 when t∗ = 6. Referring
back to fig. 1, note that the hump in the centroid-
measurement results occurs at the same time that
the trailing-edge vortex forms and pushes the initial
LEV off the wing. It is interesting that this hump is
not reflected in the Γ1 measurements. This suggests
that the center of rotation of the vortex is less af-

fected by TEV formation than is the overall vorticity
field and leading-edge shear layer.

The plots given in figures 3b and 3c show the
x- and y-locations of the LEV returned by both
methods relative to wall clock time. Results from
the centroid method have some noise at the begin-
ning of the run when the LEV has not yet gathered
enough strength to achieve a good signal-to-noise
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ratio. During this time, the Γ1 method is unable
to conclusively identify an LEV. Figure 3b also in-
cludes a solid black line showing what the vortex
location would be if it had convected downstream
at a constant speed at half the freestream velocity.
This would be the expected value if the circulation is
produced at a constant rate, but the vortex initially
convects slower than this. At early times (t∗ < 6)
the path of the LEV does not appear to be linear,
but rather has a distinct curve indicative of the LEV
convection velocity increasing in time. The increase
in LEV convection picks up considerably at t∗ = 6,
which, as discussed previously, corresponds to the
formation of the TEV and the shedding of the first
LEV. Figure 3b shows that at long times (t∗ ≥ 10),
the centroid of the LEV convects at close to half of
the freestream velocity without any obvious devia-
tions. This leads to the hypothesis that the circu-
lation production at the leading edge of the wing
reaches a relatively constant value, resulting in a
roughly constant-vorticity wake.

The y-location, shown in fig. 3c, of the LEV is a
bit more subtle in its development, staying nearer to
zero (note smaller plot scale compared to x-location)
for the duration of the wing motion and only falling
slightly at late times. As a first-order approximation
one could say that y/c = 0, especially up to t∗ =
6. Higher order trends are difficult to generalize,
though the Γ1 method shows a downward trend that
is not reported by the centroid method.

The first takeaway from the vortex tracking anal-
ysis presented here is that the leading-edge vortex is
neither attached to the wing, nor is it swept away
at the freestream velocity. From a modeling per-
spective, this means that the motion of the vortex
cannot be accounted for with a simple assumption
of fixed location either in the wing or in the lab ref-
erence frame, but instead requires knowledge of the
vortex convection speed. Thus, to model the flow,
an empirical rate of x-motion must be used, or the
flow itself must by computed (e.g. with a potential
flow model).

The second takeaway is that the exact trend in
vortex location is difficult to determine from mea-
surement. This stems from difficulty in precisely
defining a vortex, especially in the present context of
a growing vortex near a wing, and as such, it is not
clear which tracking method will produce the “cor-
rect” vortex location. Furthermore, the first LEV
can be tracked with reasonable success, but subse-
quent vortices are difficult to assess because of the
turbulent nature of the flow. (Recall the flow im-
ages in fig. 1. That being said, the methods pre-
sented here do appear to be consistent, at least up
to t∗ = 6.

The vortex trajectories shown here will serve as

one of the methods for evaluating models of un-
steady flow. Vortex location and convection is a pri-
mary factor in determining the resulting force on the
wing, and thus a quantification of model success in
this regard helps point out some of the underlying
causes for success and failure in predicting unsteady
loading. The other vortex characteristic of primary
concern is its strength, which will be discussed next.

D. Vortex Circulation

Because the amount of circulation produced at the
leading edge of the plate directly feeds the leading-
edge vortex and thereby affects the time history of
the vortex strength, circulation production is one
of the most critical components in determining the
overall success of a flow model. The measured cir-
culation flux, i.e., the time rate of vorticity passing
through a boundary surrounding the leading edge,
is shown in fig. 4 for the baseline case. The cir-
culation flux is computed using a square box that
measures 0.08c on each side and is centered at the
leading edge of the wing. Circulation is computed by
summing the product of vorticity and velocity nor-
mal to the box. Further implementation details of
the measurement are documented in the appendix.
The circulation flux as shown here relates directly
to the rate of change of the total positive (i.e., coun-
terclockwise) circulation in the flow field. Vorticity
generated at the leading edge of the wing is always
positive and is continuously produced, so the circu-
lation flux through the boundary is also always pos-
itive, and thus the circulation of the leading-edge
vortex monotonically increases. The overall shape
of the circulation flux curve offers some interesting
insights into what is required for modeling the flux,
as well as the development of the leading-edge vortex
and the overall flow field.

The circulation flux shown in fig. 4 increases
nearly linearly from t∗ = 0.5 as the wing acceler-
ates, reaching a peak near t∗ = 3.5. The peak occurs
nearly in line with the end of acceleration, in con-
trast to measurement of the forces, which showed a
peak after the end of acceleration (fig. 2). After this
point, the wing moves at a constant velocity. The
circulation flux, however, falls off and continues to
change, passing through more peaks and valleys as it
approaches a steady state. These maxima and min-
ima correspond to the LEV formation and shedding
process seen in the flow visualization. See fig. 1 at
t∗ = 4 for the first peak, t∗ = 6 for the subsequent
minimum, and t∗ = 9, 10 for the second peak. These
results share similarities with the work on vortex for-
mation time, e.g. as reviewed by Dabiri [82]. Based
on this case alone however, it is not clear that the
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FIG. 4: Circulation production from the leading edge of the wing. The lines show filtered values from five
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for 5 independent measurements.

vortex formation ends due to the change in kinemat-
ics or as a result of the vortex becoming saturated
with circulation. Note that the circulation produc-
tion settles to a nearly constant value at later times,
t∗ ≥ 12.

The amount of total positive circulation measured
in the flow field, i.e. that nominally in the LEV and
including that in the free wake, is shown in fig. 5 as
a function of nondimensional time, t∗. The figure
shows both the directly measured area integral of
circulation from each PIV frame and the time inte-
gral of the leading-edge circulation production. Cir-
culation increases monotonically with time as one
would expect based on the overall state of the flow
in section III A and the always-positive flux mea-
surements. The vorticity generated at the leading
edge becomes a shear layer that feeds into the LEV,
continuously increasing its strength. The circula-

tion versus time curve is near linear overall, though
it could be said to be more quadratic at very early
times. This nonlinear variation at the start of mo-
tion is a direct consequence of the linear increase in
circulation flux seen in fig. 4. When that linear func-
tion is integrated in time, a quadratic curve results.
The integrated circulation production matches with
the total circulation as directly measured, except
for the period between t∗ = 3 and 8. This is
in opposition to the results reported by Panah et
al. [31]. Their study found the leading edge to pro-
duce twice as much circulation as was measured di-
rectly. In that study, the difference was accounted
for via their measurements of the secondary vortic-
ity produced under the LEV, which annihilated half
of the leading-edge vorticity production. The dis-
crepancy between their study and the present work
likely lies in their use of reciprocating plunge kine-
matics, although the underlying reasons are not en-
tirely clear. This annihilation effect could also be
the reason for the difference between measured and
time-integrated circulations in the present study be-
tween t∗ = 3 and 8, as this corresponds to a period
of very strong secondary vorticity generation. (Note
the negative vorticity boundary layer at these times
in fig. 1.)

In summary, it has been shown that the produc-
tion and subsequent transport of vorticity are impor-
tant factors in the force production of the wing, and
therefore are also important factors in the prediction
of forces. In the following section, models from the
literature will be classified and evaluated on their
ability to predict the evolution of wake vorticity.
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IV. MODELING METHODS

This section evaluates the success of various mod-
els from the literature at predicting the forces expe-
rienced by a flat plate wing in the baseline case. In
most previous work, model success has been judged
via comparisons of qualitative images of the wake
vorticity and the corresponding force production.
While these are certainly reasonable metrics, they
are both global flow measurements and so tend to
obscure the root causes of any problems that may
exist. In the current work, a closer look is taken
at quantitative comparisons. Crucially, model pre-
dictions for the characteristics of the LEV, e.g. cir-
culation and circulation production, are compared
to their experimentally measured counterparts. Cir-
culation production in particular is a good method
for isolating, insofar as it is possible, the critical
leading-edge condition. While it is not possible to
completely separate the effect of the leading-edge
condition from the rest of the flow, comparing cir-
culation production is as close as one can come to
decoupling the system. This allows for an evaluation
of the Kutta condition as a leading-edge condition
independent of the global flow state.

A. Quasi-Steady and Data Driven Models

The simplest possible model of the flow over a flat
plate wing is to assume that it is attached (perhaps
an overly bold assumption), and that the wing is
undergoing steady translation at a constant angle of
attack. The start of the motion is assumed to have
occurred long ago, and thus the starting vortex is
considered irrelevant. The bound vortex strength
(i.e., the bound circulation on the wing) is deter-
mined so as to satisfy the Kutta condition at the
trailing edge,

Γ = πcU sin(α), (5)

where c is the chord, U is the wing velocity, and α
is the angle of attack. The quasi-steady modeling
approach neglects the wake entirely. The circulation
that would be shed into the wake to balance changes
in the bound circulation, as required by Kelvin’s
theorem, is ignored. This results in the following
expressions for lift, drag, and pitching moment, re-

spectively:

L = πρcU2 sin(α) +
1

4
πc2ρ sin(α) cos(α)U̇ (6a)

D =
1

4
πc2ρU̇ sin2(α) (6b)

Mb = −1

8
πρc2U2(2b− 1) sin(2α). (6c)

The moment, M , is given about a pivot point, b,
defined as 1 at the leading edge and −1 at the trail-
ing edge. The pivot point is usually specified at
the quarter chord, b = 1/2, because this causes the
moments that arise from wing translation and the
bound vortex to cancel each other. Applying a nor-
malization by dynamic pressure, q = 1/2ρU2

f c, as in

the experimental results and substituting b = 1/2
results in expressions for the coefficients of lift, drag
and pitching moment:

Cl = 2π sin(α)
U2

U2
f

+ π
c

2
sin(α) cos(α)

U̇

U2
f

(7a)

Cd = π
c

2
sin2(α)

U̇

U2
f

(7b)

Cm,c/4 = 0. (7c)

Here, U represents the instantaneous wing velocity
and Uf is the final, reference, velocity. The lift, Cl,
equation has two components: the first is the cir-
culatory contribution from the bound vortex, and
the second is the non-circulatory contribution (some-
times called the “added mass” force). The drag, Cd,
equation has only a non-circulatory component, and
predicts zero drag in the steady state. The circula-
tory force component always acts in the vertical di-
rection (i.e. lift), while the non-circulatory force al-
ways acts in the plate-normal direction but is zero in
steady flow. The moment about the quarter chord,
Cm,c/4, is also predicted to be zero. Equations 7 are
the classic results of thin-airfoil theory (see, e.g., An-
derson [51]), slightly adapted to account for a large
angle of attack, a time-varying wing velocity, and
non-circulatory force.

The forces given by equation 7 can easily be com-
puted for the towing motion considered here and so
compared to the measured forces. In a quasi-steady
model, the flow state, and therefore the forces, can
only depend on the instantaneous wing kinematics
(i.e., wing location, angle of incidence, and their
first derivatives in time). This makes a quasi-steady
model extremely cheap to evaluate, but, as will be
shown, makes it difficult to capture many of the gov-
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erning physics.

Figure 6 shows a comparison of the measured
plate-normal (CN ) and plate-tangential (CT ) force
coefficients to the predictions of the model. It also
shows the two components of the model. The cir-
culatory lift is shown as “CL circulatory,” and the
plate-normal added mass as “CN non-circulatory.”
The steady-state force prediction gives the classic
result of Cl = 2π sinα and Cd = 0, which has been
shown to compare favorably with experimental mea-
surements on thick airfoil profiles (see, for example,
Abbott and Von Doenhoff [83]), at least until stall.
When the wing stalls, experimental values of the lift
force are significantly lower and the drag force is sig-
nificantly greater that this prediction. In the case of
the current experiments, the wing is clearly stalled
and the normal force is over-predicted, particularly
at long times. Additionally, focusing on normal and
tangential force rather than lift and drag hides the
complete lack of a drag prediction in the classic re-
sult, which fortuitously cancels the over-prediction
in lift to bring the predicted normal force closer to
experiment. Particularly during the early part of the
wing motion (t∗ = 0 to around 2), the combination
of over- and under-prediction in the model gives a
result that is surprisingly close to the measured nor-
mal force, but not the tangential force.

The non-circulatory force, labeled “CN non-
circulatory” in fig. 6, is quite difficult to isolate in ex-
periment. Potential theory predicts a force per unit
depth of F = 0.25πc2U̇ sinα in the plate-normal di-
rection. This is a two-dimensional calculation and
hence neglects any end effects, but simply multiply-
ing by the span of the wing turns out to be essen-
tially exact for the aspect ratios considered here,
and is as confirmed in the review of added mass
by Brennen [84]. In the current problem, the non-
circulatory force has a characteristic top-hat shape
that corresponds exactly to the acceleration profile
and matches the magnitude of the initial jump in
forces. Puzzling, however, is the lack of a distinct
drop in the measured forces when the wing stops ac-
celerating, at t∗ = 4, when the non-circulatory force
goes to zero.

Comparison of the quasi-steady model with the
measured LEV data cannot be done in a direct fash-
ion since the model does not include a wake of any
sort. However, a general comparison can be made
between the bound circulation of the attached flow
model and the strength of the LEV. This may not
be all that far-fetched, as it has been previously
argued by Pitt Ford and Babinsky [24] that a flat
plate wing at high angle of attack contains very lit-
tle bound circulation, and thus any circulation that
would have been bound is present in the flow as an
LEV. The results of this comparison are shown in

fig. 7. Figure 7a compares the amount of bound cir-
culation predicted by the attached flow assumption
to the measured circulation in the LEV. Figure 7b
compares the time rate of change of the bound cir-
culation to the measured circulation production at
the leading edge as computed from the vorticity flux
leaving a box around the leading edge. In these fig-
ures, one sees the underpinnings of the circulatory
force prediction, as well as the reasons for its fail-
ings. Up to t∗ = 1 the circulation and circulation
production matches reasonably well, but the predic-
tions given by the quasi-steady model grow much
faster than the measured values through t∗ = 4,
and quickly outstrip the actual circulation in the
real (measured) case. The amount of circulation
predicted by the model becomes constant when the
wing stops accelerating and reaches its final velocity
at t∗ = 4 because the bound circulation, given in
equation (5), is a function of wing velocity only.

Further, the lack of a wake causes the quasi-steady
model to miss the continual production of circulation
that occurs throughout the wing motion. Figure 7b
shows how the model stops “producing” any circu-
lation after t∗ = 4, resulting in the fixed value of to-
tal circulation after t∗ = 4. This fixed value causes
the initial over-prediction of circulation to eventually
become an under-prediction as the real flow contin-
ues to generate vorticity at the leading edge. This
is indicative of a primary difference between steady
attached and stalled flows—stalled flows require the
continued production of vorticity to feed the shear
layers at the edges of the plate, even in the fully de-
veloped flow. Attached steady flow reaches a fully
developed state with a certain amount of bound cir-
culation. Thereafter, attached flow does not produce
any further net circulation, except in the case of un-
steady motion, which will necessarily produce wake
circulation to balance changes in the bound circula-
tion.

Adding an empirical correction can mildly im-
prove the force prediction given by the quasi-steady
model, and this approach is widely adopted in the
flapping wing controls community [45, 46, 85]. This
approach works best for rotating wing kinematics
because the attached LEV that forms there causes
the force to rapidly achieve an LEV-enhanced steady
state value, as seen in Manar et al. [86], making the
quasi-steady assumption valid. Adding a bit of em-
pirically derived foreknowledge to the quasi-steady
model can be done by simply using a lookup table
for Cl,f and Cd,f based on the steady-state time-
averaged coefficients. The coefficients for the single
angle of attack considered are taken from the steady
state results in fig. 2, where CL,f = CD,f = 1.1.
Since the current test case is fully three-dimensional,
values of CL,f and CD,f (the finite wing form of
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FIG. 6: The quasi-steady thin airfoil theory model force prediction compared to experimental data.

coefficients) from experiment have been used, and
thus finite wing effects are empirically accounted
for. The instantaneous values of the circulatory
forces are then CL(t) = U(t)2/U2

fCL,f and CD =

U(t)2/U2
fCD,f . The same equations as before are

used for the non-circulatory component, resulting in
the time history shown in fig. 8. The steady state
values for the coefficients are taken from fig. 2 at
t∗ = 30. The dependence on dynamic pressure gives
the force transient a quadratic shape during wing ac-
celeration (proportional to U2), followed by a fixed
value after the wing reaches its final tow velocity.
Note that the CD line has been omitted in this plot
since it is identical to the CL curve for a wing at
45◦. In the wing-fixed reference frame, using the
empirical data has given the correct result of zero
plate-tangential force.

To first order, the predicted and measured val-
ues of CN , shown in fig. 8, are not all that different.
Both have an initial sharp rise in force from the non-
circulatory component, as well as a subsequent rise
in forces during the acceleration. The model gives
this as a quadratic function; the measured data has
a similar shape. The model also predicts peak force
near the end of acceleration at t∗ = 4. The em-
pirical quasi-steady model misses the magnitude of
the peak by a fair margin, however, and does not
capture the subsequent relaxation to steady state.
It does match the forces once they have settled to
steady state after t∗ = 30 (not shown), but this is no
great feat considering the empirical correction used
in this data-driven approach.

The model’s failure to capture the magnitude of
the peak forces and their subsequent relaxation is di-
rectly related to its complete disregard of the wake.
As was shown in section III A, the actual flow con-

tains significant wake vorticity dynamics, in particu-
lar the formation of a leading-edge vortex above the
suction side of the wing. The presence of this vortex
near the wing produces a low-pressure region that
augments the force on the wing beyond what the
quasi-steady model predicts. A quasi-steady model
has no hope of capturing the effect of the LEV be-
cause by definition all terms related to the wake and
time history have been neglected. In spite of this
omission, the quasi-steady model is not a complete
failure. The non-circulatory force, which does not
depend on the wake, captures the initial jump in
force production as the wing begins to move quite
well. This is a common theme throughout the mod-
els, as the theory behind the non-circulatory force
does not require any of the approximations required
to capture the wake and circulatory forces.

In summary, the main attraction of the quasi-
steady model is its simplicity and ability to pro-
duce reasonable results when coupled with empiri-
cal data. Its weakness, however, lies in its lack of
a wake model. The next models will take the first
steps towards considering the full unsteady wake.

B. Fixed Wake Model

For flows with unsteadiness, the change in bound
circulation on the wing must be balanced by cir-
culation shed from the edges of the wing. In the
fixed wake model, this change in circulation is cap-
tured, but only attached flow is considered to still
allow for a pen and paper solution. The second as-
sumption taken here is that the wake sheet ema-
nating from the trailing edge of the wing does not
convect (in the lab-fixed reference frame) but is sim-
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FIG. 7: A comparison of the circulation predicted
by pure thin airfoil theory and the measured

values. Note that technically the measured data is
that of the LEV in the wake, while the model

curves show bound circulation.

ply left behind by the wing. Using this approach
produces the well-known lift deficiency function that
describes the delay of circulatory force production,
e.g. Wagner’s model [33, 87]. The fixed trailing
edge wake is the core principle behind the models of
Wagner [33] and Theodorsen [35], which cover im-
pulsive and oscillatory wing motions, respectively.
Several authors have since extended on the basic
principle, such as Greenberg’s model of an oscil-
lating free stream [88], Leishman’s model account-
ing for compressibility effects [89], von Kármán and
Sears’s impulse derivation [87], Kussner’s model for
a sharp-edged gust response [90], and Sears’ oscil-
lating gust model [91]. These approaches have each
been experimentally validated (e.g., in Ref. [92]) for
small amplitude attached flow disturbances and en-
joy widespread use. Numerical implementations of
these ideas have also been used for large amplitude

unsteady motions that maintain attached flow, such
as avian flapping in Hall and Hall [93] and Hall et
al. [94]. Their work was then further extended by
Salehipour and Willis [95] to find optimum flapping
kinematics.

The results of applying Wagner’s model to the
present case are shown in fig. 9. Mathematically,
this is accomplished by convolving the lift deficiency
function with the bound circulation result of fig. 7a.
The lift deficiency function can be found in Wag-
ner’s original work [33], or many text books, e.g.
Bisplinghoff et al. [1]. Its basic shape is a curve
that begins at one half, and then gradually asymp-
totes to the final value, taking on the order of twelve
chords of travel to reach ninety percent of steady
state. Thus the effect of convolving it with the cir-
culation curve is to delay the growth in lift force of
the wing. The plot in fig. 9 gives the same com-
ponents as in the results of the quasi-steady model
shown in fig. 6 and fig. 8: the measured CN and CT

curves alongside their predicted counterparts, and
the CL circulatory and CN non-circulatory model
components. As expected, Wagner’s model shows,
in fig. 9, many of the same features as the quasi-
steady model of section IV A. The obvious difference
here is the delay in the buildup of the circulatory
force. Accounting for this delay causes the model to
do a reasonable job of predicting the magnitude of
the normal force during acceleration (t∗ < 4, com-
paring the red model results to the blue measured
results in fig. 9), and instead of over-predicting the
peak force just before t∗ = 5, as in the quasi-steady
case, it under predicts it. The steady state values
are, as before, vastly over predicted. The align-
ment of the normal forces at early times (t∗ < 4)
is disingenuous however, as it neglects the plate-
tangent component of force. In keeping with the
Kutta-Joukowski lift theorem, Wagner’s fixed wake
model predicts the presence of lift with no drag. In
the wing-normal and wing-tangential axes, this cor-
responds to equal plate-normal and plate-tangential
components at α = 45◦. It is thus only a twist of fate
that the normal force has nearly the correct magni-
tude. The plate-tangential force, which was mea-
sured at close to zero, is modeled to have the same
magnitude as the normal force. Thus, in reality, the
total force is predicted by this model to be much
larger than the measured total force.

To see why the lift is over-predicted, fig. 10 shows
a comparison of the bound circulation in the fixed
wake model to the measured LEV circulation, as well
as the predicted rate of change of circulation to the
measured vorticity flux at the leading edge. These
results show the same over-prediction of total circu-
lation and circulation production that was seen in
quasi-steady model during the acceleration portion
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FIG. 8: The quasi-steady model augmented with empirical force coefficients and compared to experimental
data.
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FIG. 9: The results of Wagner’s fixed wake model compared to experimental results.

of the wing motion (t∗ < 4), followed by an under
prediction at steady state. The Wagner model, be-
ing an attached flow model, also shares the same
deficiency as the quasi-steady model in predicting
long term force behavior. Attached flow models pre-
dict a fixed total amount of circulation, while the
actual stalled case continues to create circulation ad-
infinitum.

However, the early portion of the circulation pro-
duction (t∗ < 6) and total circulation (t∗ < 3) has
been significantly improved in this model. Circula-
tion production matches experimental results until
t∗ = 2, and the decay of production after the end
of acceleration (t∗ = 4 to 6) at least has the cor-
rect shape. This is a good sign that the addition of
a wake to the flow model has improved the overall
quality of the prediction despite the gross simplifi-

cation of that wake model.

C. Similarity Solution

To further improve on the solution offered by the
fixed wake model, the convection of the vortex sheets
due to both the wing’s velocity field, and the effect of
the wake on itself, needs to be considered. A general
solution is analytically intractable, but for simple
cases a similarity solution to the shape and strength
of the vortex sheets shed from a sharp edge can be
found. This is the idea behind the work of Pullin
[96], who proposed a truncated series solution for a
vortex sheet shedding from the end of a semi-infinite
plate in cross-flow. Pullin and Wang [36] applied
that solution to a finite plate, and showed that to a
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FIG. 10: A comparison of the circulation predicted
by Wagner’s model and the measured values. Note
that technically the measured data is that of the
LEV in the wake, while the model curves show

bound circulation.

first-order approximation, the leading- and trailing-
edge vortex sheets do not influence one another.

To make an analytical solution of the wake sheet
tractable, Pullin’s similarity models assume a wing
velocity profile with a simple polynomial dependence
on time:

U = Btm (8)

where B is a scaling factor and m determines if the
profile is of constant speed, constant acceleration,
etc. The flow is assumed to be quiescent at t = 0.
For comparison to the present work, a constant ac-
celeration profile of m = 1 was used. The value of B
was set to match the velocity profile modeled here
to that of the experiments, resulting in B = 0.25.
Choosing a constant acceleration profile immedi-
ately limits the applicability of this model to only

the acceleration portion of the test (i.e. t∗ <= 4),
as it cannot accommodate the change to constant
velocity.

The equations for force on a flat plate wing start-
ing from rest given in Pullin and Wang [36] break
down into two components: a non-circulatory and a
circulatory component. Both force components have
only a plate-normal term, as meeting the Kutta con-
dition at both plate edges removes any possibility of
plate tangential force (i.e., edge suction). The no-
tation from their paper has been modified to fit the
notation used here. The non-circulatory component
is purely plate-normal, and is given as:

N =
1

4
πc2ρ sin(α)U̇ (9)

where N is the plate-normal force, and all other
quantities have the same meanings as before. This
matches the non-circulatory force used previously in
equation (6), albeit written as a plate-normal force
rather than decomposed into lift and drag.

The circulatory component, also purely plate-
normal, is the heart of the model. Using the sim-
plified velocity profile given in equation (8), the
evolution of the shed vortex sheet can be repre-
sented by an infinite-series similarity solution based
on Kaden’s spiral. The leading term of the series is
then solved for to give the shape of the rolled-up vor-
tex sheet. In the course of the derivation, given in
Ref. 36, it is also argued that the effects of the plate-
tangent velocity component only enter the problem
as higher order terms of the series and are thus ne-
glected. The resulting equation for the circulatory
force is given as

N =
2

3
(5m+ 2)Kρc1/2J0a

5/3t
5(1+m)

3 −2<
{
ω
1/2
0

}
(10a)

a = c1/2B sin(α) (10b)

K =

[
3

4(1 +m)

]2/3
(10c)

where N is once again the normal force, and a and K
are convenient scaling factors. The values of ω0 and
J0 represent the similarity solution shape and cir-
culation, respectively, of the rolled-up vortex sheet
and are non-analytical functions of m. Their values
are taken, as in Pullin and Wang [36], from the nu-
merical solution in Pullin’s previous work [96], and
are ω0 = −0.17 + 0.33i and J0 = 2.185. A series
expansion for circulation of the LEV is also given in
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FIG. 11: The similarity solution model compared
to experimental data.

Ref. 36, which to leading order is

Γ =
δ20(t)

K3/2t
J0 (11a)

δ0(t) = Ka2/3t2(1+m)/3 (11b)

where δ0 is another intermediate scaling factor. The
rate of circulation produced by the accelerating wing
is the time derivative of the expression for Γ.

These equations for force are based on solutions
for both the shape and circulation of the wake sheet
that satisfy only the leading term in an infinite se-
ries, and thus accuracy is expected to be limited to
short times. In addition, it is worth noting that
making the solution analytically tractable required
Pullin and Wang to ignore the effect of the LEV on
the TEV and vice versa, although this was shown to
be a second-order effect for the short times of inter-
est.

Results from implementing Pullin and Wang’s
similarity model are given in fig. 11, where they show
agreement with the experimentally measured results
through t∗ = 2, after which time they predict a
smaller plate-normal force than was measured. This
is the expected result based on conclusions in Pullin
and Wang’s paper [36]. A reason for the under-
prediction of the forces can be found in the circula-
tion prediction given in fig. 12. The total circulation
is predicted reasonably well for t∗ < 1.5, but does
not scale properly with time, and does not adhere to
the linear growth of the experimental measurements.
This results in under-predicted circulation and force
values at longer times. At short times, the differ-
ence in shape between the measured and predicted
circulation productions is likely due to the model’s
ignorance of the smoothing used for the experimen-
tal velocity profile. (Recall that the model requires
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FIG. 12: A comparison of the circulation predicted
by the similarity solution model and the measured

values.

a very simple exponential velocity profile definition.)
At longer times (t∗ > 0.25) the mismatch is likely
due to neglecting the higher order terms, particu-
larly those that deal with the velocity induced by
the LEV on TEV and vice versa.

In spite of its shortcomings, the similarity solution
model presents a closed form solution to the sepa-
rated flow that correctly predicts the lack of plate-
tangential force. In doing this, the model provides
valuable insight into how the flow behaves at early
times. This model also serves to illustrate the limits
of what a purely analytical solution is capable of cap-
turing. While the assumption of no LEV-TEV inter-
action in the Pullin and Wang model produces viable
results for short times, even at moderate times the
interaction must be captured in order to accurately
model the resulting force production. Furthermore,
the similarity solution model is not capable of deal-
ing with anything except single-term polynomial ve-
locity profiles. In order to implement a more general
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solution method, Pullin admits, and this author con-
curs, that a numerical procedure must be used [96].
While the similarity solution model’s stand-alone use
may be limited, it is quite useful in its capacity as
a method for kick-starting more general numerical
methods (e.g., those in Refs. 21, 40) by providing a
solution to the early, nearly singular, vortex behav-
ior.

D. Two-Vortex and Impulse-Matching Models

To combat the growth in computational cost and
bridge the gap between numerical and analytical
models, Wang and Eldredge [21] extended the work
of Cortelezzi and Leonard [97] on modeling unsteady
separated flows with point vortices that have time-
varying strengths. In this approach, the wake is rep-
resented by a very small number of point vortices
(i.e., one for each shedding edge) whose strengths
change in time to maintain the Kutta condition as
the vortices convect downstream. This constitutes
a wake model that captures the effect of flow sep-
aration from both edges while keeping the degrees
of freedom to an absolute minimum, making it an
extremely computationally efficient modeling tech-
nique.

The results of applying this two-vortex model to
the present case are shown in fig. 13. The figure
shows the measured forces in the wing-relative ref-
erence frame, CN and CT , compared with predic-
tions given by a two-vortex model. It also shows the
model’s circulatory and non-circulatory components
independently. The two-vortex model correctly cap-
tures the lack of plate-tangential force, but over-
predicts the strength of the plate-normal force by al-
most a factor of two. The non-circulatory forces are
captured in exactly the same manner as in the pre-
vious models, with similarly successful results. The
discussion will thus once again focus on the circula-
tory force contribution from the wake.

The force history in fig. 13 does not extend past
t∗ = 5 because the simulation becomes unstable. In
certain configurations, it happens that the vortices
have little ability to enforce the Kutta condition at
the edges. This leads to large changes in circula-
tion for small changes in vortex location. When
coupled with the Brown-Michael convection scheme
[98], which alters the vortex velocity to account for
circulation change, these two effects feed back into
each other and cause a divergence of vortex strength
and location. The initial stages of divergence can be
seen in the squiggles of rapidly increasing magnitude
at the end of force curves in fig. 13.

It was initially assumed that the over-prediction
of force observed in the comparison of the two-

vortex model to experimental results stemmed from
enforcement of the Kutta condition at the leading
edge. Either the Kutta condition was an incorrect,
overly aggressive, choice for the leading-edge bound-
ary condition, or using a point vortex far from the
shedding edge lead to overzealous addition of circula-
tion. The effect of a point vortex falls off with 1/r, so
to maintain the same condition at the edge, the vor-
tex strength must increase faster for lone shed point
vortices than if a shear layer was included. However,
the measured circulation data in fig. 14 shows that
the strength of the LEV is captured by the model.
The expected effect of the point vortex receding from
the wing is seen in the increasing overshoot of the
modeled circulation production after t∗ = 3. Bet-
ter, in fact, than the force data, which rapidly di-
verges from the measurement for t∗ > 1. Based on
the prediction of LEV circulation, one would expect
reasonable force predictions through at least t∗ = 2.

Note that there is some noise in the circulation
flux just after the start of the wing motion. This
is associated with the leading-edge vortex not being
placed in quite the correct location by the initial con-
ditions and the time step being too large to handle
to nearly singular velocity close to the plate edges in
the circle plane. The noise quickly settles out as the
vortex moves away from the singularity, and the ini-
tial placement has only a small effect on the overall
outcome.

Since circulation appears to be predicted reason-
ably well, the error in force prediction must come
from elsewhere. The answer lies in the location of
the vortex. The model predictions for LEV location
are shown in fig. 15. The two subfigures show the x/c
and y/c values obtained from the two-vortex model,
as well as experimental measurements in which the
vortex is identified using both the vorticity centroid
and Γ1 criteria. While the modeled x/c location of
the LEV is on the right track with respect to the
experimental results, the two-vortex model predicts
a lower value of horizontal displacement than the
measurements, indicating that the model represents
a LEV that is closer to the wing than observed in
experiments. The trend in y/c location as predicted
by the model is backwards, indicating an LEV that
rises above the leading edge of the wing, rather than
one that sinks below it. Incorrectly predicting the
location of the LEV has a direct impact on the force
experienced by the wing.

Note that the location of the vortices also im-
pacts their circulation as the vortex strengths are
updated each time step to continue enforcement of
the Kutta condition. As the vortex moves further
away from the plate its image approaches the cen-
ter of the cylinder, and thus is never more than a
cylinder radius away from the edge. Therefore the
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FIG. 13: The Wang and Eldredge point vortex model.
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FIG. 14: A comparison of the circulation predicted
by Wang and Eldredge’s model and the measured

values.

image vortex, rather than the vortex itself, accounts
for the majority of the induced velocity at each edge.
Furthermore, since the image moves relatively little,
the location of the vortex actually has a diminishing
impact on its own circulation as the vortex recedes
from the plate. The force produced by the vortex
pair however, is independent of vortex location.

Wang and Eldredge [21] were aware of the incor-
rect convection, and the second thrust of their pa-
per was to propose a new model for convection that
moves the vortex so as to cancel the effect its mo-
tion has on the total force. As an added benefit,
the impulse-matching model allows arbitrary choice
of vortex shedding time. The results of switching
to their new “impulse matching” convection scheme
are shown in fig. 13. Applying the impulse matching
convection improved the force, but did not entirely
eliminate the problems already noted.

The two-vortex wake model is extremely attrac-
tive from a conceptual and computational cost
standpoint, but is unfortunately hamstrung by its
over-simplified wake representation. The key omis-
sion appears to be the effect of the shear layers that
form at the leading and trailing edges of a wing in
viscous flow. These shear layers are where the roll-
up of new vortices occurs; without capturing their
dynamics either an additional ad-hoc vortex shed-
ding relationship must be added or coherent vor-
tex shedding forgone altogether. These deficiencies
would merely limit the model to short times if it
were not for its gross overestimation of the forces.
This shortcoming has been recognized by the El-
dredge group, and an extension of the present model
that includes the shear layer has been proposed [99].
In summary, the two-vortex model presented here
shows great promise for relatively short times when
the flow is dominated by the initially shed LEV and
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TEV. For the flapping wing applications, for exam-
ple, this may be all that is required before the wing
reverses course.

E. Multi-Vortex Model

Lagrangian multi-vortex methods present them-
selves as an attractive option to solve the problem
of wake convection in a more holistic way. Allowing
the wake to convect with the flow leads to the roll-up
of the shear layers at the leading and trailing edges
and the formation of the leading- and trailing-edge
vortices. This natural inclusion of the wake evolu-
tion has made Lagrangian vortex models a popular
choice, and many examples exist in the literature
including Katz’s thick airfoil method [42], Xia and
Mohseni’s conformal mapping method [56], Ansari
et al. ’s strip theory approach for 3D wings [41, 57],
and Hammer et al. ’s work [20], to name but a few.
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FIG. 16: A representative panel method mesh with
N = 12. The actual computations used a finer

mesh where N = 64.

The method implemented for the present work is
similar to the one outlined by Katz and Plotkin [52].
The wing is represented by N = 64 point vortex pan-
els, with cosine spacing across the chord, depicted
in fig. 16. Each panel contains a point vortex at
the panel center; collocation points are at the panel
edges. This setup places collocation points exactly
at the plate edges and thus implicitly satisfies the
Kutta condition at both edges. The addition of two
new vortices each time step models the shedding of
circulation. For the first time step, these vortices
were placed a distance of 2% of the chord away from
the shedding edge. The exact location of the ini-
tially shed vortex was found to have little impact on
the results. In subsequent time steps, new vortices
were placed at a third of the distance from the shed-
ding edge to the previously shed vortex, as per the
method in Ansari et al. [41]. The time step size was
selected to be t∗ = 0.015 as in Xia in Mohseni [56].

The net result at each time step is N + 2 vor-
tices to solve for no through-flow at N + 1 colloca-
tion points. The system is closed by specifying zero
total circulation. This method enforces the Kutta
condition by meeting the plate-tangent shedding ve-
locity at the edges. Vortex locations were evolved in
time with an explicit Euler scheme. A vortex core
model was not used so that an off-the-shelf fast mul-
tipole solver, FMMLIB2D [100], could be employed.
Forces were computed with the impulse method of
Wu [101]. As a final consideration, the model used
a linear trapezoidal velocity profile rather than the
smoothed version used in experiment.

The downside of using a panel method for body
representation is that it becomes difficult to sepa-
rate the resulting force into the circulatory and non-
circulatory components. This could be remedied by
instead representing the plate via conformal map-
ping as in Xia and Mohseni [56], though the point
vortex panel method was selected in this case for
its extreme ease in calculating the forces from the
vortex impulse.

By continuously shedding vorticity from the wing,
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the shear layers at both edges of the wing are more
properly captured. Furthermore, allowing the vor-
ticity to convect naturally results in the roll-up
and shedding of large-scale vortices. As seen in
fig. 17, the resulting wake compares favorably with
the experimental frozen wake result. Using a large
(O(103)) number of vortices also captures the ef-
fect of the spatial extent of shed vorticity. In sum-
mary, Lagrangian multi-vortex models make for a
relatively well resolved wake compared to the pre-
viously discussed methods, albeit at the expense of
mild additional computational cost, which may be
more expensive than some models but is still signif-
icantly cheaper than full CFD.

The force results from the multiple-vortex model
are shown in fig. 18. The first feature of note is
that the model correctly predicts the lack of plate-
tangent force. The second important feature is that
the shape of the measured force histories is cap-
tured fairly well. The model correctly predicts the
peak force connected with shedding of the first LEV
around t∗ = 5, as well as the second force peak due
to the formation of a second LEV around and af-
ter t∗ = 8. The magnitude of the force is, however,
not perfect. In particular, the minimum at t∗ = 7
is under-predicted and the model over-predicts after
t∗ = 8.

The total circulation and leading-edge circulation
production as predicted by the multi-vortex model
are shown in fig. 19. The model does a remarkable
job of reproducing the leading-edge circulation pro-
duction, especially through t∗ = 6. The minimum
at t∗ = 6 and second maximum at t∗ = 9 are not
as accurately resolved. The success in matching the
circulation production carries over to the total circu-
lation which falls well in line with the measured val-

ues outside of a slight over-prediction between t∗ = 5
and 6. A salient point to make here is that the Kutta
condition performs well at the leading edge in spite
of earlier misgivings. It appears that the Kutta con-
dition is both valid and useful for determination of
leading-edge shedding for thin wings.

The question that now arises is how the circu-
lation production can be well-predicted throughout
the wing motion, but the forces less so. This is per-
haps because the truly two-dimensional model is be-
ing compared with three-dimensional experimental
results that were obtained on a finite aspect ratio
wing. When two-dimensional measured force data is
available, two-dimensional multi-vortex models have
been shown to accurately reproduce the force histo-
ries [20, 44, 102].

If some method for determining when shedding
should or should not occur from the leading edge
were included, the present calculations could also be
improved to account for more general kinematics,
such as low angles of attack, pitching, and oscilla-
tion. In a low order model such as this, such a de-
termination is generally left to ad-hoc methods such
as the leading edge suction parameter (LESP) [44],
a flow angle limit [102], or a simple force limit [81].

The necessary leap to make the discrete vortex
methods considered in this section a complete an-
swer to the full flapping wing problem is to extend
these methods into the third dimension, but this
seems to exist only rarely in practice (e.g. Roccia
et al. [71]). It appears that fluids researchers who
seek fundamental understanding of separated flows
tend to overlook discrete vortex models because they
stray too far from pen and paper models into numer-
ical methods, and thus offer little insight into the
origin of forces. Nevertheless, the results presented
here, and others in the literature, show that compu-
tational methods like the present two-dimensional
discrete vortex model can be excellent tools for de-
termining the force on a two-dimensional profile un-
der arbitrary motion.

V. CONCLUSIONS

The first portion of this paper has examined ex-
perimental measurements of the bulk wake charac-
teristics of a flat plate wing at high angle of attack
starting from rest. These measurements focused on
the process of circulation generation at the leading
edge of the wing. The second portion of the paper
presented the implementation of several of the per-
tinent models from the literature and compared the
results of these models to the experimental results.

Section III examined a single experimental test
case in which an aspect ratio eight wing was held



23

-1

 0

 1

 2

 3

 4

 5

 6

 0  2  4  6  8  10  12  14

C
N

t*

CN measured
CT measured

CN model
CT model

FIG. 18: The point vortex model compared to experimental data.

at a 45◦ angle of attack and accelerated from rest
to a Reynolds number of 12,500 over a distance
of two chord-lengths. The experimental results
included two-dimensional flow visualization, time-
resolved force measurement, vortex tracking and cir-
culation measurement, and time-resolved leading-
edge circulation measurement. The analysis pre-
sented here showed how even this relatively sim-
ple case exhibits complex and interconnected wake
dynamics. It also exposed leading-edge circulation
production as the critical element of the wake sys-
tem, and thus highlighted the need to understand
the wake dynamics in order to understand the forces
on the wing.

The next section, section IV, presented an analy-
sis of the strengths and weaknesses of various phys-
ically based models to test their ability to predict
the forces experienced by the rapidly accelerated
wing. These models included (in increasing order of
wake fidelity) a quasi-steady attached flow model,
a data-driven quasi-steady model, Wagner’s fixed
wake model, Pullin’s similarity solution for sepa-
rated plate flow, a two-vortex convected wake model,
and a multiple vortex convected wake model. A com-
parison of the plate-normal forces predicted by these
models, as well as the measured force history, was
given in fig. 20. Of the models selected, only the
last three account for shedding at both plate edges.

The force predicted by the models studied here
can be split into non-circulatory (sometimes called
“added mass”) and circulatory components, though
whenever invoking such a conceptual divide, it is im-
portant to remember that it is a purely conceptual
one. In an actual experiment, such a distinction does
not exist and there is only pressure and skin friction
due to the flow as a whole. The concept of a non-
circulatory force arises purely as a separation of the
terms in the potential flow equations. It is, however,

useful at a conceptual level for intuitively predict-
ing the response of the wing. The non-circulatory
force component of all of the models shown here was
able to successfully predict the initial acceleration-
dependent jump in forces at the start of the motion.
This led to the conclusion that forces due to plate
motion can be considered superimposable on the cir-
culatory forces regardless of the wake state. Further,
these forces are well-captured in present models de-
scribed in the literature. The circulatory compo-
nents, however, account for the action of the wake.
These require a case-by-case analysis, as each model
uses a different method of representing the wake.

The attached flow models examined here (i.e. the
“quasi steady“ models and Wagner’s “fixed wake”
model in fig. 20) do not include adequate wake mod-
els, and were unable to predict the unsteady forces
produced by the rapidly accelerated wing on all but
the most rudimentary levels. The excess of pre-
dicted force was found to be due to additional cir-
culation erroneously present in the flow. The sur-
plus in bound circulation stemmed from enforcing
attached flow on the plate where, in reality, the flow
separates from the leading edge. The attached-flow
assumption also leads to an incorrectly predicted
plate-tangent force of magnitude equal to the normal
force. These problems could be alleviated by using
empirical values of the lift and drag coefficients, as in
the data-driven model, but even this approach still
neglects the extra forces produced by the formation
and shedding of the initial LEV.

Pullin’s similarity solution model, labeled “simi-
larity” in fig. 20, presents an analytical method for
obtaining the force on the plate, including the effect
of leading-edge separation. The addition of vorticity
shedding from the leading edge brought the direction
of the predicted force in line with the measurements,
i.e. this model predicted only the plate-normal force
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FIG. 19: A comparison of the circulation predicted
by the point vortex model and the measured values.

to be nonzero. Ignoring higher order terms limits
the model’s applicability to a short time window af-
ter the start of the motion.

Wang and Eldredge’s two-vortex wake model [21],
labeled “two vortex” in fig. 20, uses point vortices of
changing strengths to enforce the Kutta condition at
both plate edges. It was found to predict the produc-
tion of circulation at the leading edge well, at least
until the end of the wing’s acceleration, but over-
predicted the forces on the plate by a factor of two
or more. The error in force prediction was traced to
the model’s incorrect convection of the LEV when
compared to experiment, and the instantaneous mo-
tion of newly produced circulation from the shedding
edge to the vortex.

The multiple vortex model includes shedding from
both plate edges, accomplished by adding a vortex
to the wake at each time step. The wake vortices are
then convected with the background flow while keep-
ing its strength fixed. This model enforces the Kutta
condition at both plate edges, and was found to give

excellent agreement with the measured leading-edge
circulation production. The magnitude of the nor-
mal force was over-predicted with respect to experi-
ments, especially after the first LEV sheds (t∗ > 8).
The fully convected wake included here allows this
model to accurately capture the timing of LEV shed-
ding and reformation, something that was not seen
in any of the other models. Given the success of
the circulation predictions, the failures in predicting
forces must be due to other factors such as vortex
convection or wake distribution.

In addition to evaluating each of these models in-
dependently and with respect to each other, another
purpose of this work was to assess the validity of
applying the Kutta condition at the leading edge.
Earlier work and intuition have cast doubt on the
validity of the Kutta condition at the leading edge
based the observed lack of flow leaving tangent to
the flat plate wing. The models examined here that
included leading-edge separation all used the Kutta
condition at the edge, and were all, within limits,
successful at predicting the circulation in the LEV.
The present analysis thus leads to the conclusion
that the Kutta condition, despite earlier misgivings,
is both valid and useful at the leading edge for high
angle attack flows (α > 30◦). Errors in the model
force predictions appear to come from other sources,
such as the discretization or the convection of the
wake.
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Appendix: Experimental Methods

This section gives a description of the experimen-
tal methods and subsequent data analysis used to
produce the results in the present experiments. The
experimental methods very closely followed those of
Manar and Jones [103], and further details can be
found there.

The experimental facility used was the 1 m deep,
1.5 m wide, 7 m long towing tank at the University
of Maryland. In brief, the tow motion is provided
by a carriage above the tank, which connects to the
wing with vertical plunge rods. The force balance
and subsequent wing mount were located on the
end of a horizontal sting to provide a separation of
two chord lengths between the wing the plunge rods.
The wings used for these experiments were flat alu-
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minum plates. They had a chord, c, of 76.2 mm (3 in)
and thickness, t, of 3.175 mm (1/8 in) for a thickness-
to-chord ratio of t/c = 0.042 and an aspect ratio of
AR = 8.

The experimental work discussed here makes use
of a piecewise linear towing velocity profile consist-
ing of a constant acceleration portion followed by a
constant velocity portion. The corners (start and
end of acceleration) of the plate’s velocity versus
time profile were smoothed slightly to minimize un-
necessary vibrations in the model from rapid changes
in the driving force applied. Smoothing was ac-
complished with a 7th order polynomial in veloc-
ity, so that velocity, acceleration, and jerk could be
matched at either end of the smoothing segment.
The smoothing segment was centered at the corner
and was set to last 20% of the acceleration time. The
velocity profile is shown in fig. 21.

The motion is set to start at t1 = 0 for conve-
nience. The final velocity of the wing is specified us-
ing the chord-based Reynolds number, Re = Ufc/ν,

where Uf is the final wing velocity, c is the wing
chord, and ν is the kinematic viscosity of the fluid
(water in this case). The level of acceleration is spec-
ified by the distance traveled during the acceleration
interval: 2c.

Time-resolved loads were measured on the
wing at 1000 Hz using a submersible ATI Mini40
force/torque transducer. The resulting signals were
smoothed with a Savitzky-Golay filter with a width
of 0.25 seconds and then ensemble-averaged over five
trials.

In order to make quantitative statements about
the evolution of the wake behind the wing, parti-
cle image velocimetry (PIV) was used to measure
the time-resolved velocities of the flow. The PIV
flow fields were analyzed to track three LEV-related
quantities: the vortex location, the vortex circula-
tion, and the circulation production at the leading
edge of the wing.

The planar PIV tests were performed using a
double-pulsed Nd:YLF laser (Litron LDY304, 30
mJ/pulse, 10 kHz max), with the laser sheet ori-
ented in the chordwise direction. Soda-lime glass
spheres with an average diameter of 34 µm were used
as the tracer particles. Images were acquired using
a Phantom v641 camera (4 MP CMOS sensor, up
to 3.2 kHz at max resolution) placed orthogonal to
the laser sheet and tank wall. After a sliding back-
ground subtraction to increase the signal-to-noise ra-
tio, correlation was performed in DaVis v8.1 using
multi-pass interrogation with 50% overlap. A me-
dian filter was then applied on 3 × 3 pixel regions,
replacing vectors whose peak ratio (the ratio of the
highest correlation peak to the second-highest cor-
relation peak) was less than 2 with an interpolated
velocity vector. The measurements were taken at a
chord-wise plane one chord length from the center of
the wing span and were ensemble-averaged over five
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FIG. 22: The results of applying the frozen wake hypothesis. The extent of the actual PIV frame is shown
to the right of the vertical black line.

FIG. 23: The location of flux measurement marked
by the black box around the leading edge.

trials.

To assess whether the PIV recordings had suffi-
cient spatial resolution to measure the vorticity flux
across the relatively small shear layer, measurements
with two different fields of view (FOV) were taken
of several different repetitions of the same case. The
tight field of view was processed with a 24-pixel win-
dow and 50% overlap, resulting in a vector spacing of
0.84% of chord. The wide field of view was processed
with a 32-pixel window and 50% overlap, resulting
in a vector spacing of 1.90% chord. Thus the tight
field of view has about half the vector spacing as
the wide field of view (the chord is 76.2 mm for both
cases).

The LEV circulation was directly computed as
the area sum of the positive vorticity over the en-
tire PIV frame. In order to still maintain a dis-
tinction between the LEV and TEV, the vorticity
was split into positive and negative regions and inte-
grated separately. This required the use of a thresh-
old to remove the background noise. To ensure that
a proper threshold was used, a sensitivity study was
conducted that that showed that if a large enough
threshold was used, then the measured quantities
were nearly independent of the threshold. A thresh-
old value of normalized vorticity ωthresh = ωc/Uf =
2.5 was selected as a conservative result from the sen-
sitivity study, and was 5 standard deviations above
the background noise level for all cases.

The vortex location was tracked using two meth-
ods: the Γ1 criteria and via the single-sign vor-
ticity centroid. The Γ1 criteria is the same from
Graftieaux et al. [104], with a threshold value of 0.6.
To further improve robustness, the centroid of the
first region leaving the leading of the wing and sat-
isfying this threshold was computed and this point
was taken as the location of the LEV. For the vor-
ticity centroid, the vorticity field was split into pos-
itive and negative regions along the same lines as
the circulation measurement and the first moment
of vorticity was calculated.

One of the limitations of the PIV setup is that the
camera moves with the wing, and thus the wake is
continually convected out of the frame. To alleviate
this, the vorticity leaving the frame is assumed to be
frozen in place, forming a first order approximation
to the wake as a whole. The results of this approach
can be seen in fig. 22. It allows for a reasonable
estimate of the total circulation and centroid of vor-
ticity throughout the entire test run in spite of the
wake leaving the frame. Figure 22 also shows the
alternating LEV and TEV shedding that occurs.

The frozen-wake approximation is implemented
by adding a small strip of vorticity at the exit of the
PIV frame onto a stationary background grid, which
maintains a running average of the contribution from
all frames. Obviously, this approximation is far from
perfect. The vorticity in the wake that would nor-
mally convect does not, leading to erroneous loca-
tions of the shed vortices, and any vorticity that
leaves through the top and bottom of the frame is ne-
glected. Furthermore, vortices that slowly leave the
frame become stretched in the fixed-wake represen-
tation. Despite the disadvantages, making the fixed-
wake approximation is a vast improvement over sim-
ply neglecting the wake that has left the frame.

The production of circulation at the leading edge
was measured via the flux of vorticity out of a control
volume around the leading edge of the wing. The ex-
tent of the control volume is depicted in fig. 23, and
is 0.08c on a side centered at the upper corner of the
leading edge. Along the edge of the box, the vortic-
ity flux was computed with the standard integral

dΓ

dt
=

∫
s

ω~u · n̂ds (A.1)
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FIG. 24: Flux measurements for the two different fields of view. Note that each field of view is represented
by five independent trials.

where dΓ/dt is the vorticity flux (expressed as the
rate of circulation), ω is the vorticity, and ~u · n̂ is
the velocity component normal to the boundary, s.
The vorticity is computed with a three-point cen-
tral differencing scheme in each direction. The inte-
gral is discretized with the PIV vector spacing and
computed numerically with the trapezoid rule. This
method measures the circulation flux slightly behind
the leading edge. Doing so was a conscious choice
to avoid using vectors whose correlation might be
contaminated with stationary wing pixels.

The impact of the two different fields of view on
the flux measurement is shown in fig. 24. The effect
of halving the measurement resolution is primarily

to add noise to the measurements with the wide
field of view, and secondarily to impart a slightly
higher magnitude for the wide FOV. The wide field
of view also has a slight delay in the start of the mea-
surement compared to the tight field of view. This
was due to the measurement plane being displaced
slightly further behind the leading edge in the wide
field of view to ensure that it captured the whole
shear layer. The wide field of view also reports a
slightly higher initial peak in the flux measurement.
Overall, the two methods report the same trends
and magnitude of circulation production. The fac-
tor of two difference in their resolution verifies that
the shear layer is sufficiently resolved to capture the
true value of circulation production.
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