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Abstract

Using Direct Numerical Simulations (DNS), we investigate how gravity modifies the multiscale

dispersion of bidisperse inertial particles in isotropic turbulence. The DNS has a Taylor Reynolds

number Rλ = 398, and we simulate Stokes numbers (based on the Kolmogorov timescale) in

the range St ≤ 3 , and consider Froude numbers Fr = 0.052 and ∞, corresponding to strong

gravity and no gravity, respectively. The degree of bidispersity is quantified by the difference

in the Stokes number of the particles |∆St|. We first consider the mean-square separation of

bidisperse particle-pairs and find that without gravity (i.e. Fr = ∞), bidispersity leads to an

enhancement of the the mean-square separation over a significant range of scales. When |∆St| ≥

O(1), the relative dispersion is further enhanced by gravity due to the large difference in the settling

velocities of the two particles. However, when |∆St| � 1, gravity suppresses the relative dispersion

as the settling velocity contribution is small, and gravity suppresses the non-local contribution

to the particle dynamics. In order to gain further insights, we consider separately the relative

dispersion in the vertical (parallel to gravity) and horizontal directions. As expected, the vertical

relative dispersion can be strongly enhanced by gravity due to differences in the settling velocities

of the two particles. However, a key finding of our study is that gravity can also significantly

enhance the horizontal relative dispersion. This non-trivial effect occurs because fast settling

particles experience rapid fluctuations in the fluid velocity field along their trajectory, leading

to enhanced particle accelerations and relative velocities. For sufficiently large initial particle

separations, however, gravity can lead to a suppression of the horizontal relative dispersion. We

also compute the Probability Density Function (PDF) of the particle-pair dispersion. Our results

for these PDFs show that even when Fr � 1 and |∆St| ≥ O(1), the vertical relative dispersion

of the particles can be strongly affected by turbulence. This occurs because although the settling

velocity contribution to the relative motion is much larger than the “typical” velocities of the

turbulence when Fr � 1 and |∆St| ≥ O(1), due to intermittency, there are significant regions of

the flow where the turbulent velocities are of the same order as the settling velocity. These findings

imply that in many applications where Rλ ≫ 1, the effect of turbulence on the vertical relative

dispersion of settling bidisperse particles may never be ignored, even if the particles are settling

rapildy.

∗ andrew.bragg@duke.edu
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I. INTRODUCTION

Particle dispersion in turbulent flows is important for numerous industrial and environ-

mental applications such as drug delivery [1], spray combustion [2], plankton distribution in

aquatic environments [3], dispersion of pollutants in the atmosphere [4] and droplet growth

in warm clouds [5]. The relative dispersion of particles as a function of time is of particular

importance as it provides a way to quantify multiscale processes such as particle mixing [6],

and it is also intimately connected to understanding particle collision velocities in turbulence

[e.g., see 7].

Since the pioneering studies of [8] and [9], the relative dispersion of fluid particles in

turbulence has been extensively investigated. Nevertheless, many open questions remain

[10], and it continues to be a very active area of numerical, experimental and theoretical

research [e.g. 6, 10–21].

In many applications, the dispersing particles have non-negligible inertia. The effect

of this inertia on the relative dispersion of the particles in turbulence has only recently

started receiving attention [14–16, 21, 22], and these studies have revealed that particle

inertia can have striking effects on the relative dispersion. However, these studies focussed

on monodisperse particles in the absence of gravity, yet in most real systems, the particles

are polydisperse and are also settling under the effect of gravity. Since relative dispersion

is typically studied by analyzing two-particle motion [10], then in order to obtain a better

understanding of more realistic systems, the relative dispersion of settling bidisperse particle-

pairs should be considered.

The importance of gravity compared with turbulence for particle motion can be quan-

tified by the Froude number, Fr ≡ ε3/4/(ν1/4g), where ε is the mean fluid kinetic energy

dissipation rate, ν is the kinematic viscosity, and g is the magnitude of the gravitational

acceleration vector g. In atmospheric clouds, typical ranges are 0.05 ≤ Fr ≤ 0.3 [23, 24].

In a recent study [25], we considered the relative motion of settling, bidisperse particles in

isotropic turbulence. In agreement with other studies [26–28], we found that bidispersity

alone enhances the particle relative velocities and these relative velocities are further en-

hanced by gravity. Furthermore, we also found that gravity can enhance relative velocities

not only in the ‘vertical’ (in the direction of gravity), but in the ‘horizontal’ (in the plane

normal to gravity) directions as well. Our results also showed that when Fr � 1, turbu-
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lence plays an important role, not only on the horizontal motion, but also on the vertical

motion of particles since due to intermittency, there a significant regions of the flow where

the local fluid acceleration is O(g). These findings could have significant implications for

understanding the horizontal and vertical relative dispersion of settling, bidisperse particles

in turbulence.

Despite the significant practical importance, the relative dispersion of settling, bidisperse

inertial particles in turbulence has scarcely been addressed. The only study that we are

aware of attempting to address this problem is [29]. The results from their Direct Numerical

Simulations (DNS) showed that for particles having initial separations in the dissipation

range, bidisperse particles separate faster in the presence of gravity due to the different

settling velocities of the two particles. They also observed that bidisperse particles with and

without gravity separate ballistically at short times, but that in the presence of gravity, the

relative dispersion can follow a ballistic growth even beyond the short time regime. However,

their study did not comprehensively explore the effects of varying the level of bidispersity, and

also focused on weakly inertial particles. Further, they did not consider how gravity affects

the dispersion in the vertical and horizontal directions separately. Therefore, motivated by

our recent findings in [25] and the current knowledge gaps, we consider the effect of gravity of

the vertical and horizontal relative dispersion of inertial particles in turbulence with Stokes

numbers up to St = 3.

The organization of the paper is as follows. In §II, we consider theoretically the effect

of bidispersity and gravity on the relative dispersion of particle-pairs at the small-scales of

turbulence. In §III, we explain the numerical methods and parameters for our simulations.

In §IV, we present the results of our simulations, exploring how bidispersity and Fr impact

the particle relative dispersion. Finally, in §V, we draw conclusions and highlight open issues

that remain to be explored.

II. THEORETICAL CONSIDERATIONS

In this paper we are considering the relative dispersion of settling, bidisperse inertial

particles whose density is much greater than that of the fluid in which they are suspended (i.e.

“heavy particles”, ρp/ρ� 1, where ρp is the particle density and ρ is the fluid density). This

is relevant to understanding various kinds of heavy particle dispersion in the atmosphere,
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and droplet mixing in clouds [30, 31]. We consider the particle loading to be sufficiently

small so that the feedback of particles on the flow can be ignored (i.e. the system is ‘one-way’

coupled) and the particles are assumed to be small (i.e., d/η � 1, where d is the particle

diameter and η is the Kolmogorov length scale). Under these conditions, each particle is

treated as a point particle whose motion obeys a simplified version of the equation by Maxey

& Riley [32]

ẋp(t) ≡ vp(t), (1)

ẍp(t) ≡ v̇p(t) =
u(xp(t), t)− vp(t)

τp
+ g, (2)

where xp(t) and vp(t) are the particle position and velocity, respectively, u(xp(t), t) is the

fluid velocity at the particle position, τp ≡ ρpd
2/18µ is the particle response time (µ is

the fluid dynamic viscosity) and g is the gravitational acceleration. In this study, we will

assume that particles are subjected to linear drag force, which is a valid assumption for

settling particles with St ≤ O(1)[24], and this is the range we restrict attention to in this

study.

To explore the relative motion of particles in turbulence we consider the motion of a

“satellite” particle relative to a “primary” particle, where the kinematic equation governing

their separation vector rp(t) is

ṙp(t) ≡ wp(t), (3)

with solution

rp(t) = rp(0) +

∫ t

0

wp(s) ds, (4)

where wp(t) is the particle-pair relative velocity. The relative dispersion of the particle pair

may be quantified through the statistical evolution of rp(t), which depends upon the behavior

of wp(t). In order to consider how bidispersity and gravity affect the relative dispersion of

inertial particles in turbulence, we now summarize our recent study [25] concerning the

effects of bidispersity and gravity on wp(t).

A. Relative velocities

The equation of relative motion can be obtained by subtracting (2) for the primary

particle from that for the satellite particle. In [25], we derived the following result for
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wp(t) in non-dimensional form (non-dimensionalized with Kolmogorov scale quantities) and

assuming t� St2

wp(t) =
1

St2

∫ t

0

e−(t−s)/St2∆up(s) ds−∆StFr−1eg +
∆St

St2

∫ t

0

e−(t−s)/St2ap(s) ds, (5)

where ∆up(s) is the difference in the fluid velocity at the two particle positions, St2 ≡

τp/τη is the Stokes number of the satellite particle based on the Kolmogorov time scale τη,

∆St ≡ St1 − St2, where St1 is the Stokes number of the primary particle, eg is the unit

vector in the direction of gravity, and ap(s) is the primary particle acceleration. In the

following, consistent with (5), we consider the case where t � St2, which corresponds to

the thermalized state where the particles have reached a statistical equilibrium with the

flow, and the initial conditions have no effect. However, later, we will consider the non-

thermalized case where the initial conditions for the particles play an important role for

t ≤ O(St2).

In the monodisperse case, ∆St = 0, only the first term on the rhs of (5) survives. This

term depends upon the particle-pair separation rp through ∆up, and through the integral

wp(t) depends upon ∆up along the path-history of the particle-pair over the time-span

t − s ≤ O(τp). Since the statistics of ∆up depend upon scale then this leads to a non-

local effect whereby the statistics of wp(t) at a given scale are affected not only by the

characteristics of ∆u at that scale, but also by the characteristics of ∆u at larger scales,

and this allows for ‖wp‖ > ‖∆u‖ (statisticslly). For St ≥ O(1), this path-history/non-local

effect dominates the particle relative velocities in the dissipation range and gives rise to the

formation of “caustics” [33]. Its effect weakens at larger scales, and precisely vanishes at

scales larger than the integral length scale of the flow since at these scales the statistics of

∆u are independent of separation. For monodisperse particles, gravity only affects wp(t)

implicitly through its effect on ∆up, as it modifies how the particles interact with the

turbulent flow. Gravity reduces the correlation timescale of ∆up as it causes the particles

to fall through the flow, and as a result, it reduces the path-history effect (by shrinking the

temporal correlation radius over which the particles are affected by their past interaction

with the flow), resulting in a reduction of the relative velocities for monodisperse particles

[24].

For bidisperse particles without gravity, i.e. |∆St| > 0 and Fr =∞, bidispersity affects

wp(t) explicitly through the third integral (“acceleration term”) and implicitly through the
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first integral on the rhs of (5). The particle relative velocity at a given separation will de-

pend upon the competition between the separation dependent first integral and separation

independent third integral, and as ∆up decreases, on average, with decreasing separation,

there will be a scale below which the third integral will be greater than the first one. This

acceleration contribution will lead to relative velocities of bidisperse particles that exceed

those of monodisperse particles at small-separations. Bec et al. [34] also studied the rel-

ative motion of bidisperse inertial particles in the absence of gravity. Similar to (5), their

governing equation for wp(t) consisted of two terms: The first term, depending on the fluid

velocity difference at the particle positions, and the second term proportional to the degree

of bidispersity. In their analysis, they also considered a characteristic length scale, below

which the bidisperse term dominates and the particle motion is uncorrelated. For particle

separations greater than this characteristic length scale, the ∆up term dominates and the

motion of the two particles is correlated.

To state the effects of gravity on the relative velocity of bidisperse particles, we must

first introduce some notation. We define the gravitational force to act in the x3 direction,

so that eg = (0, 0, 1). This will be referred to as the “vertical” direction, whereas, x1 and

x2 will be referred to as the “horizontal” directions. (Since we are considering isotropic

turbulence, the statistics of the particle motion are axisymmetric about eg when Fr <∞).

When |∆St| > 0 and Fr < ∞, the effect of gravity on the first term on the rhs of (5) is

qualitatively the same as in the monodisperse case, described earlier. The second term on

the rhs of (5) describes the explicit effect of gravity and it increases as Fr decreases and/or

|∆St| increases. This term, however, only acts in the vertical direction, implying that gravity

only plays an implicit role in the horizontal directions. Third term involving the primary

particle acceleration is implicitly affected by gravity. In [24], we showed that gravity can

enhance ap, since settling particles experience fluid velocities along their trajectories that

fluctuate more rapidly than they would if they were not settling, resulting in larger particle

accelerations. The enhancements of the accelerations in the vertical direction were found to

be smaller than those in the horizontal directions due to differences in the longitudinal and

transverse integral lengthscales of the flow [24].

Finally, consider the limit Fr → 0, for which the relative velocities in the vertical direction
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are deterministic and given by

wp3(t) = −∆St/Fr, (6)

which is simply the differential settling velocity, in dimensionless form, and applies to

quiescent and turbulent flows. However, for the horizontal direction, in a quiescent flow

wp1(t) = 0 ∀Fr, but in a turbulent flow, wp1(t) 6= 0 in the limit Fr → 0 and is given by

wp1(t) =
1

St2

∫ t

0

e−(t−s)/St2∆up1(s) ds+
∆St

St2

∫ t

0

e−(t−s)/St2ap1(s) ds. (7)

As a consequence of this, limFr→0w
p(t) 6→ −∆StFr−1eg; turbulence always makes a con-

tribution to the horizontal motion and this has important implications.

B. Relative dispersion

We now consider the implications of these results on wp(t) for the relative dispersion of

inertial particles in turbulence, focusing attention on the case where the initial separation

rp(0) = ξ lies in the dissipation range, where the effects of inertia are the strongest. Note

that here t = 0 is simply the labelling/conditioning time, that is, the time at which their

separation satisfies rp(0) = ξ. It does not necessarily correspond to the time at which the

particles are actually introduced to the system. The main focus of this paper is on the case

where at time t = 0 the particles are already in a statistical equilibrium with the flow (i.e.

the particles were introduced to the flow at time t = −∞). However, at the end of this

section we also discuss the case where t = 0 corresponds to the time when the particles are

introduced to the flow, for which the initial conditions play a key role.

For monodisperse particles with St2 ≥ O(1) and Fr = ∞, the particles will initially

separate (on average) very fast due to caustics in the particle relative velocity distributions.

As t increases, the particles go to larger separations where the effects of particle inertia

become weaker, and eventually they will separate like fluid particles. This behavior was

observed in [14, 22]. When St2 ≥ O(1) and Fr ≤ O(1), we expect that monodisperse

inertial particles will separate slower than the fluid particles because gravity suppresses

the path-history effect, and the dominant effect of inertia will be to simply filter out the

fluctuations of the underlying flow.

For bidisperse particles (|∆St| > 0) with Fr =∞, the acceleration term dominates their

relative velocities at small separations and they will separate faster than the monodisperse
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particles. As t increases, the particle-pairs will move to scales where the first term on

the right hand side of (5) dominates their relative velocity, and their dispersion behavior

will approach that of monodisperse particles. At sufficiently long times, the effect of their

inertia will disappear and they will disperse as fluid particles. The strongest effects of

bidispersity will therefore occur in the regime where the acceleration term in (5) makes a

strong contribution to the bidisperse particle-pair motion, and the duration of time for which

this term will be important will depend upon their initial separation and |∆St|. For example,

for pairs with |∆St| � 1 and initial separation in the dissipation range, the acceleration

term will play a dominant role in the relative dispersion process up until times for which

the pair separation is well into the inertial range.

When Fr ≤ O(1), gravity can affect the relative dispersion of bidisperse particles in

both the horizontal and vertical directions. Clearly, the vertical dispersion will be affected

explicitly by gravity due to the contribution of the differential settling velocity. However,

the relative dispersion in the horizontal direction can also be strongly affected due to the

implicit effect of gravity on ap. As summarized earlier, [24] found that when Fr � 1, gravity

can significantly enhance both the vertical and horizontal components of ap. Therefore, for

bidisperse particles with small initial separations, gravity can enhance both the vertical

and horizontal relative dispersion, in contrast to the monodisperse case, where gravity is

expected to always lead to a suppression of the relative dispersion, in both the vertical and

horizontal directions.

However, for weakly bidisperse particles with |∆St| � 1, and/or for bidisperse parti-

cles with sufficiently large initial separations, the acceleration contribution to their relative

velocities will be sub-dominant, and as a result, in these regimes, gravity may also lead

to a suppression of the relative dispersion, especially in the horizontal direction (even in

these regimes, the vertical relative dispersion may still be enhanced by gravity due to the

contribution from the differential settling velocity).

Chang et al. [29] used DNS to study the dispersion of bidisperse particles with and

without gravity. In their study, they considered pairs with initial separations in the dissi-

pation range and St2 � 1, |∆St| � 1 and Fr = 0.1,∞. They found that the differential

settling velocities of the particles leads to faster relative dispersion of bidisperse particles as

compared to those dispersing in the absence of gravity. They also observed that bidisperse

particles with and without gravity separate ballistically at short times, but that in the pres-
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ence of gravity, the relative dispersion can follow a ballistic growth even beyond the short

time regime. They also developed a semi-empricial formula for the second-order structure

function 〈‖wp(t)‖2〉r, where 〈·〉r denotes an ensemble average conditioned on rp(t) = r. By

comparing their results with DNS data for Fr = 0.1, they found good agreement between

their prediction and the DNS data even when St2 = O(1) (with |∆St| � 1). However, this

is mainly because in their data with Fr = 0.1, 〈‖wp(t)‖2〉r ≈ (∆St)2Fr−2 for small r/η,

i.e. the turbulent contribution is negligible, and this gravitational settling contribution is in

exact, closed form for arbitrary St2, ∆St.

In closing this section we briefly discuss the case where at time t = 0 the particles are

not in statistical equilibrium with the flow, but are introduced to the flow at t = 0 with

the same local velocity as the fluid. The behavior for this situation will only differ from the

thermalized case considered earlier in the “short time regime” t� St2, and in this regime,

the leading order behavior of wp(t) for the case where the particles are introduced with the

same local velocity as the fluid is

wp(t) = ∆up(0)− eg
∆St

FrSt2
t. (8)

In this case, the relative velocity, and therefore the relative dispersion in the horizontal

direction is unaffected by gravity, since the implicit effect of gravity plays no role. This

makes sense, since in order for the inertial particles to be affected by the implicit role of

gravity they must have begun to interact with the turbulent flow field. Thus, the non-trivial

effect of gravity on the particle relative dispersion is only important when the particles

have been in the flow for a time ≥ O(St2). However, gravity still plays a role in the vertical

direction, causing relative dispersion in that direction due to differential sedimentation when

the particles are bidisperse. Compared to its contribution in (5), the contribution from

differential sedimentation in (8) is suppressed by the factor t/St2 which is� 1 in the short-

time regime. This is simply a reflection of the fact that it takes a time t = O(St2) before an

inertial particle acquires its terminal velocity in a quiescent fluid, since in a quiescent fluid

the solution is wp(t) = −eg∆StFr−1(1− e−t/St2).
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III. COMPUTATIONAL DETAILS

We perform DNS of statistically stationary, isotropic turbulence using a pseudospectral

method on a three-dimensional periodic cubic domain of length L . The computational

domain is uniformly discretized using N3 grid points and the fluid velocity field u(x, t) is

obtained by solving the incompressible Navier-Stokes equation

∂tu+ ω × u+∇
(
p

ρf
+
‖u‖2

2

)
= ν∇2u+ f , (9)

where ω ≡∇×u is the vorticity, ρf is the fluid density, p is the pressure (determined using

∇ · u = 0), ν is the kinematic viscosity and f is the external forcing applied to generate

statistically stationary turbulence. A deterministic forcing scheme is used for f [35], where

the energy dissipated during one time step is resupplied to the wavenumbers with magnitude

κ ∈ (0,
√

2]. Time integration is performed through a second-order, explicit Runge-Kutta

scheme with aliasing errors removed by means of a combination of spherical truncation and

phase-shifting.

Particles are tracked in the flow field using (2) for their equation of motion, using a “one-

way” coupled assumption, which is justified in the cloud context, for example, because of the

low particle loading. Fifteen particle classes are simulated with Stokes number St ranging

from 0 to 3, with (N/8)3 particles per St. The particles are introduced to the domain once

the underlying fluid has achieved statistically stationary state, with initial particle velocities

equal to the fluid velocity at the particle position. The particles are allowed to evolve for

nearly five large eddy turnover times before we start collecting statistics, so that the particles

are in a thermalized state during the dispersion process. The particle positions and velocities

are stored every 0.1τη for a duration of 100τη.

In (2), u(xp(t), t) is the fluid velocity at the particle position, and this must be evaluated

by interpolating the fluid velocity at the surrounding grid points to xp(t). In this study

we use an 8th-order, B-spline interpolation method which provides a good balance between

high-accuracy and efficiency (see [36]). Further details on all aspects of the computational

methods can be found in [36].

Since we want to explore the role of gravity on the relative dispersion of bidisperse

particles, we must consider the choice of Fr for the DNS. Observations have shown that ε can

vary by orders of magnitude in clouds [37], with corresponding variations in Fr. Therefore,
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Parameter DNS

N 1024

Rλ 398

L 2π

ν 0.0003

ε 0.223

l 1.45

l/η 436

u′ 0.915

u′/uη 10.1

TL 1.58

TL/τη 43.0

κmaxη 1.60

Np 2,097,152

TABLE I: Flow parameters in DNS of isotropic turbulence (arbitrary units). N is the

number of grid points in each direction, Rλ ≡ u′λ/ν is the Taylor micro-scale Reynolds

number, L is the domain size, ν is the fluid kinematic viscosity, ε ≡ 2ν
∫ κmax

0
κ2E(κ)dκ is

the mean turbulent kinetic energy dissipation rate, l ≡ 3π/(2k)
∫ κmax

0
E(κ)/κdκ is the

integral length scale, η ≡ ν3/4/ε1/4 is the Kolmogorov length scale, u′ ≡
√

(2k/3) is the

fluid r.m.s. fluctuating velocity, k is the turbulent kinetic energy, uη is the Kolmogorov

velocity scale, TL ≡ l/u′ is the large-eddy turnover time, τη ≡
√

(ν/ε) is the Kolmogorov

time scale, κmax is the maximum resolved wavenumber, and Np is the number of particles

per Stokes number.

in addition to the zero gravity case Fr =∞, we follow [24] and consider Fr = 0.052, which

may be considered to be representative of weakly turbulent stratiform clouds [38].

In our recent studies [24, 25] we highlighted that the use of periodic boundary conditions

in the DNS, while simulating very small values of Fr, can artificially influence the motion

of inertial particles if the DNS box length L is too small. The use of periodic boundary
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conditions is problematic if the time it takes the settling particles to traverse the distance L

is ≤ O(TL), where TL is the large eddy turnover time. This issue was explored in detail in

[24] and it was found that box sizes much larger than the standard L = 2π can be required

when Fr is very small. For example, in [24] it was found that for Rλ ≈ 90, L = 16π was

necessary, which, with the resolution constraints for accurately resolving the small-scales

requires N = 1024. Such requirements place significant limitations on the value of Rλ that

can be simulated. The box size issue is even more crucial when considering relative dispersion

since the relative dispersion can only be tracked for times for which the pair-separation is

smaller than the box size, and this may not be very long when |∆St|/Fr � 1.

In this study we consider Rλ ≈ 398, and for Fr ≥ 0.052 and St ≤ 3, a box size of

length L = 2π is sufficient to satisfy the aforementioned constraint on the use of periodic

boundaries for settling particles (see [24]). Details of the DNS are summarized in Table I.

IV. RESULTS AND DISCUSSION

In this section we discuss our DNS results for the relative dispersion of bidisperse iner-

tial particles with and without gravity. We consider particle pairs (St1, St2 combination)

with varying degree of bidispersity, namely, weak, moderate and strong bidispersity, corre-

sponding to |∆St| = 0.1, 0.5 and 2, respectively. With Fr � 1 and for |∆St| = 2, the

particle separation quickly approaches the size of the computational domain, beyond which

the relative dispersion results are artificially influenced by the periodic boundary condi-

tions. Consequently, for those cases, the results are only shown up to the times at which

the separations are affected by the domain size.

Before presenting the results, we first summarize the expected behavior of the relative

dispersion based on the detailed discussion in §II, highlighting the expected behavior as

St2, |∆St|, F r are varied. First, in the monodisperse case (|∆St| = 0), then below a certain

scale (which depends on St2), the relative dispersion will become faster as St2 is increased,

due to the dominant role of caustics in their relative velocities. Above this scale, the relative

dispersion will become slower as St2 is increased, due to the dominant role of the filtering

mechanism that suppresses their relative velocities at these scales. However, at any scale

and for any St2, as Fr is decreased the relative dispersion will become slower than the

corresponding case with Fr =∞. This is because gravity suppresses the role of the caustics,
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FIG. 1: 〈‖wp(0)‖2〉ξ/u2η as a function of ξ/η for St1 = 1 and various St2. Solid and dashed

lines correspond to the results with Fr = 0.052 and ∞, respectively.

and enhances the filtering effect. For the bidisperse case (|∆St| > 0), then above a certain

scale (which depends on St2 and |∆St|), the effects of the bidispersity will be weak, and the

relative dispersion will be close to the monodisperse case with the same St2. However, below

this scale, as |∆St| is increased, the relative dispersion is increased since the motion of the

two particles becomes increasingly uncorrelated at the small-scales. At the same scales and

for the same |∆St|, as Fr is decreased, the relative dispersion will become faster. This is

due to the explicit effect of gravity through the particle-pair differential sedimentation, and

the implicit effect of gravity that causes the particle accelerations to increase. This latter

effect can enable gravity to enhance the relative dispersion even in the horizontal direction.

We begin by considering the DNS data for particle relative velocity 〈‖wp(0)‖2〉ξ (where

〈·〉ξ denotes an ensemble average conditioned on ‖rp(0)‖ = ξ), as this statistic will be helpful

in understanding the relative dispersion results, especially in the short-time regime. Figure

1 shows the variation of 〈‖wp(0)‖2〉ξ as a function of ξ for bidisperse particles, with Fr =∞

and Fr = 0.052. It can be seen that the bidisperse data, with and without gravity, are

bounded from below by the monodisperse values. This observation is in agreement with

previous numerical and theoretical studies considering the relative velocities of bidisperse

particles in turbulence [7, 25, 26, 39–41]. It can also be noticed that at sufficiently small

separations the relative velocities become independent of ξ. Both of these effects are due
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FIG. 2: FIT and BIT mean-square separation results (with ξ2 subtracted) for St1 = 1 and

various St2, (a) and (b) ξ ∈ (0η, 1η], (c) and (d) ξ ∈ [3η, 4η]. Solid and dashed lines

correspond to the results with Fr = 0.052 and ∞, respectively.

to the contribution of the acceleration term to the bidisperse particle motion, as discussed

in §II. The relative velocities of bidisperse particles at small scales increase with |∆St| and

are further enhanced by gravity (as Fr is decreased). The effect of bidispersity reduces as

the pair separation increases, and at sufficiently large ξ the relative velocities of bidisperse

particles approach those of monodisperse particles. This is because at large separations the

first term on the right-hand side of (5) becomes dominant as compared to the third term

(acceleration term).

We now turn to consider the mean-square separation results, for both Forward In Time

(FIT) 〈‖rp(t)‖2〉ξ and Backward In Time (BIT) 〈‖rp(−t)‖2〉ξ. The results are shown in figure

2 for ξ/η ∈ (0, 1], ξ/η ∈ [3, 4], for both monodisperse and bidisperse particles. In general, the
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FIG. 3: FIT and BIT mean-square separation results (with ξ2 subtracted) for St1 = 1 and

various St2, (a) and (b) ξ ∈ [9η, 10η], (c) and (d) ξ ∈ [19η, 20η]. Solid and dashed lines

correspond to the results with Fr = 0.052 and ∞, respectively.

results show that both FIT and BIT relative dispersion are enhanced with increasing |∆St|,

and are further enhanced by gravity. However, for monodisperse and weakly bidisperse

particles, gravity leads to a suppression of the relative dispersion, as anticipated in our

discussion in §II B. The results also show that FIT and BIT dispersion are qualitatively and

quantitatively different, indicating irreversibility in the relative dispersion process.

The physical mechanisms responsible for this irreversibility are quite subtle, and we

therefore refer the reader to [14–16]. In figure 3 we show results for larger ξ and observe that

without gravity, bidispersity has a weak effect on the dispersion at these separations. Also,

for monodisperse and weakly bidisperse particles, gravity suppresses the relative dispersion

at all times for these larger ξ values.
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FIG. 4: FIT and BIT results for 〈R2(t)〉 ≡ 〈‖rp(t)‖2〉ξ − ξ2, divided by the ballistic

prediction t2〈‖wp(0)‖2〉ξ for St1 = 1 and various St2 combinations, (a) and (b)

ξ ∈ (0η, 1η], (c) and (d) ξ ∈ [3η, 4η]. Solid and dashed lines correspond to the results with

Fr = 0.052 and ∞, respectively.

In figure 4, we plot 〈‖rp(t)‖2〉ξ − ξ2 and 〈‖rp(−t)‖2〉ξ − ξ2, normalized by the short-time

(t� τp) ballistic predictions [e.g., 14]

〈‖rp(t)‖2〉ξ − ξ2 ≈ 〈‖rp(−t)‖2〉ξ − ξ2 = t2〈‖wp(0)‖2〉ξ +O(t3), (10)

The results in figures 4(a) and (c) show that the mean-square separation grows ballistically

for short times in the absence of gravity. However, for Fr = 0.052, (10) can be satisfied even

for relatively long times in the dispersion process. This is explained by the fact that in view

of (5), in the regime |∆St|Fr−1 � 1, the differential settling of the particle-pair dominates

17



10 -1 10 0 10 1 10 2
10 -4

10 -2

10 0

10 2

10 4

10 6

r3
r1

t/τη

(

⟨|
rp 1

,3
(t
)|
2
⟩ ξ

−
⟨|
rp 1

,3
(0
)|
2
⟩ ξ
)

/η
2

(a)

10 -1 10 0 10 1 10 2
10 -4

10 -2

10 0

10 2

10 4

10 6

r3
r1

t/τη

(

⟨|
rp 1

,3
(t
)|
2
⟩ ξ

−
⟨|
rp 1

,3
(0
)|
2
⟩ ξ
)

/η
2

(b)

10 -1 10 0 10 1 10 2
10 -4

10 -2

10 0

10 2

10 4

10 6

r3
r1

t/τη

(

⟨|
rp 1

,3
(t
)|
2
⟩ ξ

−
⟨|
rp 1

,3
(0
)|
2
⟩ ξ
)

/η
2

(c)

10 -1 10 0 10 1
10 -2

10 0

10 2

10 4

10 6

r3
r1

t/τη

(

⟨|
rp 1

,3
(t
)|
2
⟩ ξ

−
⟨|
rp 1

,3
(0
)|
2
⟩ ξ
)

/η
2

(d)

FIG. 5: FIT mean-square separation results in the vertical and horizontal directions from

DNS for St1 = 1, different St2, and with ξ ∈ [0η, 1η]. Red line corresponds to the vertical

separations and the blue line corresponds to the horizontal separations. Dashed black line

corresponds to the results without gravity. The solid black line corresponds to (12) for

Fr = 0.052.

their relative dispersion and we have (in dimensional form)

〈‖rp(t)‖2〉ξ − ξ2 = 〈‖rp(−t)‖2〉ξ − ξ2 ≈ (uη∆St/Fr)
2 t2, (11)

which applies for as long as the differential sedimentation dominates wp.

A. Horizontal and vertical separations

In order to untangle the explicit and implicit effects of gravity on the statistics of

〈‖rp(t)‖2〉ξ and gain further insight, we consider the mean-square separations based on the
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Cartesian components of rp(t). That is, we consider 〈|rp3(t)|2〉ξ and 〈|rp1(t)|2〉ξ, correspond-

ing to the separations in the vertical and horizontal directions, respectively (recall also that

〈|rp1(t)|2〉ξ = 〈|rp2(t)|2〉ξ due to axisymmetry of the statistics).

The FIT results for ξ ∈ [0η, 1η] and ξ ∈ [3η, 4η] are shown in figures 5 and 6, where we

also show the Fr → 0 prediction for the vertical dispersion

〈|rp3(t)|2〉ξ − 〈|rp3(0)|2〉ξ = (uη∆St/Fr)
2 t2. (12)

For Fr = 0.052, (12) is in almost perfect agreement with the data for all the St1, St2

combinations having |∆St| ≥ 0.5. The results show that both the horizontal and vertical

dispersion are enhanced as Fr is reduced. As discussed in §II, while the enhancement of the

vertical relative dispersion is mainly due to the differential sedimentation of the particles, the

enhancement of the horizontal relative dispersion occurs only through the the implicit effect

of gravity that enhances the particle accelerations, and through this the relative velocities.

The results also show that the gravity-driven enhancement of 〈[rp1(t)]2〉ξ can persists up to

long times in the dispersion process. Indeed, the enhancement will persist for as long as

the particle-pair remains at scales where the acceleration contribution to wp1 continues to be

significant. For weakly bidisperse particle-pairs (|∆St| � 1), gravity suppresses 〈[rp1(t)]2〉ξ
by suppressing wp1. As explained in §II, this is because when |∆St| � 1, wp1 is dominated

by the path-integral involving ∆up1 rather than the acceleration term, and the statistics of

this path-integral are reduced by gravity, since gravity reduces the correlation timescales of

∆up1 [24, 25]. We note however, that for sufficiently large Rλ, then irrespective of |∆St|, the

particles will eventually disperse to scales that are large enough for the effects of bidispersity

to be weak (i.e. the acceleration contribution to wp1 would be small), at which point the

effect of gravity would be to suppress the relative dispersion.

The results for BIT horizontal and vertical dispersion are shown in figures 7 and 8, and

they also show that gravity has the same qualitative effect as in the FIT case, enhancing

and suppressing the relative dispersion in different regimes.
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FIG. 6: FIT mean-square separation results in the vertical and horizontal directions from

DNS for St1 = 1, different St2, and with ξ ∈ [3η, 4η]. Red line corresponds to the vertical

separations and the blue line corresponds to the horizontal separations. Dashed black line

corresponds to the results without gravity. The solid black line corresponds to (12) for

Fr = 0.052.

B. PDFs of horizontal and vertical pair separations

We now consider the FIT and BIT Probability Density Functions (PDFs) of the horizontal

and vertical separations, defined as

PF1 (r, t|ξ) ≡ 〈δ(|rp1(t)| − r)〉ξ, (13)

PF3 (r, t|ξ) ≡ 〈δ(|rp3(t)| − r)〉ξ, (14)
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FIG. 7: BIT mean-square separation results in the vertical and horizontal directions from

DNS for St1 = 1, different St2, and with ξ ∈ [0η, 1η]. Red line corresponds to the vertical

separations and the blue line corresponds to the horizontal separations. Dashed black line

corresponds to the results without gravity. The solid black line corresponds to (12) for

Fr = 0.052.

and similarly for the BIT PDFs PB1 and PB3 . Figures 9-11 show the results for these PDFs

with initial separation ξ ∈ [3η, 4η], and for different times. As expected, the results show

that gravity affects PF ,B1 and PF ,B3 in different ways, since gravity only plays an explicit role

in the vertical direction. Consistent with the horizontal and vertical mean-square separa-

tions results and the arguments of §II, gravity shifts the horizontal and vertical separation

PDFs towards larger values for pairs with |∆St| ≥ 0.5, and suppresses them for the weakly

bidisperse pair (|∆St| = 0.1) for the value of ξ considered.
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FIG. 8: BIT mean-square separation results in the vertical and horizontal directions from

DNS for St1 = 1, different St2, and with ξ ∈ [3η, 4η]. Red line corresponds to the vertical

separations and the blue line corresponds to the horizontal separations. Dashed black line

corresponds to the results without gravity. The solid black line corresponds to (12) for

Fr = 0.052.

When gravity dominates the vertical dispersion, the following result holds

lim
Fr→0

PF3 (r, t|ξ) = δ
(
|ξ − uη∆StFr−1t| − r

)
, (15)

and similarly for PB3 . Figure 11 shows the results for |∆St| = 2 and Fr = 0.052. Accord-

ing to the non-dimensionalized equation for wp, namely (5), the differential sedimentation

contribution to wp is much larger (an estimate is nearly forty times larger) than the contri-

butions associated with the turbulence when |∆St| = 2 and Fr = 0.052.
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FIG. 9: DNS results for PF1,3(r, t|ξ) (plots (a,c,e)), PB1,3(r,−t|ξ) (plots (b,d,f)) for

St1 = 1, St2 = 0.5 with ξ ∈ [3η, 4η] and (a,b) t = 0.5τη, (c,d) t = 2.5τη, (e,f) t = 20τη. The

red line corresponds to the vertical separations, blue line corresponds to the horizontal

separations, and black line corresponds to the results without gravity.
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FIG. 10: DNS results for PF1,3(r, t|ξ) (plots (a,c,e)), PB1,3(r,−t|ξ) (plots (b,d,f)) for

St1 = 1, St2 = 0.9 with ξ ∈ [3η, 4η] and (a,b) t = 0.5τη, (c,d) t = 2.5τη, (e,f) t = 20τη. The

red line corresponds to the vertical separations, blue line corresponds to the horizontal

separations, and black line corresponds to the results without gravity.
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As a result, we might expect that PF3 (r, t|ξ) should be close to the delta function pre-

diction in (15). However, the results in figure 11 show that even for this case, PF3 (r, t|ξ)

shows significant deviations from a delta function. This occurs because although the set-

tling velocity contribution for |∆St| = 2 and Fr = 0.052 is much larger than the “typical”

velocities of the turbulence, due to intermittency, there are significant regions of the flow

where the turbulent velocities are of the same order as the settling velocity. This highlights

the limitations of using scaling analysis in turbulence, namely, that because it only considers

the mean-field behavior of the system, it cannot faithfully describe how the system behaves

during fluctuations of the system about its mean-field behavior. In order to observe the

asymptotic behavior of (15), we would need extremely large values of |∆St|/Fr, and these

values would need to be larger as Rλ increases due to the increased intermittency of the

flow with increasing Rλ. In most practical applications of particle mixing and transport in

turbulence, such values may never be obtained, implying that turbulence will always play

an important role in the vertical mixing of settling, bidisperse particles, and its effect cannot

be ignored (unless one is only interested in low-order moments of the dispersion process).
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FIG. 11: DNS results for PF1,3(r, t|ξ)(plots (a,c,e)), PB1,3(r,−t|ξ) (plots (b,d,f)) for

St1 = 1, St2 = 3 with ξ ∈ [3η, 4η] and (a,b) t = 0.5τη, (c,d) t = 2.5τη, (e,f) t = 10τη. The

red line corresponds to the vertical separations, blue line corresponds to the horizontal

separations, and black line corresponds to the results without gravity.
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V. CONCLUSIONS

In this paper, we have used DNS to investigate the relative dispersion of settling, bidis-

perse inertial particles in isotropic turbulence. We also considered differences in the way

gravity and turbulence affect the particle relative dispersion in the vertical (parallel to grav-

ity) and horizontal directions. A key motivation for this work stems from the findings of our

recent study [25], where we observed a number of non-trivial effects of the combined influ-

ence of turbulence and gravity on the vertical and horizontal relative velocities of settling

bidisperse particles.

We found that for particles with |∆St| ≥ 0.5, gravity enhances the mean-square separa-

tions of the particles both forward in time (FIT) and backward in time (BIT), whereas it

suppresses the relative dispersion of weakly bidisperse particles with |∆St| = 0.1. We also

observed that the duration over which the particles separate ballistically is much larger when

they are subjected to gravity as compared to the case without gravity, as was also observed

in [29] for weakly inertial particles. For Froude number Fr = 0.052, the vertical relative

dispersion is enhanced for the range of Stokes numbers considered, and the enhancement is

primarily due to the differential sedimentation of the particles. On the other hand, gravity

has a non-trivial effect on horizontal relative dispersion, enhancing the relative dispersion

for particles with |∆St| ≥ 0.5 and suppressing it for weakly bidisperse particle-pairs (i.e.,

|∆St| � 1). This differing behavior arises of the fundamental differences in the mechanisms

governing the small-scale relative velocities of bidisperse and monodisperse (and weakly

bidisperse) particle-pairs, and how these are affected by gravity. We note, however, that we

only considered particles with initial separations ≤ O(10) Kolmogorov lengths. For larger

initial separations, the range of |∆St| for which one would observe either the enhancing or

suppressing effect of gravity on the relative dispersion would be different. Nevertheless, the

effect would still occur, just in different portions of the parameter space.

Finally, we considered the FIT and BIT PDFs of the horizontal and vertical separations.

When |∆St| = 2 and Fr = 0.052, the PDFs of the vertical dispersion show a substantial

effect of turbulence on the relative dispersion, despite the fact that the differential sedimen-

tation speed is large. This indicates that even when |∆St| ≥ O(1) and Fr � 1, the effect of

turbulence on the vertical dispersion cannot be simply based on the differential settling of the

particle-pair, as intermittency allows the turbulence to continue to affect the higher-order
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moments of the statistics characterizing the dispersion process. Indeed, in order to observe

the asymptotic behavior of vertical dispersion based purely on the differential settling, one

would require extremely large values of |∆St|/Fr, such that given the parameter regimes

in many applications, the effect of turbulence on the vertical mixing of settling, bidisperse

particles may never be ignored (unless one is only interested in the low-order statistics of

the dispersion process).
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