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Experiments were conducted with 3D printed disks and rods to study the orientation dynamics
of non-spherical particles under surface gravity waves. Trials were run with both neutrally buoyant
and slightly negatively buoyant particles, which were large enough that inertia due to their finite
size was important. Although the particles had a broad distribution of initial orientations, over
time the waves were observed to focus these orientations toward a preferred angle that agreed with
theory. Negatively buoyant particles additionally exhibited a tendency to adopt an orientation that
maximized vertical drag. The overall orientation can be described as the result of a competition
between the orientation favored by waves and the orientation favored by settling. The spread about
the mean orientation was also observed to increase with wave strength. Finally, the stabilization of
out-of-plane orientations of disk-shaped particles was observed due to their finite size.

I. INTRODUCTION

Many natural and industrial flows contain transported particles that are not spherical. The shape and rotation
of non-spherical particles can complicate the prediction of their dynamics and have been an active topic of recent
study. However, much of this work has focused on particles in the two limits of microscale Stokes flows [1–3] or
isotropic turbulence [4], despite the wide range of relevant situations between these cases. In particular, there has
been little investigation of the dynamics of non-spherical particles in flows driven by surface gravity waves. Waves
are a dominant characteristic of flows near the ocean surface, in estuaries, and along coastlines. Such environmental
flows routinely carry microplastics, algae, sediment, ice, and small organisms, all of which are small particles that
are generically non-spherical. Understanding how waves influence and control the orientation of these particles is a
key question, since the particle orientation determines the lift and drag forces on the particle. These forces in turn
control the settling velocity, an essential parameter for modeling their transport and position in the water column.
Additionally, for active particles such as zooplankton, the effects of the flow on orientation can control their ability
to navigate and explore their environment [5].

Although some research has been done on point-like, non-inertial spheroids under waves, the results are not yet
fully in agreement. Motivated by understanding the rheology of grease ice, a theoretical study of small non-inertial
disks moving under linear deep-water surface gravity waves argued that the particles will align with the strain field of
the waves and tumble at the wave frequency [6]. More recently, we argued instead that non-inertial point particles will
adopt a preferred orientation with an oscillation at the wave frequency, not a tumble; we proved this analytically [7]
for any linear gravity waves, and showed that the effect remains when small particle inertia is included in a numerical
study [8]. All of this work, however, treated the particles as point-like and neglected any effects of flow inertia around
the particle. But many particles of interest in the ocean fall within an intermediate size regime where the effects of
finite size and inertia become relevant. In particular, microplastics—that is, plastic particles that are defined to be
up to 5mm in length scale—are large enough that the point particle approximation may not be fully valid.

When finite particle mass is included, the particles will also tend to sediment. The settling velocity of a particle
controls its time in the water column, directly influencing its transport and dispersion. The effects of inertia on
sedimenting spherical particles has been studied [9], as well as the interaction between particle inertia and turbulence
[10, 11]. Less is known, however, about settling non-spherical inertial particles. It has been argued that they should
adopt a preferred settling orientation that is a function of shape and Reynolds number; but turbulence can diffuse
the particle orientation about this preferred value [12]. This diffusive effect is also a function of the particle shape
and the turbulence [13]. These results suggest the possibility of competition between the tendency of the settling of a
particle to set a preferred orientation and the tendency of the turbulence to scramble the orientation. Given that we
have shown that waves can also set a preferred orientation [7, 8], the orientational behavior of settling non-spherical
inertial particles in wavy flows is very difficult to predict.

In this paper we present experimental results on the orientation of such particles under surface gravity waves. We
consider both negatively buoyant (i.e., settling) and nearly neutrally buoyant (but still finite-sized) particles. When
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FIG. 1. Coordinate system and geometry of the 3D-printed particles. Elongated and flattened cylinders were used to approx-
imate rods and disks, respectively. Their orientation is described by a unit vector p directed along the symmetry axis. The
azimuthal angle θ captures the orientation of the particles out of the plane of the wave motion, and the polar angle φ is the
angle measured from the vertical (z) axis.

particles are introduced into the flow with a distribution of orientations, we confirm that the waves can over time
focus this distribution toward the preferred orientation we previously found theoretically [7, 8]. As this orientation is
not the same as what would be set by settling alone, we thus show that even without turbulence, waves are sufficient
to scramble the orientations of settling particles. However, we also find evidence for competition between the effects
of settling and waves. Finally, we also find that inertia due to finite particle size stabilizes the out-of-plane orientation
in waves, even though it is unstable for non-inertial point particles.

We begin below by further discussing the context of our work in Sec. II. We then describe our experimental methods
in Sec. III, including the wave facility, the measurement technique, and the fabrication of our particles. Our results
are discussed in Sec. IV. Finally, we summarize and discuss our findings in Sec. V.

II. BACKGROUND

Although the orientation dynamics of infinitesimal, non-inertial particles is completely described by Jeffery’s equa-
tion [14], less is known analytically for particles that have inertia relative to the flow. Such inertia can be due to both
size and density. Most of the work on non-spherical inertial particles has considered the effects of density [15–17],
since that is easier to introduce as a small parameter. There are still many open questions, however, about particles
that are inertial due to their finite size [4, 18, 19].

Finite-size inertia has typically been studied in turbulent flows via laboratory experiments, as it is difficult to
capture faithfully in numerical models. Some experiments have been conducted with large, near neutrally buoyant
particles in homogenous isotropic turbulence to assess the effects of finite size on rotation statistics [20, 21]. In these
isotropic flows, the orientation statistics of the particles remain isotropic as well. Settling experiments have been
conducted of finite-sized, non-spherical particles, but mainly in quiescent flows [22–25] or turbulence [26, 27]. Particle
inertia has also been experimentally investigated with fibers in turbulence, and it was shown that it can have a
non-negligible effect on particle rotation statistics [28]. Therefore, this experiment expands on the current body of
research by analyzing the orientation of inertial non-spherical particles in an anisotropic, unsteady flow.

For small, non-inertial spheroids in flows driven by surface gravity waves, we previously found that particles tend
to a set of stable orientations. Using both theoretical analysis and numerical simulations, we showed that particles
settle onto a stable oscillation in the plane of the waves about a preferred orientation that is only a function of the
shape of the particle [7, 8]. Going forward, we will call this orientation the wave-preferred orientation. For settling
(that is, negatively buoyant) non-spherical particles in quiescent flow, studies have shown that settling particles with
intermediate particle Reynolds numbers in the range 5.5 < Rep < 200 adopt stable orientations that maximize their
drag [25, 29]. In this case, maximizing drag corresponds to the particles horizontally aligning their longest length
scale. We will call this orientation the settling-preferred orientation.

We describe the particle’s orientation by a unit vector p pointing along its axis of symmetry, as shown in figure 1.
For both the wave-dominated case and the settling-dominated case, the polar angle φ is sufficient to characterize the
preferred orientation; we denote the wave-preferred angle as φ∗w and the settling-preferred angle as φ∗s. Settling disks
(that is, oblate particles) have φ∗s = 0 and settling rods (that is, prolate particles) have φ∗s = π/2. These orientations
correspond to maximized vertical particle drag, which agrees with theory [30] and preliminary experiments conducted
with the particles falling in quiescent flow. Theoretically, the azimuthal angle θ∗s can take any value in these cases.

In the limit of vanishing particle inertia, the wave-preferred angle is only a function of shape and is given by
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FIG. 2. Schematic (not to scale) of the experimental setup. Waves are generated on the left side of the tank by a plunging
wave maker and are dissipated on the right side by the horsehair beach. A laser is directed upward through the bottom of the
tank to illuminate tracer particles. Bright LEDs provide illumination for the non-spherical particles through the side of the
tank. The horsehair beach is arranged to maximize the amount of horsehair at the top of the water column where the waves
are strongest but minimize its lateral extent into the tank.

tanφ∗w = Γ where Γ is the particle aspect ratio [7, 8]. Assuming that the waves lie in the x − z plane as shown in
figure 1, θ∗w = 0. This orientation is solely a function of the particle’s shape, but the waves also drive an oscillation
about this orientation with an amplitude that is both a function of the particle’s shape and the wave characteristics
[7].

Finally, in both waves and steady shear flows, the log-rolling mode (that is, where the particle’s axis of symmetry
is perpendicular to the shear plane) is expected to be unstable for non-inertial particles. However, theoretical [16, 31]
and numerical [32, 33] work has suggested that both weak particle and fluid inertia can in fact stabilize this mode for
oblate particles.

III. METHODS

A. Flow facility

Laboratory experiments were conducted in the Bob and Norma Street Environmental Fluid Mechanics Laboratory
at Stanford University. The experimental setup consisted of an enclosed rectangular tank measuring 488 cm long, 60
cm deep, and 30 cm wide. A vertically oscillating triangular wavemaker was positioned at one end of the tank; the
opposite end had a horsehair beach to dissipate energy and prevent wave reflections from the back wall. A schematic
of the experiment is shown in figure 2. The tank was filled with de-ionized water, and the density was then adjusted
using salt and measured using an Anton-Paar density meter (model DMA4500).

The right-angled wavemaker plunger was 40 cm tall, 30 cm wide, and 25 cm long so that its aspect ratio was 1.6,
which falls within the parameter range investigated for wave-making in ref. [34]. A train of progressive waves could
be generated with varying amplitudes and wavelengths by changing the wavemaker stroke amplitude and frequency.
The wave amplitude was measured using a wave gauge downstream of the field of view.

B. Particles

To allow maximal control over the shape and size of the non-spherical particles, the particles were manufactured by
Sculpteo and Protolabs using Selective-Laser-Sintering 3-dimensional (SLS 3D) printing. This 3D printing technique
was used because of its sub-millimeter accuracy and compatibility with nylon 12, which has a specific gravity (SG) of
1.01 and thus allows us to manufacture particles denser than fresh water. This SG allowed us to conduct experiments
with either negatively and neutrally buoyant particles easily by manipulating the density of the water in the wave
tank using NaCl; we denote the ratio of the particle density ρp to the fluid density ρ by β. However, the density of the
printed particles was not always identical and equal to that of the source material due to the manufacturing process,
and so we measured the particle density after printing to ensure accurate experimental conditions. To measure the
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Particle Γ h (mm) d (mm) ws(cm/s) ρp (kg/m3) Rep

large disk 0.16 1.15 ± 0.01 7.0 ± 0.01 0.93 ± 0.002 1.005 ± .001 66

small disk 0.22 1.1 ± 0.01 5.0 ± 0.01 0.91 ± 0.002 1.005 ± .001 46

short rod 4.1 6.2 ± 0.01 1.5 ± 0.01 0.70 ± 0.002 1.005 ± .001 46

long rod 7.8 6.75 ± 0.04 .86 ± 0.02 0.90 ± 0.006 1.01 ± .002 60

TABLE I. Particle sizes and shapes, settling velocities, and particle Reynolds numbers. 95% confidence intervals are reported
for the particle length scales and settling velocities.

FIG. 3. Photo of the particles used in the experiments after having been dyed with Rhodamine. Clockwise from the top left
are small disks, large disks, long rods, and short rods. The ruler provides a scale in centimeters.

particle densities, we placed the particles in a standard solution of specific gravity 1.01. The solution density was then
was altered until most of the particles were neutrally buoyant and therefore in suspension. The precision (captured
by the error bars reported in table I) is reported as the range between the density where all of the particles were
negatively buoyant to the density where none of them were.

Nylon is also a convenient material choice because it absorbs very little water. The equilibrium water absorption for
nylon 12 is only 1%, so the particle size varied negligibly when soaked in water (unlike, say, particles made of hydrogel).
Nevertheless, we stored the particles in water when not in use to ensure that they maintained their maximum water
absorption. Finally, to make the particles easier to illuminate, we cooked them in a solution of Rhodamine 6G to
make them fluorescent [35].

A set of 20-25 particles was printed in each of four different shapes, which we label long rods (aspect ratio Γ = 7.8),
short rods (Γ = 4.1), small disks (Γ = 0.22), and large disks (Γ = 0.16). The aspect ratio Γ was defined to be the
ratio of the length of the particle along its axis of symmetry to the length of the particle along the perpendicular axis.
The (measured) properties of the particles are shown in table I. The lengths reported in table I are averages of all the
manufactured particles; the 95% confidence interval for all of the particles was on the order of 0.01 mm. A sample
image of the particles used in the experiment is shown in figure 3.

Particle settling velocities ws were measured by letting the particles fall in quiescent fresh water in the same tank
in which the experiments were conducted. The particle Reynolds number Rep = lws/ν is based on ws, their largest
length scale l, and the kinematic viscosity of water ν. In fresh water, all of the particles have transitional Reynolds
numbers; thus, Stokes-flow approximations do not necessarily hold for calculating the forces on the particles.

The particles were released into the wave field from a small suspended swing. Particles were placed on the swing,
which sat above the quiescent water level in the center of the tank. When the waves were initiated, the particles were
pushed off the swing by the passing waves. After the particles were released, the swing was lifted out of the water.
This process allowed a repeatable particle release with minimal disturbance to the flow.
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Wave case ω (rad/sec) A (cm) k (1/m) kA kH Rw

WC2 2π 3.5 4.3 .15 1.8 0.03

WC3 3π 3.3 8.8 .29 3.7 0.02

WC4 4π 2.3 14.1 .32 5.8 0.01

TABLE II. Wave cases and non-dimensional parameters, including the wave frequency ω, amplitude A, wavenumber k, wave
steepness kA, relative depth kH, and reflection coefficient Rw.

C. Image processing and data analysis

Both the flow velocity and the printed particle velocities were measured using optical particle tracking. To mea-
sure the flow, we used small (45-53 µm diameter), neutrally buoyant fluorescent orange polyethylene microspheres
purchased from Cospheric. These particles were small enough that they accurately follow the flow in our experiments
(with Stokes numbers of St ∼ O(10−6)). The tracers were illuminated by a vertical laser sheet made using a cylindrical
lens and an Nd:YAG laser (frequency-doubled to operate at 532 nm) positioned below the tank, while the 3D-printed
particles were illuminated with high power green (530 nm) LEDs. Particles were imaged with a Photron FASTCAM
SA5 CMOS camera at 60 or 125 frames per second (depending on the flow speed) with a resolution of 1024 × 1024
pixels. The camera was equipped with a Sigma 30mm f/1.4 EX DC HSM lens and an orange bandpass filter (560-600
nm).

Image processing was more challenging than in many cases due to the surface gravity waves, which focus light
from both the laser sheet and the LEDs in a time-varying manner. To lessen this effect, separate background images
were created for each wave phase. These background images were computed by taking the median of multiple images
(between 10 and 50, depending on the wave frequency and frame rate) at a given wave phase. The images were also
calibrated to remove lens distortion using photos of a regular checkerboard pattern. This phase-resolved background-
image approach allowed us to accurately track particles below the surface; however, particles at or near the surface
could not be tracked due to reflections and shimmering effects. Finally, images were processed to acquire particle
tracks and velocities using a predictive tracking algorithm [36, 37]. A Gaussian fit to the pixel brightnesses was used
for sub-pixel accuracy for the tracer particles; for the larger non-spherical particles, the particle centroid was used.

We first performed a set of flow characterization experiments to determine the velocity field in the flow using tracer
particles. Once we had established that the flow fields were well behaved and consistently produced the same velocity
fields, we repeated the experiments with only the large non-spherical particles of interest. We were careful to ensure
that the set-up was identical so that the mean wave characteristics measured from the tracer particles could be applied
to the analysis of the large non-tracer particles.

From both theoretical arguments and empirical evidence, we expected the large, non-spherical particles to orient
themselves in the plane of the waves [8]. Thus, we assumed that the particles with imaged aspect ratios approaching
their physical Γ had their axes of symmetry aligned into the plane of the waves, and thus in the plane of the field of
view. This assumption allowed us to relate the angle of the particles in the image to the particle’s polar angle φ, as
shown in 1. Note that due to the symmetries of the problem, we only report values of φ between 0 and π/2.

D. Wave cases and flow characterization

Our flow facility was capable of making small-amplitude deep water waves as well intermediate-depth waves. For
all experiments, we maintained a fixed water depth of H = 41.5 cm. The wave frequency ω was set by the frequency
of the wave plunger, and the wave amplitude A was measured at the surface with a wave gauge. The wavenumber
k was calculated via ω2 = gk tanh kH (where g is the acceleration due to gravity), the dispersion relation for linear
surface gravity waves. This calculation was confirmed a posteriori from measurements of the velocity gradients.

We consider three wave cases here, which we label by their wave frequency as shown in table II. Each case had a
different frequency and therefore a different relative depth kH. WC2 approaches the shallow water limit (kH < π/2),
WC4 approaches the deep water limit (kH > 2π), and WC3 is an intermediate-depth case. The wave steepness at the
surface is given by the non-dimensional parameter kA. WC2 has a low steepness, whereas WC3 and WC4 are both
very steep at the surface. For each wave case, data was collected and averaged over an ensemble of three 90 second
runs.

We characterized the wave velocity fields using particle tracking velocimetry, as described above. To construct
velocity fields, we interpolated the tracer data onto a 0.3× 0.3 cm grid and phase-averaged over the two-dimensional
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FIG. 4. Mean flow characteristics. Measured average wave amplitudes (a) U and (b) W as a function of depth for the three
wave cases (symbols) are plotted along with the predictions from linear wave theory (solid lines). (c) Measured Stokes drift
us velocities (symbols) as a function of depth along with the theoretical predictions (solid lines). (d) Measured mean Eulerian
flow velocities u as a function of depth. For all panels, case WC2 is shown with circles, case WC3 is shown with triangles, and
case WC4 is shown with squares.

field of view. These measurements were then compared to the predictions from linear wave theory. Under this
assumption, the velocity components for an arbitrary water depth H are given by

u(x, z, t) = Aω
cosh(k(z +H))

sinh(kH)
cos(kx− ωt) (1)

and

w(x, z, t) = Aω
sinh(k(z +H))

sinh(kH)
sin(kx− ωt). (2)

For these equations, the origin (z = 0) lies at the free surface. To compare with theory, the gridded velocity
data was fit to a sinusoid in time at each point in space. The mean value and amplitude of the sinusoid was then
determined. The wave phase is a function of x and t, but the amplitude of the velocity signals are only a function
of z. Thus, the amplitudes of the measured velocities (U,W ) were found as a function of depth. We note that due
to the closed nature of the tank, a reverse current set up near the bottom to balance the Stokes-drift mass transport
at the surface. Thus, the mean horizontal velocities do not vanish. We account for this reverse current by adding a
mean drift u to the horizontal velocity, so that we have

u(x, z, t) = U(z) cos(kx− ωt) + u (3)

and

w(x, z, t) = W (z) sin(kx− ωt). (4)

We plot the measured U and W values versus the predictions from linear wave theory in figure 4 (a) and (b). The
agreement is very good, except very near the free surface where the imaging is noisy. Finally, we also note that
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FIG. 5. Time series of the polar angle φ for several neutrally buoyant (β = 1) long rods in WC2 waves. Though their initial
φ values were uncontrolled, the particles all settle onto an oscillatory limit cycle at the wave frequency about a similar angle.
The wave-preferred angle φ∗

w expected from theory is marked with a dashed line.

the horse hair beach at the end of the tank minimized wave reflections. This was quantified using the approach for
co-located horizontal and vertical velocity measurements developed in ref. [38]. The reflection coefficient Rw reported
in table II is given by Ar/A, the ratio of the reflected wave amplitude to the incident wave amplitude. The small
values of Rw for all of our experimental cases indicate that wave reflection is negligible in our facility.

Stokes drift velocities were measured directly from particle tracks. Tracks longer than two wave periods were used
to calculate mean displacements. These particle tracks were then binned by depth and averaged over the data records.
In figure 4(c), this data is plotted and compared to the theoretical prediction for the Stokes drift velocity us given by

us(z) = A2ωk
cosh(2k(z +H))

2 sinh2(kH)
. (5)

Note that there are non-negligible Stokes drift velocities at the bottom of the tank. These arise due to the wave
streaming [39] induced by the interaction of the bottom boundary layer with the waves. The streaming is confined
to the bottom 2 cm of the tank and thus can be ignored in our analysis, since we consider only the upper portions of
the water column.

Finally, we note that since the wave strength decays with depth in our experiments, we can examine particles
at different depths in the water column to expand our range of wave cases studied. To do so, we define a depth-
dependent nondimensional wave shear ka(z). First, we can define a depth-dependent shear based on the analytical
wave equations 1 and 2. The equations for du/dz and dw/dx are identical oscillations:

du

dz
=
dw

dx
= kAω

sinh(k(z +H))

sinh(kH)
cos(kx− ωt). (6)

Normalizing by the wave frequency ω and removing the oscillation, we have

ka(z) = kA
sinh(k(z +H))

sinh(kH)
. (7)

We can use this to formulate a shear particle Reynolds number, Res = γl2/ν defined by the shear rate γ, the
longest length scale of the particle l, and the kinematic viscosity of water ν. In this case, γ = ka(z)ω. The value of
Res represents the effect of fluid inertia on the particle’s orientation, while the effect of particle inertia is typically
represented with the product βRes [17]. In this case, both numbers are approximately equal as β ≈ 1.

IV. RESULTS

Here, we describe the measured effects of waves on both negatively buoyant and nearly neutrally buoyant non-
spherical particles. Our results are largely consistent with our previous theoretical work on idealized particles [7, 8].
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FIG. 6. PDFs of the polar angle φ of long rods in waves with (a) β = 1.01 and (b) β = 1 at different times, as indicated by
the shading. The dotted line shows the theoretical wave-preferred angle φ∗

w; the settling-preferred angle is φ∗
s = π/2. Data are

combined from all three wave cases, but only for particles in regions where ka(z) ≥ 0.05.

We find that particles tend toward a (wave-averaged) preferred orientation, but that this effect is weaker when the
particles are also settling. Indeed, we observe a competition between the (differing) wave-driven and settling-driven
preferred orientations. We also show that the finite inertia of the particles in this experimental study can stabilize
the out-of-plane log-rolling position, even though this position is unstable for non-inertial particles, and β is close to
1.

A. Temporal effects of waves: orientation focusing

As described above, in our previous theoretical and numerical work we found that waves drive non-spherical particles
to oscillate about a preferred polar angle φ∗w. Experimentally, we find that this result indeed holds for the finite-sized
particles we consider here. An example of this behavior is shown in Fig. 5, where the polar angle φ of several neutrally
buoyant long rods in wave case WC2 is plotted over time. In each case, φ approaches φ∗w with a superimposed
oscillation at the wave frequency. Even though each rod had a different initial orientation, they all oscillate about a
similar angle after approximately 12 wave periods. The stability of this orientation can also be seen in Fig. 5 by the
perturbation away from this preferred orientation around t/T = 20 that is quickly damped.

This temporal angular focusing is also apparent statistically. We computed the probability density functions (PDFs)
of φ for long rods at each instant in time, as shown in Fig. 6. Data in this case were taken only from particles in
the top part of the water column, where ka(z) ≥ 0.05, since particles that are lower in the water column may not
actually feel the waves. Figure 6(a) shows the evolution of these PDFs with time for neutrally buoyant particles, and
the development of a peak in the PDF at φ∗w is clearly visible as time advances. However, there is also a second peak
at φ = π/2, which in this case is φ∗s, the preferred angle for settling rods. This peak is even more prominent for
negatively buoyant rods, as shown in fig. 6(b). In both of these cases, we observe bimodal PDFs of φ with peaks at
both φ∗w and φ∗s, suggesting that there is a competition between waves and settling in determining the orientation of
these particles. When settling is stronger than the wave action, the peak at φ∗s is more prominent, and vice versa.

The statistical moments tell a similar story. The mean φ and standard deviation σφ are shown for neutrally buoyant
long rods in figure 7 and for negatively buoyant short rods in figure 8. These plots show that when the particles are first
released into the flow, they have nearly random orientations. As the particles spend more time in the waves, however,
the distribution of particle orientations becomes less uniform: the standard deviation of the particle orientations
decreases, and the mean tends toward a preferred value close to φ∗w. We also, though, observe some dependence of
the time scale over which this orientation focusing occurs on the particular characteristics of the waves, leading us to
consider the effects of wave strength below.

Thus, our measurements show that non-spherical particles in waves do not randomly sample all angles (as would be
expected for tumbling particles), but rather that over time the distributions of their orientations sharpen. However, we
observe not unimodal PDFs, as would be expected if a single physical mechanism were setting the preferred alignment,
but rather bimodal PDFs, suggesting competing effects—in this case between waves and gravitational settling. This
interpretation in turn suggests that by varying the strength of the waves, we ought to see the orientation PDFs change:
once the waves are weak enough, settling alone should dominate the particle dynamics. We can test this hypothesis
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FIG. 7. Evolution of the (a) mean and (b) standard deviation of the polar angle φ of neutrally buoyant (β = 1) long rods in
waves as a function time. Data from WC2, WC3, and WC4 are shown by •, N, and �, respectively. For all cases, data are only
included for particles in regions with ka(z) ≥ 0.05.
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FIG. 8. Evolution of the (a) mean and (b) standard deviation of the polar angle φ of negatively buoyant (β = 1.005) short
rods in waves as a function time. Data from WC2, WC3, and WC4 are shown by •, N, and �, respectively. For all cases, data
are only included for particles in regions with ka(z) ≥ 0.05.

by considering the particles at different depths in the water column, since the nondimensional wave strength ka(z) is
a function of depth.

B. Effects of wave strength

To isolate the effects of the wave strength on the particle orientations, we considered only data from particles after
they had evolved in the wave field for more than 10 wave periods; we found empirically that after this amount of time
had elapsed, particle statistics were stationary in time. To additionally remove any residual effects of wave-driven
oscillations and the phase dependence they may introduce, we also averaged the data over wave periods so that we
could study the mean particle orientations as opposed to the transient wobble.

In Fig. 9, we plot PDFs of φ for these data for negatively buoyant large disks and long rods at different depths
in the water column. As quantified by the depth-dependent wave shear ka(z) defined above, particles lower in the
water column feel the effects of the waves less strongly. For large ka(z), both disks and rods show a strong tendency
to be oriented at the wave-preferred angle φ∗w. But as ka(z) decreases, the peak in the PDFs moves toward the
settling-preferred angle φ∗s. This behavior supports our interpretation that the particle orientation is controlled by a
competition between wave motion and settling.

However, even though the PDFs show peaks at φ∗w and φ∗s, they are not delta functions: we always observe spread
in the PDFs. To quantify this spread and quantify how it depends on the wave strength, we plot σφ for all particle
shapes as a function of ka(z) in fig. 10. For all particle shapes, we observe an overall increase of σφ with ka(z),
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FIG. 9. PDFs of the polar angle φ for (a) large disks (β = 1.005) and (b) long rods (β = 1.01) for different values of the
nondimensional wave shear ka(z), as indicated by the shading. The dotted lines show the theoretical wave-preferred angle φ∗

w.
The preferred settling angle is φ∗

s = 0 for the disks and φ∗
s = π/2 for the rods. Data are combined from all three wave cases,

but only for particles that had evolved in the waves for at least 10 wave periods.
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FIG. 10. Standard deviation of the wave-period-averaged polar angle φ as a function of non-dimensional wave shear ka(z) for
different particle shapes: long rods (closed triangles), short rods (open triangles), large disks (closed circles), and small disks
(open circles). The data comes from β = 1.005 for all shapes except long rods which have β = 1.01, and data are only included
for particles that had evolved in the waves for at least 10 wave periods.

meaning that as the effective strength of the waves grows, so does the variability in the particle orientation. In fig. 10
there is a slight difference in the relationship between the angle standard deviation and the non-dimensional wave
shear for the long rods. However they are heavier than the rest of the particles, which we expect to be the cause of
this difference seen in the data. Thus, while waves can focus particle orientations over time, the competition between
waves and settling—and therefore the existence of two preferred orientations, φ∗w and φ∗s—means that the presence
of waves can also have a scrambling effect on particle orientation.

C. Out-of-plane orientations

We have previously shown theoretically that there are fixed points in the dynamics of non-inertial, infinitesimal
spheroids for both θ = 0 and θ = π/2; that is, for spheroids that lie in the plane of the wave motion and orthogonal
to it [7]. In the non-inertial case, the θ = π/2 case is unstable, and so the particles will naturally orient themselves
to lie in the plane of the waves. However, when inertia is introduced (as it is in these experiments), the stability of
these orientations may change.

The out-of-plane orientation of spheroids is known in the literature on particles in shear flows as log-rolling, in
part because particles are observed to rotate about their symmetry axis which, in this orientation, is aligned with the
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FIG. 11. PDFs of the apparent aspect ratio Γobs of large disks with (a) β = 1.005 and (b) β = 1 for different values of the
nondimensional wave shear ka(z), as indicated by the shading. Data are combined from all three waves cases over the entire
experimental record. The dashed line indicates the actual aspect ratio of the particles.
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FIG. 12. PDFs of the apparent aspect ratio Γobs of small disks with (a) β = 1.005 and (b) β = 1 for different values of the
nondimensional wave shear ka(z), as indicated by the shading. Data are combined from all three waves cases over the entire
experimental record. The dashed line indicates the actual aspect ratio of the particles.

vorticity axis. Shear flows are, however, rotational, whereas surface gravity waves are not; thus, we may expect to see
different behavior here. To check for log-rolling, we marked our disks with a cross that could be seen in our images.
However, unlike in the shear flow case, we did not observe evidence of log-rolling: over the course of the experiments,
only a small drift in the orientation of the cross was observed on time scales much longer than the wave period.

Just because the particles did not rotate about their symmetry axis, however, does not mean that they did not
sometimes orient orthogonal to the plane of the waves. To quantify this effect, we measured the apparent particle
aspect ratio Γobs as observed in the images. Γobs = 1 corresponds to a particle aligned orthogonal to the wave plane,
since both the rods and disks had circular cross sections. Γobs values closer to the actual aspect ratio of the particle
Γ, however, mean that the particle is aligned in the plane of the waves.

We show PDFs of Γobs for large disks in fig. 11 and for small disks in fig. 12. In both cases, we include data for both
negatively buoyant and neutrally buoyant particles, as well as for particles with different values of the wave shear
ka(z). Neutrally buoyant disks have a strong tendency to align orthogonal to the wave plane for all values of ka(z).
There is more variation with the wave strength for negatively buoyant disks; both large and small negatively buoyant
disks are more likely to orient out of plane for higher values of ka(z). These results suggest that waves stabilize the
out-of-plane orientation for these particles, and that settling destabilizes it. It appears that it is the finite size of the
particles that leads to this effect, since in the neutrally buoyant case, finite size is the only difference between the
experimental conditions and the theory that predicts that this position is unstable. Finally, we note that while we
show data here only for disks, we also observed examples of rods orientated out of plane. However, as they are more
difficult to measure in this orientation due to their small cross-sectional area, our data for out-of-plane rods is quite
noisy.

We also observe that transitions occur in the data in fig. 11(a) and (b) and fig. 12(a) between particles aligned out
of plane and in the plane of the waves. As we described in section III D, we can interpret ka(z) to form a shear particle
Reynolds number Res which can then be related to similar transitions to log-rolling seen in oblate particles in shear
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flow. The majority of particles are in the log-rolling orientation in our experiments for Res ≥ 30 for neutrally buoyant
large disks, Res ≥ 100 for negatively buoyant large disks, and Res ≥ 45 for negatively buoyant small disks. It should
be noted that these values of Res are not directly comparable to values in the shear flow literature because in this
case the particles feel an oscillating shear flow. However, the overall trends agree with the work of Rosén et al. [17]
who found that small oblate particles were stabilized in their log-rolling mode in steady shear flow with intermediate
Res values, and that the effect of both small particle and fluid inertia acted to stabilize the log-rolling mode.

These data show that waves can stabilize negatively buoyant, settling disks in the log-rolling orientation. The
log-rolling orientation presents the particle’s minimum surface area in the vertical direction. In the absence of flow,
these particles tend to maximize their vertical drag, but the waves can instead orient them such that their vertical
drag is minimized. This is an important result in the context of predicting in situ settling velocities of particles in
the ocean.

V. CONCLUSIONS

Our experimental findings both confirm and expand on our previous theoretical results for the behavior of non-
inertial particles under surface gravity waves. We find that finite-sized particles that are nearly neutrally buoyant
tend to adopt either their wave-preferred angle or their settling-preferred angle; which of these angles dominates the
dynamics is controlled by the wave strength and the particle density. We also find, though, that increased wave
strength leads to a larger angular spread about this preferential orientation. Finally, we show that waves can stabilize
out-of-plane orientations for finite-sized disks, contrary to theoretical results for non-inertial spheroids. However, this
orientation is destabilized by settling.

Our results have potentially significant results for predicting the transport of non-spherical particles in wave-
dominated flows, such as those in the upper ocean, since particle orientation is coupled to translation through drag
and lift forces. Accurately accounting for the dynamical biases we have found in the particle orientations is therefore
essential for predicting the residence time of a particle in the water column and thus the horizontal distance it can
be transported. We anticipate that these effects will have important ramifications for the future modeling of, for
example, the dispersion of marine microplastics.
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