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Abstract

Evaporative loss of a volatile solvent can induce concentration inhomogeneities that give rise

to spatial gradients in surface tension and subsequent solutocapillary Marangoni flows. This phe-

nomenon is studied in the context of ultrathin liquid films resting atop curved, convex substrates in

contact with a fluid reservoir. Experiments are conducted with low-molecular-weight polydimethyl-

siloxane (silicone oil) mixtures composed of a volatile solvent and trace amounts of a nonvolatile

solute. A theoretical model based on the thin-film approximation is developed, incorporating the

effects of evaporative mass loss, gravity, capillarity, van der Waals forces, species diffusion, and

Marangoni stresses. The spatiotemporal evolution of this system is studied by modulating the

rate of evaporation of the volatile species and the bulk solute volume fraction in the mixture.

The experiments and accompanying numerical simulations reveal that both Marangoni stresses

and stabilizing van der Waals interactions between the substrate and the free surface can induce

flow reversal and film regeneration. Their relative contribution is modulated by the solutocapillary

Marangoni number, which is proportional to the bulk concentration of non-volatile species in the

mixture. Furthermore, it is revealed that increasing the rate of evaporation enhances the volumetric

flow rate from thicker, solvent-rich areas towards thinner, solute-rich regions of the film. Although

quantitative differences between the theory and the experiments are observed within certain ranges

of the controlled parameters, the model qualitatively reproduces the flow regimes observed in the

experiments and elucidates the complex interplay among the various physical forces.
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I. Introduction

Solutocapillary Marangoni flows arise when a non-uniform distribution of chemical species

in solution creates gradients in surface tension. Perhaps the most well-known example is the

“tears of wine” phenomenon, in which surface-tension gradients are induced by a concen-

tration imbalance of water and ethanol [1, 2]. Solutal Marangoni flows are also prevalent

in spin-cast polymer films [3], thin coatings [4], and paints [5–7]. Understanding how these

flows couple to other physical processes, such as evaporation and pressure-driven flow, has

both fundamental and practical values [8, 9]. In the coating application, for example, it

is often desirable to apply smooth, homogeneous liquid films that dry uniformly. However,

there are instances in which defects such as craters and ridges form as a result of non-uniform

drying [4–7]. Spatial inhomogeneities in species concentration are established due to the dif-

ferent rates of evaporation of each component in the mixture. Since surface tension depends

on the local species concentration at the interface, concentration gradients in turn induce

surface-tension gradients and subsequent Marangoni flows.

Early theoretical and experimental studies were conducted in an effort to understand

the dominant mechanisms that give rise to surface-tension gradients in drying paint lay-

ers. An experimental study on the leveling kinetics of decorative paints was conducted by

Overdiep [5], who identified solvent evaporation as the driving force for the development of

inhomogeneities in the applied layer thickness. These effects were also theoretically stud-

ied by Howison et al. [6], Evans et al. [7], and Eres et al. [4], who derived mathematical

models based on classical lubrication theory for paints consisting of a volatile solvent and a

non-volatile resin. Since the resin has, in these cases, a higher surface tension than the sol-

vent, Marangoni stresses drive flow from thicker, solvent-rich regions of the film to thinner,

resin-rich areas. In addition to evaporation and solutocapillarity, the effects of viscosifica-

tion, solvent diffusivity, gravity, and capillarity were incorporated. Simulations for periodic

geometries were conducted using initial layer thicknesses on the order of tens of microns and

initial resin concentrations of around 50 vol%.

Evaporation-induced Marangoni stresses can give rise to flow reversal and instability in

thin liquid films. Hu and Larson discovered a reversal of the “coffee-ring effect,” whereby a

recirculatory (thermocapillary) Marangoni flow drives solute particles towards the centerline
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of an evaporating sessile droplet [10–12]. The same effect can be achieved in multicomponent

droplets through the analogous solutocapillary mechanism [13, 14]. De Gennes was the first

to predict (using scaling arguments) a solutocapillary instability in polymeric films with a

volatile solvent [15]. Significantly, he claimed that the proposed instability should dominate

over thermally driven (Benard-Marangoni) instabilities below the glass-transition tempera-

ture, provided that the polymer does not adsorb to the solution free surface. Serpetsi and

Yiantsios later expounded upon de Gennes’ work by performing direct numerical calculations

(as well as a linear stability analysis) of a two-component liquid with a slowly evaporating

solvent [16]. Their study revealed that, at dilute solute concentrations, spatial and temporal

oscillations in the film thickness can arise due to the synergistic interplay between capillary-

pressure and surface-tension gradients. The minimum surface-tension gradient required for

the onset of flow reversal – that is, flow against the pressure gradient – is a function of the

rate of evaporation. It was found that increasing the rate of evaporation has a complex effect

on the reversal behavior, as it accelerates the formation of surface-tension gradients and the

rate of viscosification, which respectively enhances and dampens film-thickness oscillations

[4–7, 16].

The effect of substrate slope and curvature can have surprising consequences in solu-

tocapillary flows, particularly in cases where a thin film deposited on the substrate is in

contact with a bulk reservoir of liquid. Essentially, the inclined or curved geometry cre-

ates differentials in film thickness and film curvature between a thin “meniscus region” and

a thicker “bulk region,” which in turn introduce additional pressure gradients that are not

observed in horizontal films [17]. Parks and Wayner [18] developed a model to study surface-

tension-driven flow of an evaporating film composed of 98% decane and 2% tetradecane over

a heated, inclined silicon wafer. They showed that even small quantities of a non-volatile

impurity (tetradecane) could enhance surface stress, producing markedly different film pro-

files than those which would occur in pure decane. Quantitative studies of the classical tears

of wine phenomenon were later carried out by Fournier and Cazabat [2] and Vuilleumier

and coworkers [19]. In these works, curved or tilted planar glass substrates were partially

submerged in mixtures of water and ethanol at varying volume fractions. As surface tension

gradients developed due to the changing alcohol concentration, a thin liquid film (20–100 µm

in thickness) was observed to climb vertically upwards along the meniscus region, away from
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the fluid reservoir. Fanton and Cazabat later derived a simple expression for the velocity of

a fluid front climbing up a vertically inclined plane, solely under the action of evaporation-

induced solutocapillary stresses [20]. Although their model did not account for additional

pressure gradients arising from gravitational or capillary effects, their results quantitatively

agreed with experimental observations for alkane mixtures and water-ethanol systems. The

stability characteristics of evaporating thin films spreading over inclined plates in contact

with a bulk fluid reservoir were studied in detail by Hosoi and Bush [21], revealing a rich

spectrum of flow behavior (longitudinal rolls, laterally drifting ridge structures, falling tears,

and vertically propagating transverse waves).

The aforementioned studies have unequivocally demonstrated the presence and ba-

sic mechanism of evaporation-driven solutocapillary flows in relatively simple geometries.

However, several important questions remain. For one, it remains unclear at what point

Marangoni stresses begin to dominate over other physical forces (e.g., pressure forces) in the

presence of evaporation. This issue is particularly relevant in very thin films at low concen-

trations of a non-volatile impurity, wherein Marangoni stresses are expected to be relatively

weak. Virtually all of the studies mentioned above have focused on films thicker than a

micron, with solute concentrations above 2 vol%. However, many spin-coating processes and

microfabrication technologies rely on the application of highly uniform, sub-micron films

(in some cases, at very dilute concentrations of a solute species). Moreover, liquid films of

sub-micron thickness are commonly found in biological systems [22–24]. One example is the

human tear film, which has a thickness between 0.5 and 5.0 µm and an average dissolved

protein concentration of roughly 9 mg/mL (approximately 0.1 wt%) [22, 25].

Secondly, the influence of non-hydrodynamic (e.g., van der Waals) forces on the film

dynamics remains only partially understood. Such forces are expected to become significant

in ultrathin films with dimensions on the order of 100 nm [17]. Van der Waals forces mediated

through the liquid can give rise to disjoining (or conjoining) pressures between the substrate

and free surface, which can stabilize (or destabilize) the film depending on the chemical

nature of the substrate-liquid pair [26, 27]. Although there have been a plethora of studies

on the role of van der Waals forces in dewetting phenomena [28–35], the influence of a

disjoining pressure between the substrate and free surface has not yet been examined in the

context of solutocapillary phenomena.
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Finally, the role of the contact line on the dynamics of evaporating thin films remains

a significant (and, in some cases, obfuscating) issue. It is well known that the specific

nature of the contact line can have dramatic consequences on thin film flows [36, 37]. Many

interesting observations of solutocapillary phenomena are intrinsically associated with the

so-called “contact-line pinning,” an important example being the aforementioned coffee-ring

reversal phenomenon [12, 13]. Oftentimes, the contact line (and contact angle) is highly

sensitive to the experimental conditions, including substrate roughness, cleanliness, and

wettability [38], and may obscure interpretation of thin film measurements. It is therefore

desirable to eliminate the effect of the contact line in circumstances where other physical

driving forces (evaporation, surface-tension gradients, and pressure gradients) are of interest.

In this article, we utilize both experiments and theory to understand the synergistic action

of evaporation, pressure, and surface tension in creating and sustaining solutocapillary flows

in thin films of a binary liquid mixture containing trace amounts of a non-volatile species. A

previously reported apparatus, the Dynamic Fluid-Film Interferometer (DFI) [39], is utilized

in the present study to examine the evolution of thin films on spherical, convex substrates in

contact with a fluid reservoir. The geometry used in this study includes no pinned contact

lines and allows for axisymmetric liquid motions. In our experiments, a bulk liquid mixture

continuously supplies fluid to a thin film through a delicate interplay of evaporation, pressure-

driven flow (due to both capillary action and van der Waals forces), and solutocapillary

Marangoni flow. The use of a convex surface allows liquid to accumulate at the substrate

apex, providing a useful platform for tracking fluid fluxes. We analyze the importance of

these various physical effects by complementing our experiments with a numerical model

rooted in thin-film theory. In particular, we restrict our attention to stable, axisymmetric

flows, leaving consideration of unstable, asymmetric flows to a possible future study.

The remainder of the article is organized as follows. In Section II, we describe the ex-

perimental setup and introduce the relevant geometric and material properties that govern

the flow physics. Experiments are conducted using binary silicone-oil mixtures deposited

onto optical lenses of constant radius of curvature. In Section III, a theoretical model for

the spatiotemporal evolution of the film thickness and solute concentration is developed un-

der the auspices of thin-film theory. The model takes into account the effects of gravity,

capillarity, van der Waals forces, species diffusion, and Marangoni stresses. The effects of
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densification and viscosification, arising from differences in material properties between the

two liquid species, are not incorporated into the model. The resulting system of evolution

equations is solved numerically using the finite difference method. In Section IV, we compare

our experimental measurements to the theoretical predictions. A discussion of our results

is given in Section V. We find that the model qualitatively reproduces the flow regimes ob-

served in the experiments and reveals the dominant driving forces. A “tug-of-war” between

pressure-driven flow and Marangoni flow is modulated by the solutocapillary Marangoni

number, which is proportional to the concentration of non-volatile species in the mixture.

The rate of evaporation qualitatively affects these dynamics and controls the rate at which

solutocapillary stresses are generated. Quantitative differences between the theory and the

experiments are observed; we attribute these differences to the simplifying assumptions made

in the model, as well as uncertainties in the values of some of the dimensionless parame-

ters. Suggestions for improvements of the model, directions for future study, and concluding

remarks are given in Section VI.

II. Experimental

A. Apparatus

Experiments are carried out using the Dynamic Fluid-Film Interferometer (DFI), a

custom-built apparatus [39]. The DFI, shown in Figure 1a, was slightly modified from that

which is described in [39] to better accommodate experiments with solid substrates. The

setup consists primarily of a Delrin chamber, which is filled with a silicone fluid. A spherical

UV-fused silica plano-convex lens with a radius of curvature of a = 7.6 mm (Lattice Electro

Optics UF-PX-12.5-15-532) was chosen as the substrate material in order to prevent the

oleic film from dewetting.

The substrate is initially held in place in the dome holder and the desired solution is

pipetted into the chamber. A motorized actuator (Newport TRA12PPD) vertically positions

the chamber relative to the substrate. In order to locate the air-liquid interface (the z = 0

plane), the chamber is lowered in small increments at a velocity of 0.15 mm/s, bringing the

substrate closer to the free surface. Interference patters start to appear at the interface
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Figure 1: (a) The Dynamic Fluid-Film Interferometer (DFI), a custom-built apparatus
[39], is used to create thin liquid films between a spherical solid substrate and an initially
planar free surface. Labeled components in the figure correspond to: 1) Delrin chamber,
2) fused-silica substrate, 3) substrate holder, 4) motorized actuator, 5) light source, 6) top
camera, 7) DFI cover. (b) Bottom: white-light interferometry is used to map color images
recorded from the top camera to film thickness profiles. Top: an image-processing script is

used to visualize the spatiotemporal evolution of the entrained liquid film.

when the dome apex lies < 4 µm below the interface. This vertical position is taken as

z = 0. The chamber is then raised until the dome apex is submerged in the liquid at a

distance of b = 0.3 mm below the planar air-liquid interface. The dome remains in place for

20 seconds, during which the user begins recording the video. At time t = 0 s, the motor

lowers the chamber by 0.35 mm at a velocity of U = 0.05 mm/s, until the substrate apex

comes to rest 50 µm above the z = 0 plane (a total transit time of t∗ = 7 s). A procedural

exception is made for the most volatile solvent (0.65 cSt, see Table I), wherein the chamber is

initially lowered by a distance of 0.33 mm to offset evaporative losses incurred during the 20 s

waiting period. The chamber is subsequently held in a fixed position for the remainder of the

experiment. Further details on the experimental protocol can be found in the Supplemental
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Material [40].

As the substrate penetrates through the air-liquid interface, it captures a thin liquid

film (Figure 1b). The interface is illuminated with a light source (CCS Inc. LAV-80SW2)

and photographed with a camera (Imaging Development Systems UI-3080CP). If the film

thickness falls below ∼ 10 µm, reflection interference leads to observable color patterns (see

Supplemental Material [40] for representative videos). These data can be used to calculate

the thickness of the interstitial fluid between the solid substrate and the air-liquid inter-

face within a 15 nm range of uncertainty (Figure 1b). However, reflections from the glass

substrate’s surface only allow us to accurately determine film thicknesses above 90 nm. A

cover with acrylic side walls is placed around the entire setup to minimize film thickness

fluctuations associated with sporadic convection in the upper air phase. The cover has a

mesh top to allow for evaporation throughout the course of the experiment.

In order to determine the minimum film thickness deposited over the glass substrate, addi-

tional experiments were conducted for pure silicone oils using ellipsometry (Horiba UVISEL

Spectroscopic Phase Modulated Ellipsometer), an optical technique that measures the change

in polarization of light as it reflects and transmits through different layers of a stratified sam-

ple. In these experiments, the spherical UV-fused silica substrate was entirely submerged in

a bath of pure, volatile silicone oil; the glass substrate was cleaned with acetone and plasma

treated (Diener Pico oxygen plasma cleaner) prior to all ellipsometric measurements. Some

of this oil was then pipetted out until the top surface of the lens was exposed to the air,

capturing a microscopic film of oil that was allowed to evaporate to nanoscopic dimensions.

The bottom portion of the lens remained submerged in the oil bath, providing a bulk fluid

reservoir and mimicking the experimental conditions of the DFI. The thickness of the cap-

tured oil film was determined from the difference between measurements before and after

immersion in the silicone oil. Sample ellipsometric data is presented in the Supplemental

Material [40].

B. Silicone-oil mixtures

Binary mixtures of low-molecular-weight silicone oils (polydimethylsiloxane, or PDMS)

are chosen as model liquids due to their good chemical stability and Newtonian behavior.
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During an experiment, the temperature of the silicone oils was measured to be 27◦C. This

measurement is slightly higher than room temperature due to the radiant heat generated

by the light source (the light intensity was not varied throughout all experiments). A ther-

mal camera (FLIR T650sc with close-up IR lens, 5.8 × (100 µm)) was used to show that

temperature variations at the liquid-air interface, which can potentially induce undesired

thermocapillary flows, are absent (see [41] and Supplemental Material [40] for thermocapil-

lary data).

Some relevant physical properties of the silicone oils are presented in Table I. Important

material properties, including the kinematic viscosity ν, dynamic viscosity µ, density ρ,

surface tension γ, and refractive index n are obtained from data sheets provided by the

supplier. The refractive index of the volatile component was used for all film thickness

calculations, since changes in n caused by concentration variations have a negligible effect

on the calculated film thicknesses. A human error of ±15 nm (for films thicker than 100 nm)

has been previously estimated by Frostad and coworkers based on the minimum band spacing

in the interpreted color interference pattern [39].

In order to characterize the volatility of each oil, separate measurements are performed

(see Supplemental Material [40] for evaporation data). The Delrin chamber was filled with

a pure oil and exposed to the light source. The total liquid mass was recorded as a function

of time, from which the total mass flux (per unit area of free surface) was calculated. By

dividing the measured mass flux by the liquid density, the volumetric flux per unit area

E was computed. This quantity is reported in Table I for different oils. For the liquids

studied, an increase in solvent viscosity of 0.5 cSt approximately corresponds to an order of

magnitude reduction in the evaporative velocity.

Three different binary liquid mixtures consisting of a volatile solvent (ShinEtsu DM-Fluid)

and a non-volatile solute (Clearco PSF) are used in the experiments. As is common practice

in industry, each silicone oil will be hereafter identified using the value of its kinematic

viscosity (in units of centistokes, or cSt). The solvent/solute pairs used in the experiments

are 0.65 cSt/5.00 cSt, 1.00 cSt/5.00 cSt, and 1.50 cSt/10.0 cSt. The bulk volume fraction of

the solute species is denoted by φ∞ and is varied in the range 0.01%-0.50%. Evaporation-

driven solutocapillary flows are studied by varying φ∞ (by changing the fraction of the

high-molecular-weight species in the mixture) and E (by exchanging out the solvent) in
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Table I: Physical properties of silicone oils. The kinematic viscosity ν, dynamic viscosity µ,
density ρ, surface tension γ, and refractive index n are obtained from data sheets supplied by
the manufacturer (at 25◦C). The evaporative velocity E was measured at liquid temperatures

of 27◦C.

ν µ ρ γ n E Supplier

cSt g/(m·s) kg/m3 mN/m µm/s

0.65 0.49 760 15.9 1.375 1.3 ShinEtsu DM-Fluid

1.00 0.82 818 16.9 1.382 0.13 ShinEtsu DM-Fluid

1.50 1.28 852 17.7 1.387 0.023 ShinEtsu DM-Fluid

5.00 4.58 915 19.7 1.396 0.0001 Clearco PSF

10.0 9.35 935 20.1 1.399 – Clearco PSF

the experiments. Increasing φ∞ has the effect of enhancing Marangoni stresses induced by

gradients in surface tension, whereas E controls the rate of evaporation.

III. Theoretical

A. Governing equations

A model for the spatiotemporal evolution of the evaporating liquid film over a curved

substrate is formulated under the auspices of lubrication theory. A schematic of the model

geometry, consisting of a solid sphere of radius a = 7.6 mm submerged in a binary liquid

mixture with a free surface, is shown in Figure 2. The origin is positioned in the plane of the

undeformed free surface, directly above the sphere’s center. A cylindrical coordinate system

(r, θ, z) is adopted, where r is the radial distance from the centerline, θ is the azimuthal angle,

and z is the axial distance from the undeformed plane. Gravity points in the −z direction

and has acceleration g = 9.8 m/s2. In order to replicate the experiment, the position of the

sphere apex z = −hs(t) is advanced in a ramp-hold sequence,

hs(t) = b− U [t− (t− t∗)H(t− t∗)], (1)
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Figure 2: Schematic of the model geometry.

where b = 0.3 mm, U = 0.05 mm/s, t∗ = 7 s, and H(t) is the unit step function. At times

t < 0, the apex of the sphere is held fixed at a vertical height z = −b. At t = 0, the sphere

translates upward with constant velocity U . The film thins through the translation until the

sphere apex reaches its final position z = Ut∗ − b at t = t∗, after which thinning continues

as the solvent evaporates with characteristic flux E.

In the experiments, the substrate translates slowly relative to the time scale of free-surface

shape relaxation – i.e., the the capillary number Ca = µU/γ0, calculated using the solvent

viscosity µ and surface tension γ0, is typically of O(10−6) (see Table II). Consequently, the

thickness of the film that is captured at t = t∗ is small compared to the initial separation b.

Our numerical calculations indicate that the thickness of this captured film scales with a
√
Ca,

in agreement with scaling arguments made by Frostad and coworkers [39]. We therefore

denote the a characteristic “captured-film thickness” by h∗ = a
√
Ca. Crucially, lubrication

theory is expected to give a good approximation of the flow physics for times t ≥ 0 so long

as the ratios b/a and h∗/a =
√
Ca are both small compared to unity (in our experiments,

b/a = 0.04 and h∗/a = 0.001–0.002).

We assume that the system remains rotationally symmetric about the z axis, so that

gradients with respect to θ may be neglected. Under the lubrication approximation, the

evolution of the film thickness h(r, t) and solute-species concentration φ(r, t) is governed by
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the local mass balance,

∂h

∂t
+

1

r

∂

∂r

[

rh

(

h

2µ

∂γ

∂r
− h2

3µ

∂p

∂r

)]

= −E(1 − φ), (2)

and species mass balance,

∂ (hφ)

∂t
+

1

r

∂

∂r

[

rhφ

(

h

2µ

∂γ

∂r
− h2

3µ

∂p

∂r
−D

∂ log φ

∂r

)]

= 0, (3)

where µ is the solvent viscosity, D is the solute-species diffusivity, γ(r, t) is the surface tension,

and p(r, t) is the dynamic pressure. Under isothermal conditions, the surface tension is solely

a function of the chemical composition of the free surface. We assume here that γ is related

to φ by the simple linear law,

γ = γ0 + (γ1 − γ0)φ, (4)

where γ0 and γ1 are the surface tensions of the pure solvent (φ = 0) and pure solute (φ = 1),

respectively. Thus, γ can be eliminated from the previous equations by use of (4). A balance

of normal stresses at the upper free surface yields the following expression for the pressure:

p = γ0

[

2

a
− 1

r

∂

∂r

(

r
∂h

∂r

)]

+ ρg(h− h∞)− A

6πh3
, (5)

where ρ is the solvent density, A is the Hamaker constant, and

h∞(r, t) = hs(t) +
r2

2a
− E(1− φ∞)t (6)

is the parabolic approximation of the film thickness in the far field (recall that hs is given

by (1)). Here, the “far field” corresponds to the bulk fluid region where the depth is large

compared to the thin-film region. In (5), we have approximated the London-van der Waals

force by a disjoining pressure acting on the upper free surface, Π = −A/(6πh3). This

expression applies to non-ionic liquid films with thicknesses & 10 Å resting atop high-energy

surfaces, such as glass [27, 32, 33, 42]. The initial and boundary conditions for (2), (3), and
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(5) are,

at t = 0 : h = h∞, φ = φ∞, (7a)

at r = 0 :
∂h

∂r
= 0,

∂φ

∂r
= 0,

∂p

∂r
= 0, (7b)

as r → ∞ : h = h∞, φ = φ∞, p = 0. (7c)

A complete derivation of the preceding equations can be found in the Supplemental Material

[40].

Some discussion of the physical meaning of the terms appearing in (2)-(5) are in order.

Solvent evaporation, which appears as a “sink” on the right-hand side of (2), concentrates the

solute φ at a rate E(1−φ)/h. The normal stress balance (5) prescribes the dynamic pressure

p in the liquid, which contains contributions due to capillarity, gravity, and van der Waals

forces. Capillary forces play a role wherever there are variations in surface curvature, which

naturally appear in this geometry (the free surface conforms to the curvature of the substrate

near the centerline, whereas it flattens in the far field). Gravitational forces (modulated by

the force density ρg) are necessary to weigh down the surface in the far field, or else the shape

of the free surface would not be bounded [43]. However, gravity plays a comparably weaker

role (relative to capillarity and van der Waals forces) in the vicinity of the centerline, where

the film is much thinner. For the air-silicone oil-glass system, the Hamaker constant A is

positive and the resulting disjoining pressure Π is negative, which has the effect of drawing

fluid into films that become precipitously thin. A positively valued Hamaker constant A > 0

corresponds to complete wetting of the substrate by the liquid film, denoting a repulsive

interaction between the substrate and the free surface. Thus, London-van der Waals forces

act to stabilize the film, preventing the onset of dewetting. The terms appearing inside

the parentheses in (2)-(3) have units of a volumetric flux per unit distance. The pressure

flux −[h2/(3µ)](∂p/∂r), Marangoni flux [h/(2µ)](∂γ/∂r), and diffusive flux −D(∂ log φ/∂r)

compete in advecting the total volume per unit area of solvent (1− φ)h and solute φh.

At this point, it behooves us to address some of the simplifying assumptions made in the

above model. Firstly, we have assumed a rather simple evaporation model where the rate

of evaporation −E(1 − φ) depends linearly on the solvent volume fraction with a constant

coefficient. A more sophisticated (albeit more complicated) model would consider the coupled
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transport of the volatile species in both the liquid and vapor phases, from which the rate

of evaporation is calculated from the concentration profiles at the free surface. Secondly,

we have approximated the density and viscosity of the mixture by the solvent properties

ρ and µ, respectively, which precludes the possibility of spatial variations in density and

viscosity induced by concentration inhomogeneities. Even though prior work has examined

the dependence of viscosity on mixture composition [4, 6, 7], we decide to neglect these

contributions and exclusively focus on the effects of changing φ(r, t) on the Marangoni flux.

We have similarly assumed the surface tension γ to be well approximated by γ0 in the first

term on the right-hand side of (5). These approximations are expected to be valid at dilute

solute concentrations, φ ≪ 1. Thirdly, the simple mixture rule (4) does not necessarily give

an accurate measure of the true variation in γ with respect to changes in φ; it only provides

a linear interpolation between the two limiting values at φ = 0 and 1. This linearized

relationship is commonly used in the literature [3, 4, 16, 18] and captures the leading-

order effects induced by changes in surface tension. Finally, we have incorporated species

diffusion and intermolecular forces by introducing the additional parameters D and A, which

are not known and must be estimated. Despite these simplifications, the initial-boundary-

value problem (2)-(7) includes contributions from evaporation, Marangoni stresses, species

diffusion, capillarity, gravity, and intermolecular forces in the coupled, nonlinear transport

of h(r, t), φ(r, t), and p(r, t). Thus, we expect the model to qualitatively capture physical

phenomena observed in the experiments.

B. Scalings and dimensionless parameters

The preceding equations are cast into dimensionless form through a proper choice of

characteristic concentration, length, velocity, and pressure scales. The obvious choice for a

concentration scale is φ∞, the bulk solute volume fraction. Since we are most interested in

the film dynamics after cessation of the sphere’s motion (t ≥ t∗), the captured-film thickness

h∗ = a
√
Ca = a

√

µU/γ0 is a natural choice of transverse (axial) length scale. The associated

lateral (radial) length scale is
√
ah∗, chosen based on the curvature of the substrate so that

the lubrication approximation is strictly valid in the region where r = O(
√
ah∗). Balancing

the pressure with the capillary stress in (5) then yields γ0/a as a characteristic pressure
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scale. Finally, lubrication theory yields (h∗)3(γ0/a)/(µah
∗) = U as the (axial) velocity scale.

Interestingly, the substrate velocity U emerges as the proper velocity scale in spite of the fact

that the motion of the substrate ceases after t = t∗. This is a direct consequence of the fact

that the captured-film thickness h∗ depends on the rate at which the substrate penetrates

the z = 0 plane.

Using the aforementioned scales, we introduce the following dimensionless variables:

φ =
φ

φ∞

, h =
h

h∗

=
h

a
√
Ca

, r =
r√
ah∗

=
r

aCa1/4
,

p =
h∗2p

µUa
=

ap

γ0
, t =

Ut

h∗

=

√
Caγ0t

µa
,

(8)

where we have eliminated h∗ = a
√
Ca in favor of the capillary number Ca = µU/γ0, which

contains the dependence on the substrate velocity U . By introducing (8) into (1)-(7), we

obtain the following dimensionless equations:

∂h

∂t
+

1

r

∂

∂r

[

rh

(

Mah

2

∂φ

∂r
− h

2

3

∂p

∂r

)]

= −Ev(1− φ∞φ), (9)

∂(hφ)

∂t
+

1

r

∂

∂r

[

rhφ

(

Mah

2

∂φ

∂r
− h

2

3

∂p

∂r
− 1

Pe

∂ logφ

∂r

)]

= 0, (10)

p = 2− 1

r

∂

∂r

(

r
∂h

∂r

)

+ Bo(h− h∞)− Ha

h
3
, (11)

at t = 0 : h = h∞, φ = 1, (12a)

at r = 0 :
∂h

∂r
= 0,

∂φ

∂r
= 0,

∂p

∂r
= 0, (12b)

as r → ∞ : h = h∞, φ = 1, p = 0, (12c)

where h∞(r, t) = b− t + (t− t
∗

)H(t− t
∗

) +
r2

2
− Ev(1− φ∞)t, (13)

and b = b/(a
√
Ca), t

∗

=
√
Caγ0t

∗/(µa). In (9)-(13), we have introduced the following
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dimensionless parameters:

Ca =
µU

γ0
(capillary number), (14a)

Bo =
ρgah∗

γ0
=

ρga2
√
Ca

γ0
(Bond number), (14b)

Ha =
Aa

6πh∗3γ0
=

A

6πa2Ca3/2γ0
(dimensionless Hamaker constant), (14c)

Pe =
Ua

D
(Peclet number), (14d)

Ma =
φ∞(γ1 − γ0)h

∗

µUa
=

φ∞(γ1 − γ0)
√
Ca

µU
(Marangoni number), (14e)

Ev =
E

U
(dimensionless evaporative velocity). (14f)

A description of the physical meaning of the dimensionless groups (14) is in order. The

capillary number Ca defines the ratio of viscous stresses to capillary (i.e., surface-tension)

stresses, and thus gauges the ability of the free surface to deform in response to the motion

of the substrate. The Bond number Bo is the square of the ratio between the characteristic

radial length scale
√
ah∗ and the capillary length

√

γ0/(ρg), which in turn sets the distance

from the centerline at which gravitational forces become relevant to surface deformation.

The dimensionless Hamaker constant Ha quantifies the importance of van der Waals forces

(relative to capillary forces) in stabilizing the liquid film from rupture. The Peclet number

Pe gauges the relative rates of species advection and diffusion. The Marangoni number Ma

is the ratio between solutocapillary stresses induced by surface-tension gradients and viscous

stresses induced by fluid flow. Finally, the dimensionless evaporative velocity Ev gauges the

relative rates of evaporation and the lateral fluid flux.

Values of the dimensionless parameters (14) used in the experiments are reported in Table

II. The parameters a, b, U , µ, ρ, γ0, γ1, E, and φ∞ are either measured or controlled in the

experiments (see Section I). The other parameters D and A are estimated based on previous

literature. The species diffusivity D ≃ 10−10 m2/s is extrapolated from data for different

high-viscosity silicone oil mixtures [44]. Separately performed ellipsometry measurements

indicate that the minimum film thickness lies in the range 10–20 Å for pure, evaporating

1.00 cSt silicone oils (see Supplemental Material [40]). For disjoining pressures dominated
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Table II: Values of the dimensionless parameters used in the experiments, tabulated for
different silicone-oil mixtures (see Table I for oil properties). In all experiments, a = 7.6 mm,
b = 0.3 mm, and U = 0.05 mm/s. The species diffusivity is estimated to be D ≃ 10−10 m2/s.

The Hamaker constant is estimated to be A ≃ 10−19 J.

Solvent: 0.65 cSt 1.00 cSt 1.50 cSt

Solute: 5.00 cSt 5.00 cSt 10.0 cSt

Ca 1.6× 10−6 2.4× 10−6 3.6× 10−6

Bo 3.4× 10−2 4.3× 10−2 5.2× 10−2

Ha ∼ 10−6 ∼ 10−6 ∼ 10−6

Pe ∼ 103 ∼ 103 ∼ 103

Ma/φ∞ 1.9× 102 1.1× 102 7.1× 101

Ev 2.6× 10−2 2.6× 10−3 4.6× 10−4

by van der Waals forces and taking into consideration the approximate molecular sizes of

our silicone oils, the Hamaker constant for our system is estimated to be approximately

A ≃ 10−19 J [27, 42].

C. Numerical method

Equations (9)-(12) are integrated numerically using the finite difference method. Equation

(10) is weakly parbolic at large Pe. As such, special care must be taken in the discretization

of this equation so as to avoid numerical instabilities associated with sharp gradients in φ.

We found that solving for g = logφ instead of φ removes such instabilities. This approach

was inspired in part by theoretical progress in other fields, including turbulence [45] and flow

of polymeric liquids [46, 47].

The nonlinear partial differential equations (9)-(11) are first linearized and subsequently

discretized onto a radial grid. A coordinate transformation was used in order to cluster

grid points near r = 0. Partial derivatives with respect to r are replaced by second-order

accurate difference analogs; time-advancement is carried out using a Crank-Nicholson scheme

with adaptive control of the step size. At each time level, the linearized equations form

a bipentadiagonal system, which can be efficiently solved by direct elimination. Newton

iteration is carried out until the solution converges (a typical tolerance is the square of

the time step size). Verification tests were performed to ensure that the model reproduced
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Figure 3: (Color online) Comparison of the numerical computations (dashed lines) to
experimental measurements (solid lines) for pure silicone fluids in the absence of evaporation.
Lines and error bars in the experimental data represent the mean and standard deviation,
respectively, of repeated measurements (duplicates or triplicates). Blue data: ν = 1 cSt,
U = 0.05 mm/s, t∗ = 7 s, and b = 0.3 mm. Green data: ν = 1 cSt, U = 0.15 mm/s, t∗ = 2.3

s, and b = 0.3 mm. Red data: ν = 5 cSt, U = 0.15 mm/s, t∗ = 2.3 s, and b = 0.3 mm.

analytical solutions in the small deformation limit (a2Ca/b2 ≪ 1) (see [48] and Supplemental

Material [40] for additional details on the numerical method and the small deformation

analysis).

The numerical model was validated against experiments with pure silicone oils. Evap-

oration was suppressed by placing a glass cover directly over the Delrin chamber. In this

simplified system, the model reduces to the solution of (9) and (11) for the film thickness

h(r, t) with φ = 0. The substrate velocity was varied from U = 0.05 to 0.15 mm/s to obtain

a range of Ca. Figure 3 shows a plot of the centerline film thickness h0 ≡ h(0, t) for three

parameter sets, wherein quantitative agreement between the experiments and theory was

achieved at long times. At short times, there is a discrepancy in the initial film thickness,

due to difficulty in interpreting interference patterns at large thicknesses.
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IV. Results

Below, we present our experimental and theoretical results. Our main objective is to

determine the effects of varying the solute concentration (i.e., the Marangoni number Ma) and

solvent volatility (i.e., the dimensionless evaporative velocity Ev) on the thin-film dynamics.

A. Film profiles

Figure 4 shows experimental measurements of the dimensionless film thickness h = h/h∗

plotted against the dimensionless radius r = r/
√
ah∗ at different time points t = tU/h∗ = 50,

160, 310, and 700, along with the corresponding interferometric patterns. The measurements

were obtained using a 1.00 cSt/5.00 cSt mixture (Ev = 2.6× 10−3) at three different solute

concentrations (Ma = 0.011, 0.107, and 0.320). Only axisymmetric profiles are observed in

the experiments. Azimuthal instabilities were not observed, although it is well known that

problems related to the spreading of thin films due to surface tension gradients are often

susceptible to hydrodynamic instabilities [19–21, 49–53]. Asymmetries are only observed

at higher Ma or when the rate of solvent evaporation is instanteneously suppressed (see

Supplemental Material [40] for examples of instabilities observed).

Figure 5 shows theoretical predictions of the dimensionless film thickness h, solute concen-

tration φ, and dimensionless dynamic pressure p = ap/γ0 for the same parameters shown in

Figure 4. Many of the same features observed in the experimentally measured film-thickness

profiles are reproduced in Figure 5. The measured and simulated profiles elucidate three dis-

tinct regimes of flow. Namely, at low Ma (van der Waals regime) the film thins to nanoscopic

dimensions and remains nearly uniform; at intermediate Ma (intermediate regime), a mound

forms at the centerline, surrounded by a nanoscopic fluid layer, and grows over time; at high

Ma (capillary regime), the film remains microscopically thick and grows over time. Further

details regarding the three regimes are provided in Sections IV.A.1-3, below.

Additional experiments were conducted with 0.65 and 1.50 cSt solvents (see Supplemental

Material [40] for representative videos). Varying the rate of evaporation changes the range

of Ma where each of the three regimes is observed. Most notably, it was observed that

incrementing the rate of evaporation broadens the range of Ma in the intermediate regime,
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Figure 4: Time series of experimental film thickness profiles are plotted for 1.00 cSt/5.00
cSt blends (Ev = 2.6× 10−3) at Ma = 0.011 (φ∞ = 0.01%), Ma = 0.107 (φ∞ = 0.10%), and
Ma = 0.320 (φ∞ = 0.30%), as determined experimentally. Snapshots of the interferometric
patterns, viewed from the top camera, are shown at the corresponding times and compo-
sitions. Experiments show the presence of three distinct flow regimes: the van der Waals
regime (solid line), the intermediate regime (dashed line), and the capillary regime (dotted

line).

where a viscous mound is stabilized by a nanoscopically thin film. We hypothesize that

this occurs because the time scale of solvent depletion due to evaporation becomes smaller

compared to the diffusive timescale (Pe−1 << Ev), attenuating the effects of diffusion in

homogenizing concentration gradients. Larger values of Ev also lead to more rapid fluid

depletion, which ensures that a nanoscopic film will be present at higher Ma.
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Figure 5: Time series of the dimensionless film thickness h(r, t), solute concentration φ(r, t),
and dimensionless dynamic pressure p(r, t) profiles at three different Marangoni numbers
Ma = 0.011 (φ∞ = 0.01%), Ma = 0.107 (φ∞ = 0.10%), and Ma = 0.320 (φ∞ = 0.30%),
as determined theoretically. The other dimensionless parameters used in the numerical
calculations are Ca = 2.4 × 10−6, Pe = 103, Bo = 4.3 × 10−2, Ha = 1.6 × 10−6, and

Ev = 2.6× 10−3.

1. Van der Waals regime - evaporation to a nanoscopic film

At low Ma (Ma = 0.011 in Figures 4 - 5), the liquid evaporates and forms a nearly uniform

film of nanoscopic dimensions, but never dewets the substrate (dark blue color in Figure 4).

Van der Waals forces are expected to play a significant role in this region due to the small

separation between the substrate and free surface. A weak, radially inward flux draws fluid

towards the centerline, which stabilizes the film.

Ellipsometric measurements reveal that the thickness of the nanoscopic film lies between

10 and 20 Å for a pure 1.00 cSt silicone oil. These results confirm that the thin fluid film

present in the van der Waals regime is still subject to long-range forces, and that modeling
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these interactions via a disjoining pressure of the form given in equation (5) is an acceptable

approximation. If the film thins to molecular dimensions (. 10 Å), short-range interactions

such as steric effects come into play and quantitative formulas for these interactions are

unavailable [32, 42].

The coupled evolution of φ and p in Figure 5 elucidates the dominant driving forces during

film evolution. At Ma = 0.011 in Figure 5, evaporation of the low-molecular-weight solvent

enriches the high-molecular-weight solute near the centerline (φ = 1 at later times). Solute

concentration gradients become very steep within a narrow “transition region” separating the

thin film from the bulk. Despite these steep gradients, the Marangoni flux Ma(h/2)(∂φ/∂r)

is relatively weak due to the smallness of h; solutocapillary forces alone are not responsible

for stabilizing the film. Concomitantly, the dimensionless pressure p drops to negative values

in the thin-film region (where h nearly vanishes), indicating a strong disjoining pressure due

to the intermolecular interaction between the substrate and the free surface. The pressure

flux due to intermolecular forces −(Ha/h
2

)(∂h/∂r), which scales inversely with h
2

, is large

compared to the aforementioned Marangoni flux, indicating that disjoining pressure is re-

sponsible for stabilizing the film at low Ma. At long times, the theory predicts a dimensional

apical thickness of 5 nm for Ma = 0.011. This value is in agreement with the nanoscopic

film thickness as measured via ellipsometry.

2. Intermediate regime - formation of a solute-rich mound stabilized by a

nanoscopic film

At intermediate Ma (Ma = 0.107 in Figures 4 - 5), the film initially evaporates and forms

a nanoscopic layer of thickness comparable to that in the van der Waals regime. After some

time (t = 300 - 500), a viscous mound (micrometers in thickness) forms at the centerline

above the substrate apex, surrounded by a nanoscopically thin fluid layer about 150 µm

wide. The thickness of this nanoscopic layer increases from about 10− 20 Å prior to mound

formation to ≃ 100 nm after mound formation, as evidenced in the change in color from

dark to lighter blue in Figure 4. The mound continues to grow in height and volume over

time.

As Ma is increased, solute enrichment near r = 0 is diminished and different contributions
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to the dimensionless pressure p come into play. Namely, positive pressures (p > 0) indicate

strong capillary forces, whereas negative pressures (p < 0) indicate strong intermolecular

forces. On examining the intermediate-Ma case (Ma = 0.107 in Figure 5), it is apparent

that the formation of a microscopically thick mound results in a dominant capillary pres-

sure locally (gravity is comparably weak). This result is corroborated by our experiments,

in which the observed mounds have a spherical-cap geometry. In the thin-fluid layer sur-

rounding the mound, disjoining pressure dominates. The pressure flux forcing fluid out

of the (solute-enriched) mound and into the (solute-depleted) thin-fluid layer is offset by

the Marangoni flux drawing fluid inward, due to the gradient in the solute concentration.

Consequently, the mound volume grows as a function of time.

3. Capillary regime - rapid film regeneration

At high Ma (Ma = 0.320 in Figures 4 - 5), the mixture contains a higher fraction of the non-

volatile component and solutocapillary flows are induced at earlier times. Consequently, the

film does not have enough time to deplete to form a nanoscopic layer. Fluid is continuously

regenerated to the film, and the solute-enriched mound (defined as the region between the

apex at r = 0 and the location of minimum film thickness R at h(R, t) = hmin) forms as

a result of the balance between Marangoni and capillary forces. Moreover, the rate of film

thickening is much higher than at lower Ma (about a twofold increase between Ma = 0.107

and 0.320). Referring to the simulations in Figure 5, the pressure is completely dominated

by the capillary contribution, which results in a qualitatively different film profile. In this

regime, the film profile resembles liquid drainage between two foam bubbles, wherein a

“dimple” forms at the centerline and is surrounded by a “barrier ring” [54]. The theory

overpredicts both the centerline film thickness h0 and minimum film thickness hmin in this

regime.

B. Growth rates

In this subsection, we quantify the evolution of the centerline film thickness. Figures 6

and 7 show plots of the dimensionless centerline film thickness h0 = h(0, t)/h∗ as a func-
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Figure 6: Plot of the experimental centerline film thickness h0 = h(0, t)/h∗ against time t
for a 1.00 cSt/5.00 cSt mixture (Ev = 2.6×10−3) at several values of the Marangoni number
Ma = 0.021 - 0.320 (φ∞ = 0.02% - 0.30%). The other dimensionless parameters for a 1.00
cSt/5.00 cSt mixture are reported in Table II. Experimental data cannot be obtained for
thicknesses below the dotted line at h ≃ 7.5 × 10−3 (h ≃ 90 nm). Error bars represent the

standard deviation obtained from multiple datasets.

tion of dimensionless time t, as determined via experiment and theory, respectively. The

experiments were performed using a 1.00 cSt/5.00 cSt mixture (the same solvent/solute

combination reported in Figure 4) over a range of solute concentrations, resulting in a fixed

evaporation rate (Ev = 2.6×10−3) and a range of Marangoni numbers (Ma = 0.021 - 0.320).

Since the exact value of the Hamaker constant for our systems is unknown, the simulations

were conducted at two different values of Ha in order to obtain a range of possible film

thicknesses h0. It is important to emphasize that the experimental accuracy of the inter-

ferometer only allows us to determine film thicknesses within a 15 nm range of uncertainty

[39]; consequently, dimensionless film thicknesses below h ≃ 7.5 × 10−3 cannot be resolved

in our measurements.

Both experiment and theory indicate that increasing Ma tends to increase the rate of film
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Figure 7: Plot of the theoretical centerline film thickness h0 = h(0, t)/h∗ against time t
for several values of the Marangoni number Ma = 0.021 - 0.320 (φ∞ = 0.02% - 0.30%). The
solid lines correspond to Ha = 1.6× 10−5, the dashed lines correspond to Ha = 1.6× 10−6,
and the region in between two curves of the same color is shaded to guide the eye. The
other dimensionless parameters are Ca = 2.4 × 10−6, Pe = 103, Bo = 4.3 × 10−2, and

Ev = 2.6× 10−3, corresponding to a 1.00 cSt/5.00 cSt mixture (reported in Table II).

growth. The mechanism of acceleration was described in the previous subsection: a higher

Marangoni flux assists in the formation and stabilization of a solute-enriched mound bordered

by a nanoscopically thin film. As Ma is increased further, the rate of growth of the solute-

enriched mound increases and the nanoscopic film disappears. Similar trends were reported

by Fanton and Cazabat, wherein increasing the concentration of a non-volatile constituent

in an evaporating mixture enhanced the propagation of a liquid front via solutocapillary flow

[20].

Our numerical calculations indicate that at sufficiently high Ma (Ma = 0.213 - 0.320 in

Figure 7), the thin film bordering the mound begins to withdraw fluid from the mound at

some point during film growth. For the cases Ma = 0.213, 0.266, and 0.320 shown in Figure

7, fluid withdrawal occurs at t ≃ 590, 350, and 250, respectively, whereupon the film grows
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at a slower rate due to enhanced capillary forces. This effect is not seen in the experiments

reported in Figure 7, wherein the thin film bordering the mound is maintained over the

course of the experiment. We have performed additional experiments at higher values of

Ma (given in the Supplemental Material [40]), and have observed fluid withdrawal from the

mound into the bordering thin-film region. In these experiments, the sudden withdrawal

induces a symmetry-breaking instability near the minimum film thickness hmin, resulting in

undulations in the film thickness around the perimeter of the mound. It is important to note

that all experimental data shown in this manuscript corresponds to axisymmetric profiles,

prior to the development of any flow instability.

It is noteworthy that the growth curves shown in Figure 7 collapse onto each other at

high Ma, whence the growth of h0 becomes insensitive to changes in Ma and is mostly

controlled by the rate of evaporation (Ev). This trend is observed in the experiments at

high Ma (Figure 6, Ma = 0.213, 0.266, and 0.320), wherein the growth rates are not strongly

affected by changes in Ma. Quantitatively, the theoretical calculations slightly overpredict

the centerline film thickness h0 when Ma is large, for the particular value of Ev reported in

Figures 6 - 7.

At lower Ma, the theory underpredicts the film growth rate and thickness (about an order

of magnitude discrepancy in h0). In this van der Waals regime, the pressure profiles indicate

a dominant disjoining-pressure contribution and the solute concentration φ is not small (see

the Ma = 0.011 case in Figure 5, where φ increases to unity near r = 0). The modest film

growth at low Ma, according to the theoretical predictions, is due entirely to a pressure

gradient induced by van der Waals forces. However, the larger growth rates measured in

the experiments suggest a stronger driving force for film flow, potentially due to a stronger

Marangoni flux than that which is predicted theoretically.

It is expected that several assumptions of the model break down at low Ma due to the

fact that φ is not small locally. For example, the mixture properties cannot be accurately

approximated by the solvent properties (ρ, µ, and γ0). Between the pure solvent (φ = 0)

and pure solute (φ = 1), the fluid density can increase by at most 20%, while the viscosity

can undergo a tenfold increase. Moreover, the simple linear relationship (4) relating γ and φ

breaks down when φ is not small. The slope of the O(φ) term, which is estimated to be the

difference in surface tensions (γ1−γ0), may also be inaccurate. These errors are compounded
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Figure 8: Experimental and simulation data of the dimensionless mound volume flux
dV /dt = [1/(ah∗U)](dV/dt) against Ma for 1.50 cSt/10.0 cSt (Ev = 4.6 × 10−4), 1.00
cSt/5.00 cSt (Ev = 2.6 × 10−3), and 0.65 cSt/5.00 cSt (Ev = 2.6 × 10−2) mixtures. Other
relevant dimensionless parameters appear in Table II. The symbols W©, I©, and C© stand
for the van der Waals, the intermediate, and the capillary regimes, respectively. The solid
squares (�) correspond to experimental measurements, and the error bars represent the stan-
dard deviation obtained from multiple datasets. In all of the experimental measurements
reported, the dimensionless mound volume V increases linearly with time. For each value of
Ev in the simulations, two values of Ha are shown for comparison. Simulation data is shown
by circles (◦) for low Ha and by crosses (×) for high Ha. In the numerical computations,
V typically increases nonlinearly with time; thus, the symbols represent the finite-difference

approximant of dV /dt at t = tM , the inception point of mound formation.

by the uncertainties in D and A, which may introduce quantitative (though not qualitative)

changes to the rate of film growth.

C. Mound volume and flux

The centerline film thickness h0 gives a measure of film growth, but cannot quantify the

volumetric flux of material into the solute-enriched apical mound. For the axisymmetric

profiles considered here, we quantify the volumetric flux by defining the mound volume,

V (t) = 2π

ˆ R

0

h(r, t) r dr, (15)
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where R is the mound radius, defined by h(R, t) = hmin = minimum film thickness. We

define the time at which the mound forms (i.e., when V begins to increase as a function of

time) by t = tM , whence V (tM) = VM . The volumetric flow rate into the mound is given by

dV/dt. By mass conservation,

dV

dt
=

d(V − VM)

d(t− tM)
≈ −πR2E(1− φM) + 2πRq, (16)

where φM is the solute concentration in the mound and

q =

(

h3

3µ

∂p

∂r
− h2

2µ

∂γ

∂r

)
∣

∣

∣

∣

r=R

(17)

is the net volumetric flux per unit circumference. Equation (16) can be obtained by mul-

tiplying (2) by 2πr dr, integrating from r = 0 to R (assuming R is a weak function of t),

and approximating φ ≈ φM = constant in 0 ≤ r ≤ R (i.e., neglecting the dependence of φ

on r inside the mound volume). Thus, the rate of change of V gives an aggregate measure

of the net evaporation of solvent through the projected area πR2 and the net influx of fluid

(due to pressure and surface-tension gradients) through the perimeter 2πR. Rendering r,

t, and h dimensionless according to (8) yields the dimensionless variables V = V/[πa(h∗)2],

V M = VM/[πa(h∗)2], and tM = tMU/h∗.

Figure 8 shows experimental measurements and simulation data of the dimensionless

excess mound volume flux, dV /dt, plotted against Ma at three different values of Ev, cor-

responding to the three silicone oil blends presented in Table II. For all values of Ev, the

flow rate increases with increasing Ma, in agreement with our previous results. The data

fall within the intermediate and capillary regimes, as discussed previously. (Since little to

no mound formation is observed in the van der Waals regime, a mound volume flux cannot

be computed.) In all of the reported experimental measurements, the mound volume grows

linearly with time throughout the duration of each experiment, and thus the flux dV /dt is

approximately constant with time. By contrast, in the theoretical calculations the dimen-

sionless volume varies nonlinearly with time. The simulation values reported in Figure 8

correspond to the flux at t = tM , the inception point of mound formation. For the simu-

lation data, two values of Ha are shown for comparison, since the Hamaker constant A is

uncertain in the experimental measurements.
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The intermediate regime is where the film thins to a nanoscopic thickness, followed by sig-

nificant film regeneration and mound volume growth. In accordance with the experimental

results outlined in Section IVA, the range of Ma in the intermediate regime decreases with

decreasing evaporation rate. For all three evaporation rates, the simulations underpredict

the mound volume flux when compared to the experiments. We attribute the quantitative

differences between theory and experiment to errors associated with the simplifying assump-

tions made in the model (see Section IVB). For a given value of Ma, the mound volume flux

increases with the evaporation rate. From examining the first term on the right-hand side

of (16), it would appear that increasing Ev would result in a decreasing flow rate. However,

increasing Ev also increases the flow rate through coupling between evaporation and the

pressure- and surface-tension-driven fluxes. In other words, the direct contribution of sol-

vent evaporation to the rate of change of the mound volume is small relative to the indirect

contribution through coupling with the flux. Similar trends are seen in [4], where higher

rates of evaporation cause surface tension gradients to develop at earlier times, leading to a

faster film growth.

As Ma increases, we move into the capillary regime, where the dominant contribution to

the pressure comes from capillarity. In this regime, the theory suggests a stronger depen-

dence of dV /dt on Ma than what is observed in the experiments (Figure 8b and c). These

discrepancies are likely not associated with uncertainties in the Hamaker constant, since at

high Ma the fluxes become insensitive to Ha. However, since the evolution of the film thick-

ness and solute concentration is highly nonlinear and fully coupled, it is not clear at present

which of these simplifications are most significant.

V. Discussion

Evaporation of a pure silicone oil over a glass substrate uniformly depletes the liquid

down to a nanoscopically thin film that is stabilized by a disjoining pressure. For a binary

mixture of silicone oils, evaporation of the volatile component preferentially concentrates the

non-volatile solute in regions where the liquid film is thinnest. Thus, the thin-film region

experiences larger changes in composition as compared to the bulk. Gradients in solute

concentration in turn create gradients in surface tension that drive Marangoni flows. In the
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mixtures studied presently, the solute-rich areas have larger surface tensions because the

non-volatile solute has a higher surface tension than the solvent.

Qualitative agreement between the experiments and the theoretical predictions was ob-

tained. Namely, the dependence of the film dynamics on the solutocapillary Marangoni

number Ma and the dimensionless evaporative velocity Ev is reproduced in our model.

The theoretical results show clearly that the transitions between the different flow regimes

are distinguished by dominant contributions to the dynamic pressure and the interplay be-

tween pressure- and surface-tension-driven flows. These different regimes are “tuned” by the

Marangoni number. We found that increasing Ma increases the flux at the mound radius

and hence the rate of film growth, in accordance with previous studies [20]. The theory and

the experiments also indicate that within each regime, increasing Ev increases the rate of

film growth and the Marangoni flux through nonlinear coupling. This effect is augmented

at higher Ev because the time scale of solvent depletion during evaporation becomes small

when compared to the diffusive time scale (Pe−1 ≪ Ev). Since diffusion is incapable of

attenuating gradients in species concentration generated by the evaporating fluid, smaller

values of Ma are sufficient to generate a Marangoni flow that accumulates fluid in an apical

mound. The rate of film growth was quantified in Figures 6 - 7 (in terms of the centerline

height) and in Figure 8 (in terms of the mound volume flux).

Quantitative differences between the theory and experiments are observed. Specifically, in

the intermediate and the capillary regimes, the model respectively under and overestimates

the excess mound volume flux for a fixed evaporation rate (Figure 8). Several explanations

were given as to the failure of the model to quantitatively reproduce what is seen in the

experiments. Firstly, we assumed that the mixture properties could be replaced with prop-

erties of the solvent. This simplification is expected to hold when φ is small. However, as

is shown in Figure 5, φ can approach unity locally when Ma is small. Weak Marangoni and

diffusive fluxes prevent the mixture from re-homogenizing. Significantly, the viscosities of

the two components are not similar; it is expected that solute accumulation viscosifies the

mixture locally.

Secondly, both the evaporation model and the surface-tension model used in the present

study are simplistic. The former is an approximation of the full mass-transfer problem

involving species transport in both the liquid and vapor phases. The latter was obtained
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from a linear interpolation between the two pure-component surface tensions γ1 and γ0. The

rate of change of γ per unit increment in φ is not necessarily equal to the difference (γ1−γ0), as

is assumed here. A more accurate model would require measurements of the surface-tension

isotherms as a function of mixture concentration. Attempts to experimentally obtain this

isotherm were made on our part, in which a pendant bubble of air was suspended in a binary

silicone oil solution and the surface tension was measured as a function of composition.

However, since the relative change in surface tension with composition is quite small, an

empirical mixing rule beyond the linear formulation in (4) was not revealed.

Uncertainty in the estimated values for the binary diffusivity D and the Hamaker constant

A could also lead to a departure between experiments and the theory. Errors in the binary

diffusivity are expected to matter most when the time scale of species diffusion becomes com-

parable to the time scale in which evaporation induces gradients in species concentration. In

other words, uncertainties in D will play a larger role whenever the film thickening/thinning

dynamics are slow. This effect is more pronounced either at low rates of evaporation or at

sufficiently low Ma, when Marangoni effects are weak. Errors in the Hamaker constant A

have a greater effect in the thinner areas of the film where disjoining pressure dominates.

To address this issue, we conducted simulations at two different values of the dimensionless

Hamaker constant Ha, covering the estimated range of A for the silicone oil systems.

Lastly, the expression for the disjoining pressure used in equation (5) is only valid for

films with thicknesses & 1 nm. Near this limit, short-range interactions may come into play

that are not taken into account in our model. For example, for the parameters in this study,

the rate of evaporation is expected to dramatically decrease when the film thickness . 1 nm

[35]. These effects are expected to matter in the van der Waals regime and at low Ma prior

to mound formation in the intermediate regime.

VI. Conclusion

Experiments with binary, low-molecular-weight silicone oil mixtures reveal the presence

of solutocapillary flows in ultrathin films. Evaporative loss of the volatile solvent leads to

concentration inhomogeneities that give rise to spatial surface tension gradients. Under these

conditions, we are able to examine the interplay between the rate of evaporation and the
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bulk solute fraction of the non-volatile oil and identify three distinct regimes of behavior.

However, experimental measurements are not able to convey information regarding local

surface species concentration and the relative importance of different physical forces. Thus,

we take advantage of the lubrication approximation to develop a thin-film theory that can

simultaneously describe fluid flow and species concentration.

Our experimental and numerical results highlight several general trends. Under all con-

ditions examined, the film thickness increases for some period of time at the centerline,

against the action of gravitational and capillary forces. There are two driving forces which

can account for the flow reversal: (i) disjoining pressure due to the van der Waals interaction

between the substrate and the upper free surface when the film becomes nanoscopically thin,

and (ii) Marangoni stresses due to a solute concentration gradient at the upper free surface.

If the dimensionless evaporative velocity Ev is a control parameter (i.e., the solvent volatility

is fixed), then the extent to which these two forces contribute to flow reversal depends on the

magnitude of the Marangoni number Ma (experimentally, Ma is controlled by the amount

of solute initially added to the mixture).

The present work can be extended in several ways. Firstly, improvements to the model

(addressing some or all of the shortcomings mentioned in the discussion) could lead to a more

quantitative comparison. However, we do not expect such changes to modify the essential

physics described by our model. Second, the dependence of the flow physics on the other

dimensionless groups – e.g., Ca, Bo, Pe, and Ha – could be explored. Additionally, the effect

of evaporation in surfactant-laden flows could be investigated. In systems with soluble sur-

factants, mass loss due to evaporation could potentially induce surfactant transport towards

the interface, ultimately affecting the surface distribution of surfactant and the resulting

interfacial Marangoni stresses. Finally, it would be interesting to examine how the results of

the present work, which considers the interaction between solid-liquid and air-liquid inter-

faces, apply to a system with two air-liquid interfaces, such as the foam flows considered in

[39]. In such systems, van der Waals forces result in a conjoining pressure (a destabilizing

effect), which would presumably compete with Marangoni stresses. The reduced traction due

to the presence of two mobile surfaces is expected to qualitatively change the fluid dynamics.
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