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Abstract

Motivated by the need to understand how external fields influence the stability of

dynamic contact lines, the linear stability of gravity-driven spreading of a thin liquid

film in the presence of electric and temperature fields is studied. The film is confined

from below by a flat substrate, and from above by an air gap and another flat substrate.

An electrostatic potential difference or temperature difference can be applied between

the two substrates, and the liquid is taken to be a perfect dielectric whose surface

tension decreases linearly with temperature. Traveling wave solutions are found for

the film profile, and both electric and temperature fields influence the height of the

capillary ridge of liquid that forms near the advancing contact line. The linear stability

analysis shows that electric fields destabilize the film front to transverse perturbations

and that temperature fields can either stabilize or destabilize the front, depending on

the direction of the temperature gradient. An energy analysis reveals that the electric

field in the capillary ridge is most responsible for the enhancement of the perturbation

growth. For the case of temperature fields, the perturbed temperature gradients are

the dominant mechanism through which the perturbation in film height is affected.
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1 Introduction

Thin liquid films with dynamic contact lines driven by body forces arise in many technological

applications, ranging from the operation of microfabricated devices [1] to the coating of

medical devices [2] and beyond. When a liquid film with a contact line is driven by gravity,

a ridge of liquid known as the capillary ridge rises above the film in the upstream region. In

these situations, traveling wave solutions for the liquid profile can be calculated which show

the quasi-steady shape of the capillary ridge [3–5]. The capillary ridge has been shown to

destabilize the front of the liquid film to disturbances in the spanwise direction which can

grow into rivulets or fingers and negatively impact the uniformity of a liquid coating [6, 7].

It is thus of interest to investigate methods for controlling the growth of the capillary ridge

and stabilizing the contact line to spanwise disturbances.

Electric fields [8–10] and temperature gradients [11,12] can be used to control liquids at

small length scales and may have a significant influence on the stability of contact lines of

driven liquid films. Electric fields are already present in gravity-driven flows which arise in

electrospray coating [13] where uniform films are typically desired, and temperature gradients

can be used to drive and influence spreading films [14,15]. Combinations of these can further

affect the stability of thin films and the motion of droplets [12, 16].

There has been a considerable amount of prior work examining the influence of electric

and temperature fields on the behavior of thin liquid films and droplets; reviews can be found

in Refs. [7, 17–21]. Electric fields affect interface shapes through charge polarization, which

modifies the normal stress balance. If free charge is present at interfaces, then tangential

stresses can arise. Electric fields can also modify contact angles. Temperature fields influence

interface shapes primarily through thermocapillary stresses. The resulting tangential forces

along the interface tend to drag liquid to regions of lower temperature (higher surface tension)

from regions of higher temperature (lower surface tension).

Although methods for stabilizing dynamic contact lines could be instrumental in produc-

ing more uniform coatings, little is understood about how electric and temperature fields
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might affect the stability of the film front. Tseluiko et al. [22, 23] have shown that electric

fields affect capillary-ridge growth in gravity-driven film flows over topography where there

are no contact lines. Kataoka and Troian [14] observed the fingering instability in thermally

driven films, while Klentzman and Ajaev [15] showed that Marangoni effects can promote

the fingering instability in gravity-driven films when heated from below. However, the effects

of electric fields or cooling the liquid from below on the spanwise stability of gravity-driven

films with contact lines have not been studied.

Here we examine the gravity-driven flow of a constant-flux liquid film in the presence of

normal electric and temperature fields. We apply the lubrication approximation and obtain

an evolution equation for interface height. We first study electrohydrodynamic (EHD) and

thermocapillary (TC) effects on the traveling wave solutions to the height evolution equation.

We then conduct a linear stability analysis of the traveling wave solutions and characterize

the effects of the electric and temperature fields on the stability of the dynamic contact line.

An energy analysis is performed to gain insight into the mechanisms behind the EHD and

TC effects on the contact-line instability. Our results demonstrate that while electric fields

enhance the fingering instability, temperature gradients can be used to suppress the fingering

instability and thus could be of use in efforts to generate uniform coatings.

2 Problem formulation

We consider a constant flux of liquid being driven down a vertical substrate by gravity

(Figure 1). An electrode is suspended above and parallel to the substrate at a height H . An

electrostatic potential of magnitude Ψ0 is applied at the substrate (assumed to be a perfect

conductor) while the top electrode is grounded. We assume the substrate and electrode are

held at constant temperatures Θb and Θt, respectively. The parallel configuration of the

electrodes provides a good starting point for gaining physical understanding by allowing us

to invoke the lubrication approximation when the electrode spacing H is small compared to
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Figure 1: Schematic of problem geometry. The x- and z-axes are shown, while the y-axis
points into the page. The electrostatic potential and temperature in each layer are denoted
by ψi and θi, respectively.

the horizontal length scale L (defined in section 2.2). The liquid, layer 1, has viscosity η,

density ρ, and surface tension γ. We assume the liquid is a perfect dielectric with dielectric

constant ε1. The air layer above the liquid is denoted as layer 2 and assumed to have small

enough viscosity and density such that its flow can be neglected.

2.1 Governing equations

We use the Navier-Stokes equations to describe the liquid flow in layer 1,

∇ · v = 0, (1)

ρ
Dv

Dt
= ∇ ·T1 + ρgex, (2)

where g is the constant gravitational acceleration, v = (vx, vy, vz) is the velocity vector, and

T1 is the total stress tensor of the liquid, defined as

T1 = −p1I+
1

2
η
[

∇v + (∇v)T
]

+M1, (3)
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where I is the identity tensor, p1 is the liquid pressure, and M1 is the Maxwell stress tensor

which is defined later in this section. We ignore the flow in the air layer, and thus the stress

tensor in the air is the sum of the pressure and Maxwell stress tensor, given by

T2 = −p2I+M2, (4)

where p2 is the pressure in the air.

We let h(x, y, t) denote the location of the liquid-air interface, so from the normal stress

balance we have at z = h(x, y, t),

‖ n ·Ti · n ‖= κγ, (5)

where n is a vector normal to the interface pointing into layer 2, κ is the mean curvature

of the interface, and ‖ fi ‖= f2 − f1 for a given function fi. The tangential stress balances

state that at z = h(x, y, t),

‖ n ·Ti · t ‖= −∇Sγ · t, (6)

where t represents two vectors that are tangent to the interface and ∇S is the surface gradient

operator.

We also impose the no-slip and no-penetration conditions at the the substrate,

v(z = 0) = 0. (7)

The interface position is governed by the kinematic condition

∂h

∂t
= −∇ · (hv) . (8)

The electric field is described by Maxwell’s equations, simplified for the case where mag-

netic effects are negligible (i.e., the electrostatic limit). In this case the electric field, E, is
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irrotational and can be defined in terms of a potential as

Ei = −∇ψi, (9)

where ψi is the electrostatic potential. Ignoring charges in both fluids, the potential in each

layer is governed by the Laplace equation

∇2ψi = 0, (10)

and the boundary conditions

ψ1(z = 0) = Ψ0, (11)

ψ2(z = H) = 0, (12)

ψ1(z = h) = ψ2(z = h). (13)

We consider only perfect dielectric (i.e., non-conductive) liquids, so the jump in the

normal component of the electric field is [24]

‖ εiε0Ei ‖ ·n = 0, (14)

where ε0 is the permittivity of free space. We set the permittivity of the air layer as ε2 = 1,

and denote the permittivity of the liquid layer as ε1 = ε. As noted above, the interaction

between the electric field and the fluids is described by the Maxwell stress tensor, defined in

each layer i as

Mi = εiε0
[

EiEi −
1

2
(Ei · Ei) I

]

. (15)

To model the temperature field θ, we apply the energy conservation equation in both

layers,

ρici
Dθi
Dt

= ki∇
2θi, (16)
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where ρi, ci, and ki denote the density, specific heat, and thermal conductivity of layer i,

respectively. Consistent with earlier studies (on problems without dynamic contact lines)

[12,25,26] that use similar geometries, we assume that the effects of thermal convection are

negligible, so the boundary conditions are

θ1(z = 0) = Θb, (17)

θ2(z = H) = Θt, (18)

θ1(z = h) = θ2(z = h), (19)

‖ ki∇θi ‖ ·n = 0 at z = h. (20)

It is assumed that the liquid surface tension decreases linearly with temperature so that

γ(θ) = γR + γθ(θ − ΘR), where γR is a reference surface tension at temperature ΘR and

θ is the temperature at the interface. Here, γθ is a constant, with units of surface tension

divided by temperature, representing the slope of γ with respect to θ and is a measure of the

deviation of the surface tension from the reference value γR. In addition, we will assume that

γR ≫ γθ∆Θ so that we can ignore surface tension variations in the normal stress balance.

By imposing the no-slip condition and thus immobilizing the liquid in contact with the

solid surface, the advancing contact line is also fixed in place. To resolve this issue, we

follow a number of earlier studies [5, 6, 27–29] and assume that a thin precursor film of

thickness b is present along the entire substrate. The contact line then becomes an apparent

contact line with no substrate-air contact, which allows us to apply the no-slip condition

without restricting the spreading of the film. Also, in the precursor-film model the viscous

fluid is continuous all along the substrate, so the interfacial conditions for the electric field

and temperature given above are applied all along the liquid-air interface. An alternative

approach is to incorporate an explicit contact line along with a slip law and contact angle,

but such a model is considerably more complex to implement numerically and is outside the

scope of the current work.
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Previous studies have shown that inclusion of a precursor film in models for the spreading

of driven films leads to results that are qualitatively independent of b [6], although the exact

rate at which the film front moves down the substrate is a function of b. Other methods

for resolving the contact-line issue in spreading problems have included a slip condition [3]

and numerical slip [30]. Again, all the methods yield results that are qualitatively similar,

although the results differ quantitatively depending on the slip model chosen. In this paper

we consider only the precursor-film model.

2.2 Scalings and lubrication approximation

We non-dimensionalize the variables as follows:

(vx, vy, vz) = (Uv̄x, Uv̄y,W v̄z), pi = P p̄i, ψi = Ψ0ψ̄i,

(x, y, z) = (Lx̄, Lȳ, Hz̄), t = T t̄, θ̄i = (θi −Θt)/(Θb −Θt)

where variables with the overbar are dimensionless.

The vertical length scale is chosen to be the electrode spacing H . From the continuity

equation, the vertical velocity is scaled by W = H U/L. In the kinematic condition, we

choose to scale time as T = 3L/U . We choose to scale horizontal velocity with U = H2ρg/η,

which represents a balance of viscous and gravitational forces in the x-component of the mo-

mentum equations. We scale pressure with the gravitational force, P = Lρg. The horizontal

length scale L is determined by a balance of surface tension and gravitational forces to be

L = (γRH/ρ g)
1/3. A dimensionless electric force parameter arises in the normal stress bal-

ance, defined as the Coulomb number Co = ε0Ψ
2

0
/(H2Lρg). The Marangoni number comes

from the tangential stress balances and is Ma = γθ∆Θ/(HLρg), with ∆Θ = Θb −Θt. The

ratio of thermal conductivities is denoted by κ = k2/k1.

The problem discussed here corresponds to a thin viscous dielectric film surrounded by

an inviscid gas. A very thin precursor film is assumed to rest on an inclined perfectly

conducting substrate (e.g., metal) and a constant flux of liquid flows along the substrate in
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the x-direction. In the case of an oil film surrounded by air we have the following properties:

ǫ = 2, γR = 0.3 N/m, γθ = 1.5 × 10−4 N/m◦C, ρ = 900 kg/m3, η = 0.1 N s/m2, and

κ = 5. Assuming that the electrode spacing H = 5 × 10−4m, then L = 1.2 × 10−3m,

Co/ψ2

0
= 3.3 × 10−6, and Ma/∆θ = 0.028. For Co = 0.2 and Ma = 0.1, the voltage across

the plates is ψ = 245 V and the temperature difference is ∆θ = 3.5◦C.

After non-dimensionalization, we apply the lubrication approximation and expand each

equation in terms of H/L ≪ 1, keeping only the leading-order terms. We solve for the

potential, temperature, and velocities in terms of z and h(x, y, t) (now dropping the overbars

for dimensionless terms).

2.3 Evolution equations

As is customary in previous constant-flux studies, we change coordinate systems to one

that moves at a constant speed along with the contact line: (x, y, z, t) → (ξ, y, z, t), where

ξ = x− Ut (we solve for U in the next section). Then, h→ h(ξ, y, t) and ∇ → ( ∂
∂ξ
, ∂
∂y
). We

solve for v and p1 in terms of h, ψ, and θ using the lubrication forms of the Navier-Stokes

equations (1) and (2) subject to boundary conditions (5)-(7) to obtain

vx =
1

2
z2

(

∂p

∂ξ
− 1

)

+Maθxz − hz

(

∂p

∂ξ
− 1

)

, (21)

vz =
1

2
z2
∂p

∂y
+Maθyz − hz

∂p

∂y
, (22)

p1 = −∇2h+
Co

2
ε(1− ε)c2

5
. (23)

The electrostatic potential, ψ, is solved for using equations (10)-(14) and the temperature,

θ, is obtained using equations (16)-(20). Finally, we can then express the kinematic condition

(8) as an evolution equation for h,

∂h

∂t
= U

∂h

∂ξ
−∇ · (h3∇∇2h)−

∂h3

∂ξ
+
Co

2
ε(1− ε)∇ · (h3∇c2

5
)−

3

2
Ma∇ · (h2∇θ(h)), (24)
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where

c5 =
1

(h(ε− 1)− ε)
, (25)

and the interfacial temperature is

θ(z = h) =
h κ

h(1− κ)− 1
+ 1. (26)

3 Traveling wave solutions

As noted earlier, previous studies on constant-flux flows with dynamic contact lines have

shown that it is possible to solve the height evolution equation to obtain traveling wave

solutions that describe the flow prior to any spanwise perturbations [3, 5]. To recover a

traveling wave solution to equation (24), let us first assume that h is y-independent and thus

simplify equation (24) to

∂h

∂t
= U

∂h

∂ξ
−

∂

∂ξ

(

h3
∂3h

∂ξ3

)

−
∂h3

∂ξ
+
Co

2
ε(1− ε)

∂

∂ξ

(

h3
∂c2

5

∂ξ

)

−
3

2
Ma

∂

∂ξ

(

h2
∂θ(h)

∂ξ

)

. (27)

We use the boundary conditions

h(0, t) = hF , (28)

h(Lξ, t) = b, (29)

∂h

∂ξ

∣

∣

∣

∣

ξ=0

=
∂h

∂ξ

∣

∣

∣

∣

ξ=Lξ

= 0, (30)

where our domain runs from ξ = 0 to ξ = Lξ. The precursor-film thickness b is fixed

in this case and the advancing front of height hf essentially displaces the pre-wetted film.

Ahead of the front a depression forms in the precursor film followed by a wavy structure

that decays downstream. The thickness of the film affects this structure, but numerically it

is not practical to take the limit of a zero film thickness so we use a finite value of b such
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that hf ≫ b. Since the precursor film is thin, within this region c5 ∼ −1/ǫ and θ ∼ 1, which

are constants. The variables c5 and θ represent the influence of electrostatic and thermal

effects, respectively, and because they approach constant values in the precursor-film region,

their derivatives in that region are approximately zero. This suggests that electrostatic and

thermal effects do not play a significant role in the precursor-film region (cf. equation (27)).

By assuming ∂h/∂t = 0 and applying boundary conditions (28)-(30), equation (27) re-

turns a steady-state solution for the interface height which we denote by h0(ξ). We make the

substitution h(ξ, t) → h0(ξ) in equation (27) and follow the same procedure as in Ref. [31]

to convert equation (27) into the following ordinary differential equation for h0(ξ):

0 = Uh0 − h3
0

d3h0
dξ3

− h3
0
+
Co

2
ε(1− ε)h3

0

dc2
5,0

dξ
−

3

2
Mah2

0

dT0
dξ

+ d, (31)

where d is a constant of integration, and

c5,0 = 1/(h0(ε− 1)− ε), (32)

T0 = (h0 − 1)/(h0(1− κ)− 1). (33)

Application of the boundary conditions (28)-(30) (assuming uniform film thickness, uni-

form electrostatic potential, and uniform temperature at the ends of the domain) allows us

to obtain

U = b2 + b hF + h2F , (34)

d = −b hF (b+ hF ). (35)

These expressions are equivalent to those found in previous studies, indicating that neither

the presence of the electric field nor the temperature gradient appear to affect the velocity at

which the film front moves down the substrate. However, equation (31) demonstrates that

they do have an effect on the profile of the traveling wave through Co and Ma.
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We solve for the traveling wave by specifying an initial condition for equation (27) and

observing the long-time behavior of h. We use an initial condition similar to that in Ref. [32],

a cubic polynomial with a contact line near the middle of the domain, given by

h(ξ, t = 0) = a3ξ
3 + a2ξ

2 + a1ξ + a0, (36)

a3 = 2(b− hF )/(ξ1 − ξ2)
3, (37)

a2 = −3(b− hF )(ξ1 + ξ2)/(ξ1 − ξ2)
3, (38)

a1 = 6(b− hF )ξ1ξ2/(ξ1 − ξ2)
3, (39)

a0 = (−bξ3
1
+ 3bξ2

1
ξ2 − 3hF ξ1ξ

2

2
+ hF ξ

3

2
)/(ξ1 − ξ2)

3. (40)

In our calculations, we typically choose hF = 0.5 , b = 0.05, and Lξ = 20. The initial contact

line is centered between ξ1 and ξ2, which are usually chosen to be (ξ1, ξ2) = (14, 14.5).

With this choice of parameters, the contact line settles well in the interior of our domain,

minimizing the risk of edge effects. We use a fourth-order accurate centered finite-difference

method to discretize equation (27), and h0(ξ) is obtained from the solution to equation (27)

at long times. For the time integration we use an implicit solver that is based on Gear’s

method, which allows us to take relatively large time steps.

We have examined the effect of the precursor-film thickness b on the steady-state interface

profile. We find that the height of the capillary ridge increases as b decreases and the front

speed increases as b increases (as expected from equation (34)). Furthermore, as b decreases

the interface profile appears to converge, but a finer grid resolution is required to obtain an

accurate numerical solution. In all the cases of b investigated here, the interface profiles look

qualitatively similar, and since we are principally interested in the electrohydrodynamic and

thermocapillary effects on the evolution of a falling film and the formation of fingers, we fix

the value of b in our study.
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Figure 2: (a) Effect of electric field on traveling wave. Values of other parameters are ε = 2.5
and Ma = 0. (b) Electrostatic pressure overlaid with traveling wave profile for Co = 0.2.

3.1 Electrohydrodynamic effects on traveling wave

We begin by examining the effects of the electric field on the traveling wave. Figure 2(a)

shows the film profile h0(ξ) near the contact-line region for several electric field strengths.

It is evident that the electric field causes an increase in the height of the capillary ridge.

Although we only present results for various values of Co, we note that an increase in the

value of ε also enhances the growth of the capillary ridge.

The increase in capillary ridge height is due to electrohydrodynamic effects on the pres-

sure. After non-dimensionalizing and applying the lubrication approximation, the pressure

is found from the normal stress balance (p1 = p, p2 = 0) to be

p = −∇2h+
Co

2
ε(1− ε)c2

5
, (41)

with the second term on the right representing the electrostatic contribution to the pres-

sure, or electrostatic pressure. In Figure 2(b) we can see that there is a minimum in the

electrostatic pressure in the region of the capillary ridge. In the early stages of flow, the

ridge forms at the apparent contact line due to viscous resistance to gravity-driven flow in

the positive ξ-direction. Simultaneously, the electrostatic pressure acts to drive liquid from

thinner regions of the film to thicker regions. Capillary pressure must then oppose both of
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Figure 3: Traveling wave profiles for various values of Ma. Values of other parameters are
κ = 5 and Co = 0.

these effects, which is achieved by the interface developing higher curvature. As Co increases

(or similarly, as ε increases), so too does the electrostatic pressure, which results in a higher

capillary ridge.

3.2 Thermocapillary effects on traveling wave

The ability to control the direction of the temperature gradient allows for more control

over the film profile than is possible with an electric field. By choosing either Θt > Θb or

Θt < Θb, the sign of Ma can be either negative or positive, respectively. Shown below is the

dimensionless form of the tangential stress balance (6):

∂vx
∂z

∣

∣

∣

∣

z=h

=Ma
∂θ(z = h)

∂ξ
. (42)

Due to the way we non-dimensionalize temperature, the direction of the tangential stress

along the interface h(ξ, t) is completely determined by the sign of Ma. This contrasts with

the contribution to the pressure from the electric field, which depends on Co and c5(h(ξ, t))
2,

both of which are invariant to the direction of the electric field. Since an increase in the
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conductivity ratio κ has the effect of reducing the magnitude of the temperature gradient,

an increase in κ would lead to a reduction of thermocapillary effects.

Figure 3 compares the traveling wave profile in the absence of a temperature gradient

with the traveling wave profile in the presence of two different temperature gradients. We

see that Ma < 0, which corresponds to the top surface being cooled relative to the bottom

surface, increases (albeit slightly) the height of the capillary ridge. In this case, a greater

interfacial curvature is required for capillarity to counteract the combined effects of both

the viscous resistance to gravity-driven flow and the upward shear stress generated from the

temperature gradient along the liquid-air interface. Conversely, Ma > 0 slightly reduces the

height of the capillary ridge as the thermocapillary stress now drives liquid down from the

peak of the ridge.

4 Linear stability analysis

We now examine the stability of the traveling wave solutions to spanwise perturbations. We

consider normal mode perturbations h1 to the quasi-steady state h0 using the expansion

h(ξ, y, t) = h0(ξ) + δh1(ξ, y, t), (43)

where h1 has the form h1 = g(ξ, t)eiqy, q denotes the wave number of the perturbation, and

δ is a small parameter multiplying the O(1) function h1. Substitution of this expansion into

equation (27) yields the following partial differential equation for g(ξ, t) to O(δ):

∂g

∂t
=U

∂g

∂ξ
−

∂

∂ξ

(

h3
0

∂3g

∂ξ3

)

+
∂

∂ξ

(

q2h3
0

∂g

∂ξ

)

−
∂

∂ξ

(

3h2
0
g
)

−
∂

∂ξ

(

3h2
0

d3h0
dξ3

g

)

+ q2h3
0

∂2g

∂ξ2
− q4h3

0
g

+ Coε(ε− 1)2
∂

∂ξ

(

h3
0

∂

∂ξ

(

c3
5,0g

)

)

−
3

2
Coε(ε− 1)

∂

∂ξ

(

h2
0

(

dc2
5,0

dξ

)

g

)

− q2Coε(ε− 1)2c3
5,0g

−
3

2
Ma

[

∂

∂ξ

(

2h0
dT0
dξ

g

)

+
∂

∂ξ

(

h2
0

∂T1
∂ξ

)

− q2h2
0
T1

]

, (44)
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Figure 4: (a) Dispersion relations showing electrohydrodynamic effects on front stability at
various values of Co. Values of other parameters are ε = 2.5 and Ma = 0. (b) Dispersion
relations showing thermocapillary effects on front stability at various values of Ma. Values
of other parameters are κ = 5 and Co = 0.

where

T1 =
[

1/(h0(1− κ)− 1)− (1− κ)(h0 − 1)/(h0(1− κ)− 1)2
]

g. (45)

For boundary conditions, we require g(ξ, t) to decay to 0 as ξ → ±∞. We then begin

with a generic initial condition for g (we chose one period of a sine wave centered around

ξ = 10, with g(ξ, t) = 0 everywhere else) and solve equation (44) numerically with a fourth-

order accurate centered finite-difference method. At long times, ∂g/∂t grows or decays

exponentially, and a growth rate σ at a given q can be calculated from the L2-norm of

g. [31]. This process is then repeated over a range of q values to obtain a dispersion relation.

4.1 Electrohydrodynamic effects on front stability

We first consider electrohydrodynamic effects on the stability of the film front in the absence

of a temperature gradient, i.e. Co 6= 0 and Ma = 0. Before exploring the full range of

wave numbers, we analytically examine the low-q limit in manner similar to that described

in Ref. [31]. We assume g grows exponentially with t so that g = φ(ξ)eσt, and then expand
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both σ and g as follows: σ = σ0 + q2σ1 + O(q4) and g = (φ0(ξ) + q2φ1(ξ) + O(q4))eσt.

These expansions are then substituted into equation (44) and expressions for σ0 and σ1 are

obtained. We find that for Co 6= 0, σ0 = 0 and the growth rate can be approximated to

O(q2) by

σ ≈
q2

hF − b

∫

∞

−∞

(h0 − b)(h0 − hF )(h0 + hF + b)dξ. (46)

This expression is identical to that obtained in the absence of an electric field, suggesting

that in the low-q limit, the electric field only influences stability through its effect on the

shape of the base state h0(ξ).

Figure 4(a) shows the growth rate plotted against the wave number calculated from

equation (44) at various values of Co. The results for Co = 0 agree well with previous

studies [3,6], with quantitative differences arising from differing initial conditions (hF = 0.5

instead of 1, b = 0.05 instead of 0.1 or 0.01). Although not shown here for brevity, results

from the asymptotic formula (46) agree well with solutions of equation (44) at low q.

As shown in Figure 4(a), the presence of an electric field increases both the most unstable

wave number and maximum growth rate. The destabilization created by the electric field

might be expected based on the results of section 3.1, which show that the electric field

increases the height of the capillary ridge. We look further into the mechanism for this

destabilization in section 5.

4.2 Thermocapillary effects on front stability

We now consider thermocapillary effects on the stability of the film front in the absence of

an electric field, i.e. Ma 6= 0 and Co = 0. We performed a low-q analysis of equation (44)

for Ma 6= 0, but were unable to obtain an explicit expression for σ such as equation (46).

Figure 4(b) shows the growth rate plotted against the wave number calculated from equation

(44) at various values of Ma. Here we see that the effect of the temperature gradient on the

instability is indicated by its effect on the capillary ridge. Temperature fields corresponding
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to Ma < 0 result in a higher capillary ridge, and accordingly increase the growth rate

and most unstable wave number. Likewise, Ma > 0 results in a lower capillary ridge and

stabilization of the front, as seen by the reduction of both the growth rate and most unstable

wave number. However, we note that in both cases the influence of the temperature gradient

on the instability is quite large and thus is unlikely to be explained solely by the relatively

minor increase in the height of the capillary ridge of the traveling wave profile seen in Figure

3. We discuss the mechanisms for these effects in more detail in section 5.

5 Energy analysis

In this section we perform an energy analysis similar to those done by Spaid and Homsy [3]

and Tiwari et al. [33]. We can see from equation (44) that the time-rate-of-change of g is the

sum of thirteen terms: seven which are present in the gravity-driven spreading problem [3],

three which arise from the electric field (multiplied by Co), and three which result from the

temperature field (multiplied by Ma).

The mechanical energy associated with the perturbation g of the capillary ridge is given

by

E =
1

2

∫

∞

−∞

g2dξ =
1

2
〈g2〉. (47)

We can rewrite equation (44) in a more compact form as

∂g

∂t
= −L[g], (48)

and take the inner product of equation (48) with g to obtain

∂

∂t
〈g2〉 = 2

∂E

∂t
= 〈−L[g], g〉. (49)
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Assuming exponential dependence on time of g implies ∂g/∂t = σg and thus

σ =
〈g,−L[g]〉

〈g, g〉
(50)

We can now individually examine the contribution of each of the thirteen terms of L to

the growth rate σ over a range of q. It follows that at a given q, the sum of the 13 terms

equals σ. These terms are listed and described in Table 1. The first seven terms are identical

to those listed in Ref. [3], while terms 8-10 result from the electric field and terms 11-13 come

from the temperature gradient. Any term that is negative indicates that it has a stabilizing

effect on the perturbation, while positive terms have a destabilizing effect.

Table 1: Terms of operator L in the stability problem along with their physical meanings

Physical Meaning

Term 1 U ∂g
∂ξ

Flow in ξ-direction due to reference

velocity

Term 2 − ∂
∂ξ

(

h3
0

∂3g
∂ξ3

)

Flow in ξ-direction due to ξ-curvature

Term 3 ∂
∂ξ

(

q2h3
0

∂g
∂ξ

)

Flow in ξ-direction due to y-curvature

Term 4 − ∂
∂ξ

(

3h2
0
g
)

Flow in ξ-direction due to gravity

Term 5 − ∂
∂ξ

(

3h2
0

d3h0

dξ3
g
)

Flow in ξ-direction driven by base-state

pressure gradient

Term 6 q2h3
0

∂2g
∂ξ2

Flow in y-direction due to ξ-curvature

Term 7 −q4h3
0
g Flow in y-direction due to y-curvature

Term 8 Coε(ε− 1)2 ∂
∂ξ

(

h3
0

∂
∂ξ

(

c3
5,0g

)

)

Flow in ξ-direction due to ξ-gradient in

perturbed electrostatic pressure

Term 9 −3

2
Coε(ε− 1) ∂

∂ξ

(

h2
0

(

dc2
5,0

dξ

)

g

)

Flow in ξ-direction due to ξ-gradient in

base-state electrostatic pressure

Term 10 −q2Coε(ε− 1)2c3
5,0g

Flow in y-direction due to y-gradient in

perturbed electrostatic pressure

Term 11 −3

2
Ma ∂

∂ξ

(

2h0
dT0

dξ g
)

Flow in ξ-direction due to ξ-gradient in

base-state temperature field

Term 12 −3

2
Ma ∂

∂ξ

(

h2
0

∂T1

∂ξ

)

Flow in ξ-direction due to ξ-gradient in

perturbed temperature field

Term 13 3

2
Maq2h2

0
T1

Flow in y-direction due to y-gradient in

perturbed temperature field

We begin by examining the effects of the electric field on the first seven terms in Table 1.
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Figure 5: Contributions to the growth rate from each of the first seven terms of operator L.
Panel (a) shows the terms with no electric or temperature field, panel (b) shows the terms
in the presence of only an electric field (Co = 0.2), and panel (c) shows the terms in the
presence of only a temperature field (Ma = 0.1). Values of other parameters are ε = 2.5
and κ = 5.
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These are the standard terms that are present even in the absence of electric and temperature

fields. Figure 5(a) shows each term plotted against q when the only external force present

is gravity; the behavior is similar to that shown in Figure 13 of Ref. [3] (Term 1 is neglected

because it is uniformly 0). Like with Figure 4, the quantitative differences between this study

and that of Spaid and Homsy [3] arise from the difference in initial condition for h(ξ, t = 0).

Figure 5(b) shows those same terms when an electric field is present, with the strength of

the electric field taken as Co = 0.2. Other values of Co can be chosen, and although the

precise values of the curves for each term will be different, the trends that we discuss below

are largely the same.

As will be discussed below, close inspection of Figures 5(a) and (b) reveals that, in

general, the electric field has a destabilizing effect on the standard terms. This might be

expected given that these terms represent the behavior of the perturbation g in response to

the traveling wave profile of h0—the higher capillary ridge should result in a larger contri-

bution to the growth rate from these terms. At q lower than approximately 0.5, terms 5 and

4 are affected the most by the electric field. We see that term 5 in Figure 5(b), although

still negative, is not as strongly stabilizing as when the electric field is absent. Term 4,

representing flow in the ξ-direction due to gravity, actually has a slightly greater value when

an electric field is present.

We can get a more quantitative picture of how the electric field affects each physical

mechanism by plotting the difference between each term with and without an electric field

across the spectrum of q. In Figure 6(a) we see that for smaller values of q, Terms 4 and 5

show an increase as a consequence of the electric field, whereas Term 2 is stabilizing. For

larger values of q only Terms 2, 3 and 4 are destabilized by the electric field.

In general, the electric field acts on the perturbation in two distinct ways. First as we

just described, it destabilizes the front implicitly through its impact on the capillary ridge,

as demonstrated by examining the standard terms of L (Figures 5(a) and (b)). Second, the

electric field may act directly on the perturbation to destabilize it to generate the increased
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Figure 6: (a) Difference in growth rate between each standard term with Co = 0.2 and
Co = 0 with ε = 2.5. (b) Difference in growth rate between each standard term with
Ma = 0.1 and Ma = 0 with κ = 5.
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Figure 7: Energy analysis results for (a) Co = 0.2, ε = 2.5 (Ma = 0) and (b) Ma = 0.1,
κ = 5 (Co = 0).

growth rates shown in Figure 4(a). This corresponds to the additional terms in the operator

L that are multiplied by Co.

We now turn to examining these additional terms. Figure 7(a) shows the contributions to

the growth rate from terms 8-10 introduced by the electric field. Terms 8 and 10 are positive,

whereas Term 9 is negative, over the range of q shown. Terms 8 and 9, resulting from ξ-

curvature in the perturbed and base-state electrostatic pressure, respectively, are relatively

balanced. Term 10 arising from y-curvature of the perturbed electrostatic pressure field,

scales as q2 and rapidly destabilizes the film front as q increases. When the contributions
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from terms 8-10 are included, the net effect of the electric field is to increase the overall

growth rates of the spanwise perturbations.

To examine the effects of thermocapillarity on the standard terms, we compare Figure

5(a) to 5(c). Term 4 is now slightly more stabilizing relative to the case with no temperature

and electric field. This might be expected as Term 4 is the contribution from gravity acting

on the film, and this action is reduced due to the smaller size of the capillary ridge. We see

that Term 2, originating from the curvature of the perturbed height profile, is significantly

less stabilizing than it is in the case with no temperature field. The difference between each

standard term at Ma = 0.1 and Ma = 0 is shown in Figure 6(b). From this plot, we can see

that the differences between most terms follow the same trends as they do in Figure 6(a).

Overall, the contribution to the growth rate from terms 1-7 is slightly increased at low q,

but rapidly decreases at q > 0.6 mainly due to terms 2 and 4. The rest of the stabilization is

due to thermocapillary effects acting directly on the perturbed height profile, as evidenced

by Terms 11-13 and discussed below.

We plot the effects of Terms 11-13 across a range of wave numbers in Figure 7(b). Here we

see mixed contributions from the interfacial temperature gradient, with term 11 destabilizing

the perturbation and terms 12 and 13 acting as stabilizing influences. Term 11 is a result

of the ξ-curvature of the base-state temperature field, while terms 12 and 13 both come

from curvature of the perturbed temperature field. At low q, there is negligible y-curvature

in the perturbed temperature field so term 13 is also negligible. Thus, term 12, arising

from ξ-curvature of the perturbed temperature field is the dominant stabilizing mechanism

until q ≈ 1. Interestingly term 11, which arises from the base-state temperature field, is

approximately constant across the range of q shown, consistent with the fact that the base-

state temperature field is independent of q.

We now offer additional physical explanations for the effects that electric and temperature

fields have on the stability of the film front. By supposing a sinusoidal form of the disturbance

g(ξ, t), the perturbation to h0(ξ) generates alternating thick and thin regions of liquid in the
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Figure 8: Eigenfunctions of operator L(q = 0.5) overlaid with base states for (a) Co = 0,
Ma = 0, (b) Co = 0.2, ε = 2.5 (Ma = 0) and (c) Ma = 0.1, κ = 5 (Co = 0).
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y-direction. Spaid and Homsy [3] postulate two possible explanations for why fingers result

from this alternating thickness profile. First, the thicker regions are more massive and thus

are pushed forward more rapidly by the body force. Second, the thicker regions are less

affected by viscous drag, increasing the mobility in these regions of the film. Either way,

faster growth of g(ξ, t) increases the height disparity between the thick and thin regions of

the liquid and will result in earlier onset of the fingering instability.

In Figure 8, we plot the traveling wave solution h0(ξ) and corresponding eigenfunction

g(ξ, t) of the operator L with q = 0.5 in the presence of (a) no electric or temperature field,

(b) an electric field (Co = 0.2), and (c) a temperature field (Ma = 0.1). In each case, the

non-zero region of the eigenfunction develops in the same region of the domain as the leading

face of the capillary ridge. The growth rate σ is calculated from the L2-norm of g(ξ, t), and

because g(ξ, t) is zero everywhere except on the leading face of the capillary ridge, its growth

in this region determines the growth rate of the instability.

To understand the role the electric field plays in enhancing the growth of the instability,

recall the distribution of the electrostatic pressure in the traveling wave solution to equation

(27). Figure 2(b) shows that there is a minimum in electrostatic pressure located directly on

the capillary ridge which increases its height by pumping liquid from the surrounding areas.

One of the regions to which the base-state electrostatic pressure pumps liquid is the leading

face of the capillary ridge, i.e. the region most critical to the growth of g(ξ, t). This action

of the base state electrostatic pressure enhances the ability of g(ξ, t) to grow in that region

and results in the increase in Terms 8 and 10. Thus, the electric field increases the growth

rate of the instability (Figure 4(a)).

The eigenfunction g(ξ, t) and base state h0(ξ) for the case of thermocapillary stabilization

are shown in Figure 8(c). Once again the non-zero part of g(ξ, t) develops on the leading face

of the capillary ridge. In this case thermocapillary forces from the base-state temperature

gradient pump liquid down from the peak of the capillary ridge into the region where g(ξ, t)

is non-zero (i.e., from the hotter region with lower surface tension to the cooler regions
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Figure 9: Dispersion relations showing thermocapillary stabilization and electrohydrody-
namic destabilization for various values of Ma. The parameter values are: ε = 2.5, κ = 5,
Co = 0.05 (a), and Co = 0.1 (b).

with higher surface tension). This base-state thermocapillary flow encourages the growth of

g(ξ, t) and causes term 11 to be positive, thus increasing the growth rate (see Figure 7(b)).

However we also see in Figure 7(b) that terms 12 and 13, which arise due to gradients in

the perturbed temperature field, are strongly stabilizing. This is because thermocapillary

stresses in the height perturbation drive liquid out of the hotter peaks and into the cooler

valleys of g(ξ, t), flattening the perturbation and slowing the growth of g(ξ, t). We see that

the combined stabilization from terms 12 and 13 outweighs the destabilizing effect of term

11, thus generating the overall diminished growth rates seen in Figure 4(b) for Ma < 0.

Since the electrohydrodynamic effects are destabilizing, it is of interest to explore the

extent to which thermocapillary forces can be used counteract this. Such combined fields

may be of interest in practical applications where electric fields are present and temperature

gradients can be applied. In Figure 9 we plot the dispersion relation as a function of Ma for

two different values of Co. For Co = 0.05 (Figure 9(a)), we see that a value of approximately

Ma = 0.6 is needed to bring the dispersion relation close to neutral stability. For larger Co

the growth rates increase (Figure 9(b)), however doubling Co increases the growth rates by

much less than a factor of two.
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6 Conclusions

In this paper we have examined the effects of electric and temperature fields on the linear

stability of gravity-driven thin liquid films with contact lines. We considered a perfect

dielectric liquid with surface tension that decreases linearly with increasing temperature.

Using lubrication theory, an evolution equation for the film thickness was derived which

predicted the existence of traveling wave liquid profiles in the presence of both electric and

temperature fields. We found that the electric field always acts to increase the height of

the capillary ridge of the traveling wave profile, which increases both the growth rate and

most unstable wave number of the instability. A temperature field can either increase (when

Ma > 0) or decrease (when Ma < 0) the height of the capillary ridge of the traveling wave

profile, depending on the direction of the temperature gradient.

An energy analysis was performed to gain insight into the physical mechanisms behind

the effects that electric and temperature fields have on the linear stability of driven films. In

the case of electric fields, it was determined that the base-state electrostatic pressure was the

dominant force responsible for destabilization of the film front. With temperature fields such

that Ma < 0, the dominant stabilizing mechanisms were from the gradients in the perturbed

temperature field. In both the cases of electric and temperature fields, it was found that

these external forces impact contact-line stability not only through their influence on the

capillary ridge, but also through the perturbed profiles of the interface height. We note that

because of the complex coupling between the base state quantities and the perturbation

variables, the calculations presented here are needed to definitively ascertain the effects of

electric fields and temperature gradients on contact-line stability.

In practical situations where electrostatic effects are present, they would have a destabi-

lizing effect but could be counteracted by applying a suitable temperature gradient. Because

our analysis was focused mainly on regimes where perturbation growth rates are positive,

transient amplification was not considered [34]. It is possible that in situations where the

growth rates are significantly damped by the temperature field, transient amplification of
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disturbances may become important. A transient analysis and three-dimensional nonlinear

simulations would be helpful toward developing a more complete understanding of elec-

trohydrodynamic and thermocapillary effects on the fingering instability in gravity-driven

spreading films.
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