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Elastic stress concentration at tips of long slender objects moving in viscoelastic fluids has been
observed in numerical simulations, but despite the prevalence of flagellated motion in complex fluids
in many biological functions, the physics of stress accumulation near tips has not been analyzed.
Here we theoretically investigate elastic stress development at tips of slender objects by computing
the leading order viscoelastic correction to the equilibrium viscous flow around long cylinders, using
the weak-coupling limit. In this limit nonlinearities in the fluid are retained allowing us to study
the biologically relevant parameter regime of high Weissenberg number. We calculate a stretch
rate from the viscous flow around cylinders to predict when large elastic stress develops at tips,
find thresholds for large stress development depending on orientation, and calculate greater stress
accumulation near tips of cylinders oriented parallel to motion over perpendicular.

I. INTRODUCTION

The interaction of slender objects such as cilia and
flagella with surrounding viscoelastic fluid environ-
ments occurs in many important biological functions
such as sperm swimming in mucus during fertiliza-
tion and mucus clearance in the lungs. There has
been much work devoted to understanding the effect
of fluid elasticity in such systems including biological
and physical experiments [1–4], asymptotic analysis
for infinite-length swimmers [5–13], and numerical
simulations of finite-length swimmers [14–19]. While
flows around slender finite-length objects are essen-
tial to our understanding of the physics of micro-
organism locomotion, our understanding of these
flows in viscoelastic fluids is limited. Previous exper-
imental and theoretical results have focused largely
on sedimentation of slender particles in the limit of
vanishing relaxation time, i.e. the low Weissenberg
number limit [20–26].
Numerical simulations of flagellated swimmers in

viscoelastic fluids have shown the concentration of
polymer elastic stress at the tips of slender objects
[14, 16, 18, 19], (see Fig. 1) but why the stress con-
centrates so strongly at tips, and the effect of these
stresses on micro-organism locomotion is not under-
stood. Unlike asymptotic theory [7–10, 12, 13] these
simulations involve large amplitude motions of finite
length objects, and these large elastic stresses that
arise have a substantially different effect on swim-
ming motion than predicted by asymptotic analysis
[18]. Experiments can measure kinematic changes
[1, 4], but not elastic stress, and thus the mecha-
nisms of observed behavioral responses cannot be
explained by experiments alone.
It was observed in simulations [19] that the con-
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FIG. 1. (a) 2D flow around large amplitude, finite-length
undulatory swimmer, ellipses show size and orientation
of stress concentrated at tail (reproduced from [14]). (b)
2D flow around bending sheet, color field shows strain
energy density concentrated at tips. (c) 3D flow around
swimming bi-flagellated cell, color field in center plane
shows strain energy density.

centrated tip stresses are stronger for a cylinder mov-
ing parallel to its axis compared to a cylinder moving
perpendicular to its axis. This orientation depen-
dence of elastic stress at tips is reversed from the ori-
entation dependence of force on velocity in resistive
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force theory and related viscous fluid theories [27–32]
which form the basis of much of our intuition about
micro-organism locomotion without inertia. Classi-
cal viscous theories do not include tip effects, but
previous results in viscoelastic fluids [14, 16, 18, 19]
suggest that the tip has a special role in the elastic
stress development which has not been previously
analyzed.

Previous work on the flow of viscoelastic fluids
around slender objects has been done in the weakly
nonlinear (or low Weissenberg number, Wi) regime
[20–26], but the large stress concentration at tips of
thin objects is a nonlinear effect and thus cannot be
captured in a lowWi expansion. However, the highly
nonlinear regime is challenging for numerical simu-
lations [33], and this has limited the ability to probe
dynamics in this regime. As another approach, one
can consider the limit of low polymer concentration,
decoupling the stress and velocity. This method has
been used to study stress localization for high-Wi at
extensional points and around objects [34–38].

The weak coupling expansion, a formal asymp-
totic approximation in the limit of low polymer con-
centration, retains viscoelastic nonlinearities at lead-
ing order [39]. This method has been successful in
capturing high Wi effects for flow around a sphere
in 3D [39], and in the study of the rheology of di-
lute suspensions in the low polymer concentration
limit [40]. Similar stress localization in the wake of
spheres has been observed experimentally [41, 42]
and theoretical predictions of shear thickening for
strongly elastic dilute suspensions were in agreement
with experimental observations [43].

Here we use the weak coupling expansion to study
the equilibrium flow around, and resultant force on,
cylinders translating either perpendicular, or paral-
lel to the direction of motion, in a 3D viscoelastic
fluid. Using this analysis we explain the origin of
the tip stresses, we predict a critical Weissenberg
number for the flow transition based on viscous flow
data, and we show how the tip stress accumulation
depends on cylinder orientation.

II. MODEL EQUATIONS

We examine the viscoelastic fluid flow around a
stationary finite-length cylinder of radius a with
hemispherical caps driven by a fixed flow at infinity,
U∞. We use the Oldroyd-B model of a viscoelastic
fluid at zero Reynolds number, which is attractive
as a frame-invariant, nonlinear, continuum model of
a viscoelastic fluid that can capture the dominant
effects of fluid elasticity, e.g. storage of history of
deformation on a characteristic time-scale. The di-

mensionless system of equations is given by

∆u−∇p+ β∇ ·C = 0, (1)

∇ · u = 0, (2)

Dt[u]C = Wi−1
I+

(

∇uC+C∇u
T
)

−Wi−1
C,

(3)

for u the fluid velocity, p the fluid pressure, and C,
the conformation tensor, a macroscopic average of
the polymer orientation and stretching that is re-
lated to the polymer stress tensor by σ

p = β(C−I).
We use Dt[u] to denote the material time deriva-
tive along the velocity field u. The parameters, β,
the non-dimensional polymer stiffness, and Wi, the
Weissenberg number, or non-dimensional relaxation
time, are defined by

β =
Gr

µU
, Wi =

λU

r
, (4)

for µ the fluid viscosity, λ the fluid relaxation time,
G the polymer elastic modulus, and U = |U∞|.
The force on a stationary cylinder in a background

flow is proportional to the rate at which energy is
dissipated by the fluid. To calculate the dissipation
rate we integrate the dot product of (u−U∞) and
Eq. (1) over the fluid domain, Ω (exterior to the
cylinder). After some manipulations and using the
incompressibility constraint we obtain

U∞ · F = 2

∫

Ω

DijDij dV + β

∫

Ω

∂ui

∂xj

Cij dV, (5)

where Dij =
1
2

(

∂ui

∂xj
+

∂uj

∂xi

)

is the rate of strain ten-

sor, F =
∫

∂Ω
(σn + βC) · n dS is the force on the

cylinder, and σ
n = 2D− pI is the Newtonian stress

tensor. Thus for a constant velocity at infinity the
force on the cylinder is proportional to the sum of
the viscous dissipation rate and the rate at which
energy is transferred to the polymers.
The polymer strain energy is E =

∫

Ω
Tr(C−I) dV

[44], and an equation for the strain energy is ob-
tained by taking the trace of Eq. (3) and integrating
over the fluid domain,

d

dt
E = 2

∫

Ω

∂ui

∂xj

Cij dV −Wi−1E . (6)

Changes in the polymer energy come from transfer of
energy between the fluid and the polymer and energy
lost to polymer relaxation. Therefore at steady state
the rate of energy loss to the fluid is proportional
to the polymer energy. By combining Eq. (5) with
Eq. (6) one finds that at steady state the force on
the cylinder is

U∞ · F = 2

∫

Ω

DijDij dV +
β

2Wi
E . (7)

Hence the strain energy E quantifies the force on the
cylinder due to viscoelasticity.
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FIG. 2. (a) Norm of viscous stress in the center plane for cylinders oriented (i) parallel (max ‖2D
‖
0‖ ≈ 0.78) and

(ii) perpendicular (max ‖2D⊥
0 ‖ ≈ 0.95) to flow; stretch rates of viscous flow for cylinders oriented (iii) parallel

(max ν‖ ≈ 0.5) and (iv) perpendicular (max ν⊥ ≈ 0.34) to flow. Flow goes from left to right. (b) Tr(C0 − I) in the
center plane for cylinders with (i)-(ii) Wi = 1 and (iii)-(iv) Wi = 5 (note the difference in scale). (c) Maximum of
Tr(C0 − I) as a function of Wi for the two orientations, in log scales. Dotted lines show the two critical Weissenberg
numbers Wi ≈ 2, and Wi ≈ 3, cyan circles indicate Wi values pictured in (b).

III. WEAK-COUPLING EXPANSION

Previous theoretical results on the polymeric con-
tribution to a translating cylinder have used a
second-order fluid expansion in the weakly nonlin-
ear regime [26, 45–48], where the nonlinearities as-
sociated with viscoelasticity are lost at leading or-
der. We are interested in the regime of large ampli-
tude motions where large stress accumulates in the
fluid, so we consider the weakly coupled, or small β,
regime where the nonlinearities enter at leading or-
der but the coupling between the polymer and fluid
is higher order. The weak coupling expansion was in-
troduced for flow around a sphere in [39], and is simi-
lar to analysis of viscoelastic fluids using fixed veloc-
ity fields in the high Wi regime [49, 50]. Analysis of
viscoelastic fluids with fixed velocity fields have pre-
dicted transitions in behavior for high Wi at steady
extensional points [34–38] and qualitatively similar
transitions are also found in simulations where the
velocity and the stress are fully coupled [38].

We expand the solutions in β, u ∼ u0 + βu1,
p ∼ p0 + βp1, and C ∼ C0 + βC1. At leading order

Eqs. (1)–(2) decouple from Eq. (3), and u0 is the so-
lution for the viscous flow around the cylinder. The
conformation tensor satisfies

Dt[u0]C0 = Wi−1
I+ S[u0]C0 −Wi−1

C0, (8)

where S[u0]C0 ≡
(

∇u0C0 +C0∇u
T
0

)

. On a given
streamline Eq. 8 is an ODE involving a source term,
Wi−1

I, a stretching term, S[u0], and a relaxation
term, Wi−1

C0.

IV. TIP STRESS DEVELOPMENT

We prescribe a unit flow in the x−direction,
U∞ = ex, in the domain exterior to a cylinder that
is oriented either parallel or perpendicular to the di-
rection of flow, with no-slip boundary conditions on
the cylinder walls. The circular cylinder has length
4π, radius a = 1, and is capped at both ends with
hemispheres. We solve the Stokes equations for u0

using a boundary integral method based on a reg-
ularized Green’s function from the method of regu-
larized Stokeslets [51–53]. We generate streamlines
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of the Newtonian flow u0 and evolve Eq. (8) along
those streamlines. See Supplemental Material for
more details [54].
In Fig. (2) (a) we plot the Frobenius norm (defined

‖A‖ ≡
√

AijAij) of the leading order viscous stress
tensor 2D0 in the center plane for cylinders oriented
(i) parallel and (ii) perpendicular to the flow. Note
that the viscous stress near the middle of the cylin-
ders is 2 or 3 times smaller than that at the tips. In
Fig. 2 (b) we show color fields of the leading order
polymer strain energy density Tr(C0 − I), for two
different Weissenberg numbers (i)-(ii) Wi = 1 and
(iii)-(iv) Wi = 5. For Wi = 1 the elastic stress is
concentrated at the tips like the viscous stress, and
on the same scale as the viscous stress. For Wi = 5
however, the elastic stress at the tips is more than
100 times larger than for Wi = 1, and concentrated
in the wake. This nonlinear response has been seen
before in analysis of flow around a circle in 2D [55–
57] and around a sphere in 3D [39]. However, in
Fig. 2 (b) (iii)-(iv) we also see that the stress in the
wake of the cylinder that is oriented parallel to the
direction of the flow is about 10 times larger than
that for the cylinder oriented perpendicular to the
direction of flow. We examine the Newtonian flow
that drives the stress growth to understand what
sets the transition in Wi, and how the cylinder ori-
entation impacts stress growth so dramatically for
large Wi.
At a fixed point in the flow, the real parts of the

eigenvalues of the operator S[u0], defined in Eq. (8),
set the growth (or decay) rates of C0 due to stretch-
ing (or compression). The solution to the eigenvalue
problem S[u]C = νC is C = viv

T
j , νij = µi + µj ,

where µi is an eigenvalue of ∇u with corresponding
eigenvector vi. We define the max stretch rate ν at
a point as

ν = 2max(Re(Λ(∇u0))), (9)

where Λ(A) is the set of eigenvalues of the matrix
A. In regions of the flow where ν − Wi−1 > 0, or
νWi > 1, stretching outpaces relaxation, and while
fluid particles remain in these stretching regions they
experience unbounded stress growth.
In Fig. 2 (a) we plot ν in the center plane for the

cylinder oriented parallel (iii) and the cylinder ori-
ented perpendicular (iv). The maximum stretch rate
for both cylinders occurs in the wake of the cylinder,
i.e. the max stretch rate contains information about
flow directionality that is missing from Fig. (2) (a)
(i)-(ii). We see that the cylinder oriented parallel to

motion has max(ν‖) ≈ 0.5, thus Wi‖ ≈ 2 is a thresh-
old for stretching outpacing relaxation in regions of
this flow. The maximum for the perpendicularly
oriented cylinder is smaller, max(ν⊥) ≈ 0.34, cor-

responding to a threshold Wi⊥ ≈ 3 for large stress

growth. For the perpendicularly oriented cylinder,
the flow in the regions of high viscous stress near the
tip is locally a shear flow, whereas, the local flow is
extensional (which is known to lead to more rapid
elastic stress growth [58]) near the tips of the cylin-
der oriented parallel. The difference in flow type
is reflected in the max stretch rate which is largest
near the trailing tip of the cylinder oriented parallel
to motion where the viscous stress is largest. For
the perpendicularly oriented cylinder, the strongest
extension is behind the cylinder where the viscous
stresses are weaker.
In Fig. 2 (c) we plot maxTr(C0 − I) for Wi ≤ 10.

For both orientations, the maximum of Tr(C0 − I)
scales like Wi2 below Wi ≈ 2, and scales like Wi5

above Wi ≈ 3. The cylinder oriented parallel to
motion has a larger max stretch rate and thus it en-
ters the regime of large stress growth for lower Wi
than the perpendicularly oriented cylinder, leading
to larger stress for a fixed Wi beyond the thresh-

old Wi‖ ≈ 2. Recall that the contribution to the
force from the polymeric stress scales like β

2Wi
E and

thus for low Wi there is a O(Wi) contribution to
the force whereas for high Wi the contribution is
O(Wi4). Theoretical results have predicted similar
scalings for related problems [39, 49, 50].

V. VISCOELASTIC CORRECTION TO

FORCE

We expand the force on a cylinder to first order
in β as

F ∼

∫

∂Ω

σ
n
0 · n+ β (σn

1 +C0) · n dS ≡ F0 + βF1.

(10)
We avoid computing u1, the first-order correction to
the velocity, by using reciprocal relations [26, 45–
48], as has been done before in many calculations of
non-Newtonian corrections at low Reynolds number.
In addition, because the flow and force are parallel
for these orientations, we obtain the magnitude of
F1 as

F1 = Wi−1

∫

Ω

Tr(C0 − I) dV. (11)

Details of our calculation are provided in Supple-
mental Material [54]. Thus the viscoelastic correc-
tion to the force is proportional to the integral of the
trace of the leading order polymer stress tensor over
the fluid domain.
In Fig. 3 (a) we plot the viscoelastic force correc-

tion, F1, normalized by F⊥
0 = 65 (note F

‖
0 = 48) for

Wi ≤ 10 for each cylinder orientation. We see that
in the expansion theO(β) force correction is up to 25
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FIG. 3. (a) F1/F
⊥
0 (perpendicular and parallel) (b) par-

allel to perpendicular ratio of F1 : whole domain (left
axes), tip region (right axes) (c) F1 restricted to tip (per-
pendicular and parallel) (d) Diagram illustrating defini-
tion of ytip.

times the viscous force for large Wi. The perpendic-
ular force correction is larger than the parallel force

correction, however Fig. 3 (b) shows F
‖
1 /F

⊥
1 (left

hand axes) and beyond Wi ≈ 2 (the parallel stress

growth threshold) F
‖
1 increases more than F⊥

1 , and
this continues until about Wi ≈ 6 where the ratio
starts to decrease again. Since we are interested in
the “tip effect”, we calculate the contribution to the
force from a single tip.

We define this tip force by restricting the integra-
tion domain in Eq. (11) to a subdomain exterior to
the cylinder that contains only one tip. In Fig. 3 (d)
we show the tip of the perpendicular cylinder with
the strain energy density for Wi = 5. We consider a
streamline that approaches very close to the tip in
the center plane and we evolve the streamline until
it levels off for large x, and we define the value it ap-
proaches, ytip = 3.41, as shown in Fig. 3 (d). With
this we define

F tip
1 = Wi−1

∫

Ω\{y<ytip}

Tr(C0 − I) dV. (12)

In Fig. 3 (c) we plot F tip
1 /F⊥

0 for Wi ≤ 10 for each
cylinder orientation, and the ratio of tip force cor-
rections in Fig. 3(b) (right hand axes). Beyond the

threshold Wi‖ ≈ 2, the parallel force correction at
the tip is larger than the perpendicular force correc-
tion, and the parallel force correction is double the
perpendicular force correction from the tip at high
Wi.

VI. DISCUSSION

Using the viscous flow field around cylinders we
predict a critical Wi beyond which a large stress
“tip effect” occurs, and we find that the critical Wi
is orientation dependent. There are larger elastic
stresses in the wake of cylinders oriented parallel
to the direction of motion compared to cylinders
oriented perpendicular to the flow. The flow type
(shear or extensional) is orientation dependent and is
reflected in the larger max stretch rate for the cylin-
der oriented parallel. The max stretch rate is defined
from the eigenvalues of the operator S in Eq. (8),
and this operator appears in all differential models
of viscoelasticity, including models which incorpo-
rate additional non-Newtonian effects such as shear-
thinning. Hence we conjecture that the transitions
we have identified are not specific to the Oldroyd-B
model, although quantitative values of stress accu-
mulation beyond the transitions will depend on the
model.

We explored other tip shapes and found that vary-
ing curvature at the tip did not effect the qualita-
tive results; the max stretch rate was always largest
near the tip, and greater for cylinders oriented par-
allel to the motion. The analysis given used the rod
thickness to define the characteristic length scale and
hence thinner rods will exhibit large stress growth at
a lower relaxation time. Although the tip effect is
independent of the length, the relative contribution
to the total force from the tip depends on the length,
and hence, quantifying the role of the tip effect on lo-
comotion requires more investigation. Nevertheless,
based on past numerical simulations of flagellated
swimmers, it is clear that this tip effect is signifi-
cant.

In [19] we observed elastic stress accumulation at
flagellar tips in a simulation of a bi-flagellated alga
cell swimming using experimentally measured kine-
matics. The stress accumulation was greater on the
return stroke when the flagellar tips were oriented
parallel to the direction of motion than when ori-
ented perpendicular to the motion. The steady-state
analysis of the tip effect presented here helps explain
the physics behind these observations made in [19],
but generally details of stroke kinematics, includ-
ing time-dependence, will effect how stresses develop
around flagellated swimmers. We are able to make
predictions about critical Weissenberg numbers for
steady flows by looking at the max stretch rates, but
this tool could be useful for other gaits and even in
experimental settings where flow fields are obtain-
able but location and concentration of stress are not
measurable.
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