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Abstract

Numerical simulations were carried out to examine a 24◦ compression ramp interaction in which

the confinement effect of sidewalls was very strong. The ratio of turbulent boundary layer thickness

to domain width at the start of the interaction was δ/w = 0.12. Inflow conditions of M∞ = 2.25

and Reθi = 1800 were chosen to match previous simulations. Comparing to the limited data

available from similar computations, the centerline separation length scale Ls/δ was seen to vary

with the flow confinement parameter δ/w, as previously recognized in reflected shock interactions.

Significant differences in flow structure were observed between these computations with confining

sidewalls and previous computations with periodic boundary conditions at the lateral boundaries

of the domain. The most intense turbulent fluctuations occurred in the corners of the domain.

Symmetric and antisymmetric motions of the separation region were identified in the instantaneous

flow using conditional averages and spatial correlations. The presence of the sidewalls was found

to influence both the mean and unsteady flow. Accurately capturing the sidewall flows is judged

to be essential in realistic modeling of confined flows.
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I. INTRODUCTION

The inherent three-dimensionality and unsteadiness of separated shock-wave / boundary-

layer interactions were identified in some of the earliest studies of the phenomenon [1, 2].

Much research, however, has emphasized flows that are approximately two-dimensional in the

mean. This simplification has led to somewhat distorted perceptions of these interactions.

For example, in 1970 Green [3, p. 260] considered it remarkable that “a geometrically two-

dimensional experimental arrangement can produce a highly three-dimensional flow.”

A nominally two-dimensional geometry can become even more three-dimensional when

confined by sidewalls. The influence of the corner flow is significant for these cases. In

applications, sidewall effects are particularly important, as in inlets and wind tunnels. Re-

cent improvements in both experimental and computational techniques have allowed more

detailed study of such flow three-dimensionality [4–8].

Reda and Murphy [9, 10] carried out early experimental studies on the effects of side-

walls on reflected shock-wave / boundary-layer interactions, showing the highly nonuniform

surface oil flow pattern that occurs under certain conditions [9]. (A good photograph of this

type of pattern is given in Fig. 16 of Green [3].) More recently, Babinsky and collaborators

[11, 12] have carried out extensive experimental investigations of the influence of sidewalls,

and identified the parameter δ/w, where δ is the boundary layer thickness and w is the duct

width, as key in controlling boundary layer blockage and flow three-dimensionality.

According to Babinsky et al. [12], a relationship exists between the aspect ratio δ/w

and the streamwise separation length scale Ls at the interaction centerline. (Here Ls is the

streamwise distance between points where the streamwise shear stress crosses zero.) For a

δ/w � 1 (a wide duct), a quasi-two-dimensional flow is expected. For moderate values of this

aspect ratio, increased Ls is expected, with increased mean-flow three-dimensionality. For

larger values of δ/w (a narrow duct), Ls is expected to decrease again, and strong interaction

between the corner flows should occur. These flow changes have been observed in Reynolds-

averaged Navier-Stokes simulations of reflected shock interactions [13, 14]. According to

these simulations, the peak streamwise extent of separation occurs near δ/w = 0.06. The

approach to the limit δ/w � 1 is slow: significant differences from a two-dimensional

simulation (δ/w = 0 ) occur even for δ/w = 0.015, a case with very thin boundary layers.

These three-dimensional effects have been explored in high-fidelity simulations. Garnier
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[15] carried out stimulated detached eddy simulations of a Mach 2.3 experiment with a 9.5◦

shock generator, accounting for the full wind tunnel span. The author reported that the

presence of the lateral walls strengthened the shock interaction, and that the most intense

pressure fluctuations occurred in the corner flow regions.

In other recent studies, Funderburk and Narayanaswamy [16] carried out experiments

investigating the unsteadiness of a 12◦ compression ramp interaction at Mach 2.5, with

a high degree of flow confinement (δ/w = 0.14) but a small streamwise separation scale

(Ls/δ = 0.8). They found that the corner and centerline regions differed in their unsteady

features and response to perturbations. Morgan et al. [17] carried out large-eddy simulations

of a choked duct flow at Mach 1.6, and observed a strong effect of the sidewall interaction on

the shock train dynamics. Wang et al. [18] studied an oblique shock-wave / boundary-layer

interaction at Mach 2.7. The analysis focused on the effect of duct aspect ratio on the mean

flow, and on distortion of the flow structure from two-dimensional cases.

Bisek [19] carried out simulations of a Mach 2.25, 24◦ compression ramp interaction

with an aspect ratio of δ/w = 0.06. Comparison of a half-span calculation (one viscous

wall and a centerline symmetry boundary condition) to a full-span calculation (two viscous

walls) showed important differences. In particular, the half-span calculations showed a

delay of separation relative to the full-span calculations. Analysis of the instantaneous wall

pressure in the full-span calculations showed intermittent patterns of corner separation: the

instantaneous pattern could be either roughly symmetric or antisymmetric at large scale.

Here we extend the previous computational work on corner flow influence in compres-

sion ramp interactions. Inflow conditions of M∞ = 2.25 and Reθi = 1800 were chosen to

approximately match previous simulations [19]. With the caveat that only a few of these

costly simulations are available for comparison, we aim to explore the effect of the domain

width parameter δ/w on the flow structure of a 24◦ compression ramp interaction. The

present flow has very high three-dimensionality, with an aspect ratio of δ/w = 0.12. The

configuration is close to the limit of flow choking.

II. METHODS

The physical model employed in this project was the ideal-gas, compressible-flow Navier-

Stokes equations. The usual constitutive equations were employed: Newtonian viscous fric-
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tion and the Fourier heat conduction law. The transport equations were evaluated from

standard correlations [20], with an assumption of constant Prandtl number and specific

heat.

The calculations were carried out using an in-house code (HOPS), which is implemented

in modern Fortran [21]. Parallel calculations with domain decomposition are implemented

using the MPI library. Outer loop threading with OpenMP for each subdomain extends

parallel performance to higher core counts. Input and output were implemented using MPI-

IO.

A. Numerical Approach

Spatial discretization was carried out using compact difference methods [22–24]. Applying

this approach in one-dimensional transformed coordinates, the finite difference approxima-

tion to the first derivative φ′i is evaluated by solving a tridiagonal system of the form:

αφ′i−1 + φ′i + αφ′i+1 = a
φi+1 − φi−1

2
+ b

φi+2 − φi−2
4

(1)

where α, a, and b are constants chosen to give a certain order of accuracy and set of spectral

properties for the scheme. In the center of the domain, a sixth-order compact difference

method was employed. Near boundaries the order of accuracy of the compact difference

method was reduced: a fifth-order method was used for the point adjacent to the boundary

and a fourth-order method was used at the boundary.

In regions away from shocks, stability was enforced using Padé-type, non-dispersive,

spatial filters [23, 24]. The filter was applied to the solution vector, sequentially, in each of

the three computational directions, following each sub-iteration in implicit time integration.

The filtering approach replaces the computed value φi at a particular node with a filtered

value φi:

αfφi−1 + φi + αfφi+1 =
N∑
n=0

an
2

(φi+n + φi−n) (2)

where the constants αf , a0, ... aN are chosen to give appropriate filter properties. An

eighth-order filter was used in the center of the domain, and the order of filter accuracy was

reduced in steps of two as a boundary was approached, with no filtering at the boundary.

The form of the filter function can be adjusted by varying the free parameter in the range

4



−1/2 < αf < 1/2; here we used αf = 0.40 with the eighth-order filter and αf = 0.49 with

the lower-order filters.

Shock capturing was implemented using a method based on the approach of Visbal and

Gaitonde [25]. In the present work, shocks were identified using the pressure-based shock

sensor of Swanson and Turkel [26]:

φ =
|pi+1 − 2pi + pi−1|

(1− ω) (|pi+1 − pi|+ |pi − pi−1|) + ω (pi+1 + 2pi + pi−1)
(3)

where the parameter lies in the range 0 < ω ≤ 1. Here we take ω = 0.5. For the present

work, we considered a cell to contain a shock if the sensor exceeded the threshold φ > 2×10−3

and the local Mach number was supersonic, M > 1.05.

Once the shock was identified, a buffer region of at least five cells was identified around

the shock, and in these cells the Roe scheme [27] was used. Extrapolation to cell boundaries

was carried out using a third-order, upwind-biased scheme based on the MUSCL formulation

[28]. The present work used the continuous limiter of Anderson et al. [28]:

s =
2∆+∆− + ε

∆2
+ + ∆2

− + ε
(4)

where ∆+ = fi+1 − fi, ∆+ = fi − fi−1, fi is a solution variable, and ε = 1 × 10−12 is an

arbitrary small value. The filter was not applied in the shock region, and the order of the

filter was increased away from the shock in the manner employed near boundaries. The

compact difference formulation was interrupted by the shock region; second-order explicit

differences were used within the shock region where needed.

Time integration was carried out using an approximately-factored second-order scheme.

The scheme is essentially the same as that employed by Visbal and Rizzetta [29], and full

details are presented in that reference. The equations were solved in delta form, using

a subiteration scheme that drives the change in the solution vector to zero [21]. For the

present work, three applications of the flow solver were carried out per time step. The

implicit scheme used the scalar pentadiagonal approach of Pulliam and Chaussee [30] and

the implicit damping approach of Pulliam and Steger [31]. Implicit damping coefficients of

ε
(i)
2 = 0.2 and ε

(i)
4 = 0.1 were used. Grid metrics were evaluated using the method of Thomas

and Lombard [32].
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Parameter Value

U∞ 588 m/s

M∞ 2.25

T∞ 170 K

Tw 323 K

p∞ 2.383× 104 Pa

δ0 6.096× 10−4 m

Ramp Angle 24◦

Domain Width w = 20 δ0

Corner Location x = 100 δ0

TABLE I. Flow conditions.

FIG. 1. Computational mesh of 4711× 1421× 1401 points; every 32nd point shown for clarity.
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B. Compression Ramp Flow

The flow conditions (Table I) were chosen to match those of certain previous computations

of boundary layers and compression ramp interactions [19, 21, 33–37]. A comparison with

experiment for the incoming turbulent boundary layer will be presented in Section III B.

The computational mesh is shown in Figure 1. For clarity, only every 32nd point is shown.

No-slip conditions were imposed at the bottom and sides of the domain. Grid clustering

was employed near the three no-slip walls and near the corner of the ramp. At the front of

the domain, the incoming boundary layer profile was set to match a laminar-flow similarity

solution for the selected flow conditions. Interpolation was used to produce smooth flow in

the corners of the domain. Extrapolation was employed at the end and top of the domain to

implement an outflow boundary condition. Grid stretching was employed in these outflow

regions; this is visible at the top right of Fig. 1. To support this sponge layer and eliminate

any wave reflections, the filter was changed to second-order, with αf = 0.40, for the four

cells nearest the boundary.

The space and time resolution of the calculations conform to the recommendations of

Georgiadis et al. [38] for resolved turbulent simulations. The grid consisted of 9.4 × 109

cells in a structured 4711 × 1421 × 1401 mesh. The mesh spacing in the primary flow

direction (ξ-direction or i-direction of the mesh) was ∆ξ/δ0 = 3.48× 10−2. For the direction

approximately normal to the floor of the domain (η-direction or j-direction), the mesh

spacing ranged from ∆η/δ0 = 2.25 × 10−3 at the wall to ∆η/δ0 = 3.48 × 10−2 in the core

flow. Similarly, for the transverse direction (ζ-direction or k-direction), the mesh spacing

ranged from ∆ζ/δ0 = 2.24× 10−3 at the two walls to ∆ζ/δ0 = 2.35× 10−2 in the core flow.

The corresponding wall-normal resolution in inner units at the reference boundary layer

station at x/δ0 = 80 was ∆+
η = 0.51 at the center of the floor boundary layer (y/δ0 = 0,

z/δ0 = 10). For corresponding stations near the centers of the sides (y/δ0 = 8.6; z/δ0 = 0,

20), the wall-normal resolution was ∆+
ζ = 0.51. At the edge of the boundary layer, the

nondimensional grid spacing was ∆+
ξ = 7.9, ∆+

η = 7.9, and ∆+
ζ = 5.3.

Transition to turbulent flow was promoted using an artificial body-force trip based on

the approach of Mullenix et al. [39]. The trip was implemented at x/δ0 = 2.50 for all three

sidewalls. In contrast to some of our previous work, here the trip was chosen to be essentially

uniform along the boundary layer span, although it was set to zero for a small region in the
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corners. For the region near y/δ0 = 0, the trip was imposed for 0.25 ≤ z/δ0 ≤ 19.75, and

for the region near z/δ0 = 0 and near z/δ0 = 20.00, the trip was imposed for 0.25 ≤ y/δ0 ≤

24.00.

The trip had the following form near the bottom (y/δ0 = 0) wall:

F (x, y, z) =
A

πxryr
exp

[
−
(
x− x1
xr

)2

−
(
y − y1
yr

)2
]

Πza,zb(z)

fx = F (x, y, z) cos θ

fy = F (x, y, z) sin θ

fz = 0

(5)

This body force was added to the momentum equation and its corresponding work was

added to the total energy equation. The final term is the unit boxcar function, defined here

as:

Πa,b(x) =


0 x < a

1 a ≤ x ≤ b

0 x > b

(6)

Here the position of the center of the trip was x1/δ0 = 2.50 and y1/δ0 = 0.00, its scale was

xr/δ0 = 0.17 and yr/δ0 = 0.01, and the position of the boxcar masking in the z-direction

was za/δ0 = 0.25 and zb/δ0 = 19.75. For all the walls, the amplitude of the trip force was

taken to be A = 0.03 and the angle was taken as θ = 179◦.

The artificial body force had the following analogous form near the z/δ0 = 0 wall:

F (x, y, z) =
A

πxrzr
exp

[
−
(
x− x1
xr

)2

−
(
z − z1
zr

)2
]

Πya,yb(y)

fx = F (x, y, z) cos θ

fy = 0

fz = F (x, y, z) sin θ

(7)

Here the position of the center of the trip was x1 = 2.50/δ0 and z1/δ0 = 0.00, and the

length scale was xr/δ0 = 0.17 and zr/δ0 = 0.01. The position of the boxcar masking in the

y-direction was ya/δ0 = 0.25 and yb/δ0 = 24.00. The form of the trip at the z/δ0 = 20.00

wall was the same, except that the direction of the fz force component was reversed, and

the center of the trip was changed to z1/δ0 = 20.00.
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The main calculations were carried out on the IBM Blue Gene/Q machine Mira at Ar-

gonne Leadership Computing Facility (ALCF). The computational mesh was divided into

65536 subdomains in a 64 × 32 × 32 configuration, with nine-point overlap, and with one

MPI rank assigned to each subdomain. Eight OpenMP threads were assigned to each zone

to exploit loop-level parallelism, for at total of 524288 cores employed in the computation.

The nondimensional time step was U∞∆t/δ0 = 5×10−3, or ∆t+ = 5.3×10−2 based on the

reference incoming boundary layer station. The computations were run for 239000 iterations,

corresponding to a simulation time of U∞t/δ0 = 1195.0. The calculation was initially run for

just over two flow-through times (U∞t/δ0 = 288.0) to allow statistically steady state to be

established, and then flow data were saved for statistical analysis for about 7.0 flow-through

times (U∞t/δ0 = 907.0). The data were saved every 200 iterations (U∞∆t/δ0 = 1.0).

Large-scale separation motion has been characterized by a Strouhal number St =

fsLs/U∞, where fs is the location of the low-frequency peak in the premultiplied spec-

trum and Ls is a separation length scale [40, 41]. A range of Strouhal numbers distinguish

different shock-wave / boundary-layer interactions. Nevertheless, a figure of St = 0.03 is

often cited as a representative value. The duration of the present data set corresponds

to about 5.3 cycles of motion at the St = 0.03 scale. Thus, the present work focuses on

mid-scale motions of the separation region. (See Nichols et al. [42] for a discussion of typical

flow modes observed in separated shock-wave / boundary-layer interaction.)

III. RESULTS

We begin our discussion of the results by describing the overall structure of the flowfield,

emphasizing that this is a duct flow, not a canonical two-dimensional interaction. In order

to document the inflow conditions for the separated region, we then present detailed results

for the incoming turbulent boundary layer, and compare to other simulations and to exper-

imental data. We explore the details of the region of flow separation next, and finally we

examine symmetry and antisymmetry in the instantaneous flowfield.
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FIG. 2. Overview of flow field: instantaneous density field in several planes.

A. Overall Flow Structure

An overview of the flowfield is presented in Figure 2, which shows the instantaneous

density field in several planes. These planes include the floor of the computational domain

(minium y-coordinate), the centerplane (z/δ0 = 10), a plane representative of the devel-

oped, incoming turbulent boundary layer (x/δ0 = 80), and a plane normal to the ramp

(x/δ0 ≈ 111). The inlet flow lies at the lower left in the figure (x/δ0 = 0). As indicated, the

domain is 20δ0 wide and the corner of the ramp lies at x/δ0 = 100. The laminar boundary

imposed at the inlet is allowed to develop downstream until it reaches the body-force trip

at x/δ0 = 2.5. Weak waves from the trip are evident in the centerplane density field. Waves

from the sidewall trips intersect the centerplane, as do wave reflections further downstream.

A turbulent boundary layer is seen to develop on the three no-slip boundaries of the domain

(irregular, dark blue contour at x/δ0 = 80). A complex shock-wave / boundary-layer inter-

action occurs as the boundary layer encounters the strong pressure gradient introduced by

flow turning at the ramp.
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FIG. 3. Behavior of shock sensor at a particular instant. Black indicates locations where the sensor

is triggered.

(a) (b)

FIG. 4. Density field in the x/δ0 = 80 plane. (a) Instantaneous. (b) Mean.
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(a) (b)

FIG. 5. Density field in the plane normal to ramp, x/δ0 ≈ 111. The coordinate n is distance from

ramp surface. (a) Instantaneous. (b) Mean.

(a) (b)

FIG. 6. Density field in the z/δ0 = 10 plane. (a) Instantaneous. (b) Mean.

For reference, Figure 3 shows the locations where the shock sensor, Eq. (3), indicates the

presence of a shock. Black denotes locations where the shock sensor is on; grey indicates

regions where it is off. (The solution time here is not the same as in Figure 2.) The sensor

is triggered by shocks and by local regions with very strong pressure gradient.

During the computations, data were saved for six planes within the computational do-

main: the three no-slip walls, the x/δ0 = 80 plane, the ramp-normal plane (x/δ0 ≈ 111),
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and the portion of the centerplane (z/δ0 = 10) downstream of x/δ0 = 80. Results for the

three planes in the interior of the domain are presented here.

Figure 4 shows the density field in the x/δ0 = 80 plane. The view is along the x-

axis, looking downstream. A sample of the instantaneous density field ρ/ρ∞ is shown in

Figure 4a. The grayscale contours were intentionally chosen to appear similar to planar laser

visualization data [43]. The dark, irregular region along the sides of the domain indicates

the hot, low-density, turbulent fluid in the turbulent boundary layer along the three no-slip

walls. The light central region represents the cold high-density core flow. Close inspection

of the central portion of the domain reveals density fluctuations due to sound radiated from

the boundary layer turbulence. Since the acoustic field is confined on three sides by the

no-slip walls, the reverberation effect is stronger than it would be in less confined flows.

The corresponding mean density field is shown in Figure 4b. The smooth variation of the

mean boundary layer around the edges of the domain is evident in these data, as are some

persistent, weak waves in the core flow.

Figure 5 shows the plane normal to the ramp, where x/δ0 ≈ 111. The wave structure

in this plane corresponds to a very narrow compression ramp interaction (central region in

the z-direction), with two fin interactions on the sides (λ-shock patterns). Slip lines are

evident, originating at the triple points of the λ-shocks. Movies of this region of the flow

dramatically illustrate its intense unsteadiness, and some indication of this unsteadiness is

apparent in the instantaneous density field of Figure 5a. The overall flow structure is similar

in the mean density field (Figure 5b), with significant smearing of the shocks due to their

unsteadiness. Note also the displacement of the shock triple points in the instantaneous field

relative to the mean field. Turbulence modeling of such an unsteady flow is expected to be

extremely challenging.

Figure 6 shows the density field in the z/δ0 = 10 plane, a side view of the interaction region

in the center plane. The instantaneous field is shown in Figure 6a, and the corresponding

mean in Figure 6b. The floor turbulent boundary layer is apparent at the bottom of the

field of view. It enters from the left, and encounters the flow separation at x/δ0 ≈ 90. Flow

separation is associated with the classic λ-shock pattern of a compression ramp interaction.

In the instantaneous flow, shocks are seen emanating from turbulent structures, and the

primary oblique shock is curved due to out-of-plane interaction with the sidewall flows.

Various transient waves are also discernible in the instantaneous core flow. In the mean
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Parameter Floor Left Right

δ/δ0 2.36 2.27 2.28

δ∗/δ0 0.67 0.74 0.74

θ/δ0 0.19 0.17 0.17

Reθ 3000 2600 2600

Reθi 1800 1600 1600

δ+ 540 510 510

Cf 2.36× 10−3 2.43× 10−3 2.46× 10−3

TABLE II. Boundary layer properties at x/δ0 = 80.
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FIG. 7. Turbulent boundary layer profiles on the floor (x/δ0 = 80, z/δ0 = 10) and sides of the

domain (x/δ0 = 80, y/δ0 = 10) compared to DNS [21, 44] and to experiment [45]. The horizontal

axis represents the wall-normal coordinate in each case. (a) Outer coordinates. (b) Van Driest

transformed inner coordinates.

(Figure 6b), many of these features are washed out. It is again worth noting the blurring of

the shocks in the mean flow due to their unsteadiness.
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FIG. 8. Profiles of the Reynolds stress on the floor (x/δ0 = 80, z/δ0 = 10) and sides of the domain

(x/δ0 = 80, y/δ0 = 10) compared to DNS [21] and to experiment [45, 46]. (a) Streamwise normal

stress ρu′2. (b) Transverse normal stress ρv′2. (c) Spanwise normal stress ρw′2. (d) Shear stress

−ρu′v′.

B. Boundary Layer Data

To document the inflow boundary conditions for the shock-wave / boundary-layer inter-

action, data were extracted for the floor boundary layer and the sidewall boundary layers

for the streamwise station x/δ0 = 80 (see Figure 4). The data labeled “Floor” correspond to

the station x/δ0 = 80, z/δ0 = 10, with the wall-normal in the y-direction. The side profiles

correspond to x/δ0 = 80, y/δ0 = 10. For the “Left Side,” the wall is at z/δ0 = 0 with the

wall-normal in the z-direction, and for the “Right Side,” the wall lies at z/δ0 = 20, and the
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FIG. 9. Turbulent boundary layer profiles on the floor (x/δ0 = 80, z/δ0 = 10) and on the ramp

(x/δ0 ≈ 111, z/δ0 = 10). (a) Outer coordinates. (b) Van Driest transformed inner coordinates.

wall-normal lies in the negative z-direction.

Some basic boundary layer data are presented in Table II. Here the boundary layer thick-

ness parameters are referenced to the thickness δ0 of the laminar boundary layer imposed

at the inflow plane (see Table I). The boundary layer thickness is seen to grow to 2.4δ0

over the first 80δ0 of the domain. The resulting momentum thickness Reynolds number is

Reθ = ρ∞U∞θ/µ∞ = 3000 or Reθi = ρ∞U∞θ/µw = 1800. The skin friction coefficient is

2.4 × 10−3 and the friction Reynolds number is δ+ = uτδ/νw = 540. The shape factor for

the floor boundary layer is H = δ∗/θ = 3.5, consistent with experimental measurements at

similar flow conditions [45, 47]. (The corresponding incompressible shape factor, ignoring

density variation, is about 1.4.)

Mean velocity profiles are presented in outer coordinates in Figure 7a and in van Driest

[48] transformed inner coordinates in Figure 7b. For these, and subsequent, boundary

layer plots, the coordinates have been rotated so that the coordinates (x, y, z) and velocity

components (u, v, w) correspond to the streamwise, wall-normal, and spanwise direction

for the local boundary layer. The boundary layer data from the present computations

were compared to those from the highly-resolved boundary layer simulations of Pirozzoli

and Bernardini [44] (M = 2.0, Reθi = 1.5 × 103) and of Poggie et al. [21] (M = 2.25,

Reθi = 2.0 × 103), and to the experimental data of Éléna and Lacharme [45] (M = 2.3,

Reθi = 2.6× 103).
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Corresponding Reynolds stress profiles, using Morkovin [49] density scaling, are shown

in Fig. 8. The present numerical results are compared to the DNS of Poggie et al. [21],

the laser Doppler anemometry (LDA) measurements of Éléna and Lacharme [45] (M = 2.3,

Reθi = 2600), and the hotwire measurements of Alving [46] (M = 0, Reθ = 5000). Where

available, error bars corresponding to the statistical uncertainty reported for the experiments

are included on the plots. The results are plotted in outer coordinates, and collapse of the

data for the differing Reynolds numbers should be expected for the outer portion of the

profiles (roughly, y/δ > 0.2).

Data were also extracted for a boundary layer station on the ramp (see Figure 5) and

compared to the incoming boundary layer. The coordinate system was rotated appropriately

to boundary layer coordinates. The results are shown in Fig. 9 in both outer coordinates

and van Driest transformed inner coordinates. The boundary layer on the ramp is seen to

have a large wake component relative to the equilibrium turbulent case.

C. Flow Separation

Figure 10 shows the distribution of skin friction on the left sidewall (z/δ0 = 0) and the

floor (minimum y-coordinate) of the computational domain. The instantaneous skin friction

magnitude (magnitude of the mean surface force vector ti = τjinj) is shown in Figure 10a.

The dark line near x/δ0 = 2.5 reflects the presence of the artificial body-force trip. The

streaky structure of the shear stress in the spatially developing boundary layer is evident,

as are regions where Mach waves from the trip reflect from the sidewalls. Indications of

separation are apparent past x/δ0 = 90, and finger-like patterns of high shear stress are

apparent along the ramp and along the sidewalls. Such patterns may indicate the presence

of vortices resulting from an instability associated with streamline curvature [50, 51]. In

movies of this field of view, indications of Kelvin-Helmholtz type vortex shedding are also

apparent.

The corresponding mean skin friction distribution is presented in Figure 10b, with trajec-

tories of the mean surface force vector. Two foci separated by a saddle point are apparent

on the bottom wall, with a node on the ramp. There is another focus on the upper sidewall,

but this lies near the edge of the resolved region of the computation, and thus should be

interpreted with caution.
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(a)

(b)

FIG. 10. Skin friction on the left (z/δ0 = 0) and floor (minimum y-coordinate) boundaries of the

computational domain. (a) Instantaneous values. (b) Mean values with trajectories.
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(a) (b)

(c) (d)

FIG. 11. Skin friction in the region of separation. (a)-(b) Examples of instantaneous skin friction.

(c) Mean skin friction with trajectories. (d) Root-mean-square skin friction.

FIG. 12. Probability of low instantaneous skin friction magnitude, P (Cf < 1.0× 10−3).
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Figure 11 shows a closeup of the distribution of skin friction in the region of separation.

In each figure, the view is downstream (x-direction); note the axes in Figure 11d. The

perspective was selected to make the sidewalls visible. The floor of the computational

domain is visible at the bottom of the figures, the corner of the ramp is a horizontal line

near the bottom third of the field of view, and the white region at the top of each figure

corresponds to the end of the resolved region of the computational domain.

Examples of the instantaneous skin friction magnitude are given in Figure 11a-b. Darker

colors indicate higher skin friction, and the beginning of separation is evident as a light band

on each wall. Finger-like regions of high shear stress appear on the ramp; there are typically

three to four of these regions. In movies of these data, rotation is evident near the corners

where the ramp, floor, and sidewalls intersect. The separation is seen to be asymmetric and

highly variable, with large excursions of instantaneous separation and reattachment from

their mean locations.

Figure 11c shows the magnitude of the mean skin friction. Trajectories of the mean

surface force vector are also shown. The flow structure is consistent with a ramp interaction

squeezed between two fin interactions. The separation shows a classic owl-face pattern [52],

with two stable foci ahead of the ramp separated by a saddle point. A node is present where

the mean flow reattaches on the ramp. Stable bifurcation lines are present both on the ramp

and the sidewalls.

The root-mean-square of the skin friction magnitude is shown in Figure 11d. Intense

fluctuations occur on the centerline of the floor due to intermittent separation there. There

are equally intense fluctuations in regions oriented in the streamwise direction on the ramp

and on the sidewalls near the corners.

The unsteady aspects of separation are also addressed in Figure 12, which shows the

probability that the instantaneous skin friction is low, specifically P (Cf < 1.0× 10−3). The

green region corresponds to a probability of 0.5, that is, the region where skin friction is

very low about half the time and fairly significant about half the time. This plot highlights

the highly intermittent nature of both separation and reattachment, and illustrates the large

streamwise motions of the separation flow features. It is worth comparing this plot to the

mean skin friction in Figure 11c and to the root-mean-square skin friction magnitude shown

in Figure 11d.
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FIG. 13. Profiles along the centerline of the interaction compared to the analogous case with

periodic sidewall boundary conditions [37]. (a) Mean pressure coefficient. (b) Mean streamwise

skin friction coefficient.

δ/w Ls/δ Reference

0.00 8.4 Porter and Poggie [37]

0.06 7.2 Bisek [19]

0.12 6.0 Present work

TABLE III. Centerline separation length scale as a function of interaction confinement for

Mach 2.25 flow over 24◦ ramp.

D. Flow Confinement Effects

In Figure 13, we compare the present results to an analogous case without sidewall con-

finement, studied by Porter and Poggie [37]. For that case, the inflow boundary conditions

and the flat plate and ramp geometry were the same, but the computation employed a 10δ0

wide configuration with periodic sidewall boundary conditions. Figure 13a shows the mean

pressure coefficient Cp = 2(p − p∞)/ρ∞U
2
∞ for both cases. For the periodic boundary con-

dition case (labeled “Periodic BC”), the data were averaged across the span. For the case

with sidewall confinement (marked “Sidewall Case”), results are shown for the wall center-

line (z/δ0 = 10), that is, the bottom of the field of view shown in Figure 6 and the bottom

centerline of Figure 10b. The profile of the floor of the computational domain (minimum

21



y-coordinate) is included for orientation. The results for the periodic boundary conditions

show the classic mean pressure profile for a two-dimensional shock-wave / boundary-layer

interaction: uniform pressure in the incoming boundary layer, a gradual pressure rise to a

plateau over the separation region, and a second rise to the pressure level of an inviscid,

oblique shock corresponding to the ramp turning angle. The present results show somewhat

different trends. A slight pressure rise is evident far upstream of the ramp, probably the

result of the influence of the corner interactions at the sidewalls. The separated region is

smaller. Farther downstream, the pressure reaches a maximum, rather than smoothly ap-

proaching the inviscid pressure rise. This behavior is a result of the three-dimensional shock

interaction, as seen, for example, in Figure 5.

The corresponding profiles of the streamwise skin friction coefficient are shown in Fig-

ure 13b. For both flows, there is a rapid drop in skin friction at separation, a pattern with

two minima within the separation zone, and a gradual increase downstream as the reat-

tached boundary layer recovers. (The spike at x/δ0 = 100 is a numerical artifact due to

the presence of the corner.) The double minimum in the skin friction within the separated

zone has been observed in previous studies of compression ramp interactions [36, 53]. (See

also the mean flow structure in Figures 10b and 11c.) Again, note the decreased streamwise

extent of separation that occurs with the presence of the sidewalls.

Table III presents the streamwise length scale Ls/δ of the mean separation on the center-

line of the interaction as a function of the aspect ratio δ/w. The present results are given,

along with results from our previous spanwise-periodic calculations [37], and the data of

Bisek [19]. We note that the conditions of Bisek’s calculations are not quite the same as

our own: the initial flat plate was 85 δ0 long in his work, and 100 δ0 long in our own work.

The trend is suggestive in Table III, but it would require additional calculations to deter-

mine whether the curvilinear relationship of separation length and aspect ratio predicted by

Babinsky et al. [12] for reflected shock interactions also occurs for compression ramp flows.

E. Symmetry and Antisymmetry

Figure 14 shows the wall pressure distribution in the region of separation. The mean

pressure is shown on the left (Figure 14a) and the root-mean-square pressure fluctuation

is shown on the right (Figure 14b). The corner flow interaction is seen to lead to strong
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(a) (b)

FIG. 14. Wall pressure in the region of separation. (a) Mean pressure p/p∞. (b) Root-mean-square

pressure fluctuation intensity
(
p′2
)1/2

.

(a)

(b)

FIG. 15. Mean pressure contours p/p∞ on floor of computational domain, along with regions used

for conditional averages. (a) Condition 1: looking for high pressures at the edges. (b) Condition 2:

looking for high pressure on right side.
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(a) (b)

FIG. 16. Deviation from overall mean for conditional averages of the pressure field. (a) High

pressures at the edges (32.8% of samples). (b) Complementary average (67.2% of samples).

(a) (b)

FIG. 17. Deviation from overall mean for conditional averages of the pressure field. (a) High

pressures on the right side (40.5% of samples). (b) Complementary average (59.5% of samples).

variation in the mean pressure along the spanwise (z) direction. Intense pressure fluctuations

are observed far upstream of the ramp, particularly in the corner regions. Severe fluctuations

are also present in finger-like regions on the ramp and near the juncture of the ramp and

sidewalls.

Although the mean flowfield is symmetric, the instantaneous flowfield can be highly

asymmetric, as seen in Figures 11a–b. Given that symmetry plane boundary conditions are
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(a) (b)

(c) (d)

FIG. 18. Spatial correlation of wall pressure. (a) Reference point xr/δ0 = 91.0, zr/δ0 = 10.0. (b)

Reference point xr/δ0 = 91.0, zr/δ0 = 0.1. (c) Reference point xr/δ0 = 106.0, zr/δ0 = 10.0. (d)

Reference point xr/δ0 = 106.0, zr/δ0 = 0.1.

often employed in large-eddy simulations for savings in computational cost, it is of interest

to examine symmetric and antisymmetric motions in the present full-span computation. A

qualitative exploration of these effects was presented by Bisek [19]. Here we quantify the

analysis of large-scale symmetric and antisymmetric motions of the separation zone using

conditional averaging.

Figure 15 shows the regions selected to determine the condition variable for the con-

ditional averages. Two regions of equal area on the floor of the domain (minimum y-

coordinate) were selected. In each case, the spatial averages of the pressure over Region A

and Region B were computed for a given instant in time. Condition 1 (Figure 15a) was true
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(a) (b)

FIG. 19. Spatial correlation of wall pressure for the case with periodic sidewall boundary conditions

[37]. (a) Reference point xr/δ0 = 86.9, zr/δ0 = 5.0. (b) Reference point xr/δ0 = 108.7, zr/δ0 = 5.0.

if pA − pB > 0.14 pAB, and was selected to capture events with high pressure at the edges

of the domain, that is, sidewall separation farther upstream. Condition 2 (Figure 15b) was

true if pA − pB > 0.01 pAB, and was selected to capture large-scale asymmetric motions of

the separation region.

Figure 16 shows the results for Condition 1. The contours show the deviation of the

conditional average from the overall average (see Figure 14a). This condition was true for

32.8% of the samples: there was high pressure at the edges about one-third of the time.

The results for Condition 1 are shown in Figure 16a, and complementary average (condition

not true) is shown in Figure 16b. Although the condition variable is based on the pressure

on the floor of the domain (minimum y-coordinate), significant changes are seen elsewhere

in the domain. High pressures exist on the sidewalls when pressures are high on the floor

of the domain, and vice-versa. This is consistent with a forward-backward motion of the

separation shock system.

Figure 17 shows the results obtained for Condition 2. Again, the contours show the

deviation of the conditional average from the overall average. The results for Condition 2

are shown in Figure 17a, and the complementary average (condition not true) is shown in

Figure 17b. Condition 2 was true for 40.5% of the samples: there was high pressure on

the right side almost half the time. The results for these conditional averages seem to be
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consistent with an antisymmetric left-right motion of the shock system. When pressures

increase on one side of the domain, they decrease on the other side.

The conditional averages have highlighted large-scale symmetric and antisymmetric

modes of the separation zone. The results do not stem from spurious correlation: they

identify frequent events, and consistent flow changes are observed away from the condition

region.

To further explore the issue of the symmetry of the instantaneous flow, a correlation

analysis of the wall pressure was carried out, and the results were compared to analogous

data for the periodic, open sidewall case [37]. Specifically, two-point spatial correlations

R(x, y, z, xr, yr, zr) of the wall pressure signal were carried out for zero time delay and for a

fixed reference point (xr, yr, zr).

Figure 18 shows the correlations for the present flow, which is confined by sidewalls, and

Figure 19 shows corresponding correlations for the periodic sidewall case. (See Figure 13

for orientation relative to separation and reattachment.) For Figure 18a, the reference point

is located on the centerline, just upstream of mean flow separation (xr/δ0 = 91.0, zr/δ0 =

10.0). Comparing to the analogous case for the periodic flow (Figure 19a, xr/δ0 = 86.9,

zr/δ0 = 5.0), a remarkable correlation along the mean separation line all the way around

the duct sidewalls is observed. A significant correlation (R ≥ 0.5) between separation and

reattachment is observed in the sidewall case and is not present in the periodic boundary

condition case. When the reference point for the correlation is shifted to a station near the

sidewall (Figure 18b, xr/δ0 = 91.0, zr/δ0 = 0.1), similar results are obtained, except that the

correlation appears to be responding primarily to an asymmetric motion of the separation

zone.

Corresponding results for a reference point just downstream of reattachment are shown in

Figure 18c for the sidewall case (reference point: xr/δ0 = 106.0, zr/δ0 = 10.0) and Figure 19b

for the periodic case (reference point: xr/δ0 = 108.7, zr/δ0 = 5.0). Here the correlations

appear to be responding to localized events near reattachment. For a reference point at

an analogous station in the corner flow region (Figure 18c, xr/δ0 = 106.0, zr/δ0 = 0.1),

interaction between the ramp and sidewall flows is apparent, as is an asymmetry along the

spanwise (z) direction.
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IV. SUMMARY AND CONCLUSIONS

Numerical simulations were carried out to examine the effect of sidewalls on a Mach 2.25,

24◦ compression ramp interaction in which the confinement effect was very strong (δ/w =

0.12). Inflow conditions were chosen to match previous simulations, and thus explore the

effect of the domain width parameter on the flow structure.

The inflow boundary condition was specified as a laminar-flow similarity solution for

the selected flow conditions. Interpolation was used to produce smooth flow in the corners

of the domain. Transition to turbulent flow was promoted using an artificial body-force

trip. The computed incoming flow at the x/δ0 = 80 station was compared to the results of

direct numerical simulations and experiments, and judged to be a well-developed turbulent

boundary layer along the three walls, with M∞ = 2.25, Reθi = 1800, and δ+ = 540.

The ratio of turbulent boundary layer thickness to domain width at the start of the

interaction was δ/w = 0.12, close to the limit of flow choking, and the overall flow structure

was found to be complex. A region near the centerline of the domain resembled a two-

dimensional compression ramp flow in structure. Nonetheless, this region was very narrow,

confined by sidewall flows that resembled fin interactions.

The instantaneous flow was found to be intensely unsteady, to an extent that is diffi-

cult to convey in still images. (Animations of several of the views shown in the figures from

this article are available here: https://engineering.purdue.edu/~jpoggie/sidewalls/.)

Separation and reattachment moved significantly in the streamwise direction, and reattach-

ment was characterized by unsteady streamwise structures along the ramp. Very intense

fluctuations in pressure and skin friction occurred in the corners along the ramp, with ad-

ditional maxima near centerline separation and reattachment.

Significant differences in flow structure were observed between computations with con-

fining sidewalls and computations with periodic or symmetric boundary conditions at the

lateral boundaries of the domain. Comparing to the limited data available from similar

computations, the centerline separation length scale Ls/δ was seen to vary with the flow

confinement parameter δ/w, as previously recognized in reflected shock interactions. Inves-

tigation of the instantaneous flow structure identified large-scale symmetric and antisym-

metric motions.

The influence of sidewalls on shock-wave / boundary-layer interactions is seen to be sig-

28

https://engineering.purdue.edu/~jpoggie/sidewalls/


nificant, and this effect is worthy of additional research attention. Subsonic corner flows offer

a path for upstream propagation of disturbances that is expected to influence unsteadiness

in many practical situations. In ongoing work, we are examining the spectrum and co-

herence of fluctuations at the wall and in the corners of the flow, and are applying modal

decomposition techniques to this data set.
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frequency unsteadiness in shock-induced separation,” Journal of Fluid Mechanics 629, 87–108

(2009).

[48] E. R. van Driest, “On the turbulent flow near a wall,” Journal of the Aeronautical Sciences

23, 1007–1011 (1956).

[49] M. V. Morkovin, “Effects of compressibility on turbulent flows,” in Méchanique de la Turbu-
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