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Existing methods to identify the interfaces separating different regions in turbulent flows, such as
turbulent/non-turbulent interfaces, typically rely on subjectively chosen thresholds, often including
visual verification that the resulting surface meaningfully separates the different regions. Since
machine learning tools are known to help automate such classification tasks, we here propose to use
an unsupervised self-organizing map (SOM) machine learning algorithm, as an automatic classifier.
We use it to separate a boundary layer undergoing bypass transition into two distinct spatial regions,
the turbulent boundary layer (TBL) and non-TBL regions, the latter including the laminar portion
prior to transition and the outer flow which possibly contains weak free-stream turbulence. Both
regions are separated by the turbulent boundary layer interface (TBLI). The data used in this study
are from a direct numerical simulation, and are available on an open database system. In our
analysis of one snapshot in time, every spatial point is characterized by a 16-dimensional vector
containing the magnitudes of the components of total and fluctuating velocity, magnitudes of the
velocity gradient tensor elements, and the stream-wise and wall-normal coordinates, all normalized
by their global standard deviation. In an unsupervised fashion, the SOM classifier separates the
points into TBL and non-TBL regions, thus identifying the TBLI without the need for user-specified
thresholds. Remarkably, it avoids including vortical streaky structures that exist in the laminar
portion prior to transition as well as the weak free-stream turbulence in the turbulent boundary
layer region. The approach is compared quantitatively with existing methods to determine the TBLI
(vorticity magnitude, cross-stream velocity fluctuation). Also, the SOM classifier is cast as a linear
hyperplane that separates the two clusters of data points, and the method is tested by finding the
TBLI of other snapshots in the transitional boundary layers data set, as well as in a fully turbulent
boundary layer with similar levels of free-stream turbulence. Variants in which the approach failed
are also summarized.
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I. INTRODUCTION6

One of the most striking properties of inhomogeneous turbulent shear flows is the turbulent boundary layer interface7

(TBLI), the notional surface that separates regions of near-wall turbulence from the outer flow, or free stream, that8

can be either nearly irrotational or weakly turbulent. The study of this surface has a long history that goes back9

several decades [1–3]. A variety of tools and methods exist to define and measure the such interfaces [4, 5]. The10

first step in identifying turbulent interfaces is to define the criterion or detector flow variable to distinguish between11

turbulent and non-turbulent or weakly turbulent (outer) regions in the flow. One can then introduce an indicator12

function that depends on the detector flow variable, and a threshold.13

A most basic feature characterizing turbulence is vorticity[1, 4, 6, 7], which is thus a natural choice to use as14

a detector flow variable. At first sight, it would seem relatively straightforward to discriminate between vortical15

and irrotational regions and to define the interface position based on a very low threshold on vorticity magnitude.16

However, the free-stream turbulence intensity in experiments or numerical simulations may be finite, or data may be17

noisy. Moreover, the situation is particularly difficult in flows in which the laminar portion of the flow may have small-18

scale vorticity such as in transitional boundary layers, where the high values of wall vorticity and streaky structures19

in the laminar regions complicate choosing an appropriate threshold of vorticity.20

Another property of turbulence, velocity fluctuations, motivates using turbulent kinetic energy as a detector flow21

variable. For example, Chauhan et al. [8] and de Silva et al. [9] used the turbulent kinetic energy measured in a frame22

moving with the free stream as the detector function, while Anand, Boersma, and Agrawal [10] used instantaneous23

streamwise velocity directly in a jet flow. In some other studies, passive scalar concentration fields have been used, e.g.24

Westerweel et al. [5], Prasad and Sreenivasan [11]. Many of the methods have been reviewed in [12] and more recent25

contributions can be found in Borrell and Jiménez [6], Jahanbakhshi and Madnia [7], Philip et al. [13], Watanabe26

et al. [14], Wu et al. [15], Zhou and Vassilicos [16].27

To overcome the difficulties inherent for transitional boundary layer flow, Nolan and Zaki [17] proposed a function28

based on the velocity fluctuations. Since turbulence is manifest by significant fluctuating velocity events, the quantity29

they suggested is the sum of the absolute values of the wall-normal and spanwise fluctuation field, excluding the30

streamwise component since Klebanoff streaks are predominantly streamwise velocity perturbations. Since the inter-31

face separates the TBL from both the free stream and also the upstream non-turbulent region, it extends down to the32

wall. As a result, a single threshold on the detector flow variable is not possible, which led Nolan and Zaki [17] to set33

different thresholds at different wall-normal heights using Otsu’s method[18], and then reconstruct the 3D turbulent34

structure plane by plane. Meanwhile, Lee and Zaki [19] utilized the streamwise vorticity component to separate the35

turbulent regions from the transitional boundary layer and the free stream.36

Even with a suitable choice for a detector flow variable, the choice of the threshold can be challenging. The selection37

of the appropriate threshold often relies on the common observation that there is a range in which many statistics are38

only weakly affected on the threshold value, like conditional velocities relative to the TBLI shape or fractal dimension39

[9]. Usually, this process is based on examination of the PDF profile of the detector flow variable. If a plateau or40

minimum in the PDF can be observed, a value within this plateau or at the minimum can be assessed as a threshold41

to detect the TBLI (da Silva et al. [12], Lee, Sung, and Zaki [20]). However, the choice of the threshold within plateau42

regions could cover wide ranges if the plateaus are extensive [6], and sometimes the PDFs do not display distinct43

minima or plateaus. In such scenarios, selecting a threshold becomes a trial-and-error process, and the final choice is44

strongly based on the researcher’s subjective judgement.45

Independent of the quantitative measures used to detect the TBLI, when we examine flow visualizations of turbulent46

flow, distinguishing what is turbulent and non-turbulent appears visually rather clear to us, perhaps because of a47

natural ability to make such visual distinctions. Automating such intuitive classifications is an area where new48

“machine learning” tools are known to perform well, especially in cases when large amounts of data can be used for49

training. For example, Hack and Zaki [21] used supervised learning to successfully distinguish stable and unstable50

laminar streaks in a transitional boundary layer. In the present study, we explore the use of one such machine-learning51

tool to detect the TBLI aiming to avoid having to choose thresholds and detector functions. We will find that users52

must still make some informed a-priori choices, and that the proposed methodology cannot be regarded as fully53

automatic or agnostic about the physics involved. Still, the proposed method will be shown to provide successful54

identification of the TBLI and other interesting results.55

In the present study, we utilize clustering into two arbitrary categories, which is a form of unsupervised machine56

learning, to classify the flow into what will turn out to be (a-posteriori) the turbulent boundary layer (TBL) and57

non-TBL regions. The unsupervised clustering classifies objects so that similar objects are grouped as the same58

group. Here, unsupervised means that the input data, or observations, are “unlabelled” – an a-priori classification59

or categorization is not included in the observations. This is very important to the current problem since we do not60

know ahead of time whether a point is turbulent or non-turbulent, even in a “training set”. We wish to avoid having61

to first label some data points as TBL or non-TBL correctly for a supervised classification training process, since62
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then we would need to “set” some “threshold” while labelling. We choose the self-organizing map (SOM) by Teuvo63

Kohonen [22] as the clustering algorithm, but other methods such as the “k-means” algorithm [23, 24] lead to similar64

results.65

It is important to include a clarifying note about nomenclature: TBL region in this paper refers to the turbulent66

spots in the transitional region and the near-wall boundary-layer turbulence after transition. Meanwhile, non-TBL67

refers to the laminar boundary layer, laminar portions in the transitional region and the outer flow, the last of which68

might be turbulent if it contains free-stream turbulence. Both are separated by the TBLI. In the context of the69

transitional boundary layer flow studied here, we think TBLI is a better term to describe the interface separating the70

TBL and non-TBL regions than “turbulent/non-turbulent interface” (TNTI), which is usually used in literature.71

Section II details the data set used in this paper, obtained from a Direct Numerical Simulation (DNS) of bypass72

transitional boundary layer at Reynolds numbers up to Reθ = 1070. The section also provides a brief description73

of the open database system that now includes this transitional boundary-layer data set. Section III provides basic74

background on the SOM clustering method used in this study as well as the particular data that are used to construct75

the input vector for the SOM algorithm. Section IV presents results. First, for illustrative purposes, a lower-76

dimensional (three dimensional) case is considered, namely on the wall where only the two wall stress components77

and downstream distance are used as input vectors to distinguish TBL and non-TBL regions on the wall. Then the78

method is applied to the full 3D flow domain, where the input vectors form a 16-dimensional data space. In section79

V the performance of the SOM is compared to existing traditional detector functions to find the TBLI. Also, we80

characterize the TBLI by reporting PDFs of several variables on the TBLI which typically display wide range of81

variation, in order to further demonstrate that using thresholds can be challenging. Approaches that did not lead to82

successful clustering are briefly discussed. Finally, conclusions are presented in section VI.83

II. TRANSITIONAL BOUNDARY-LAYER DATA SET84

A data set of a transitional boundary layer with free-stream turbulence, which was simulated by Lee and Zaki [19]85

is used to demonstrate the capability of the SOM for TBLI detection. The data set is archived in the Johns Hopkins86

Turbulence Database (JHTDB) system (http://turbulence.pha.jhu.edu) [25–27]. The flow configuration is shown87

in figure 1(a) and other simulation and data set details can be found at https://doi.org/10.7281/T17S7KX8.88

The streamwise, wall-normal and spanwise axes are represented by x, y and z in Cartesian coordinates, and the89

corresponding velocity components are u, v and w. Unless otherwise stated, all subsequent results are normalized by90

the free stream velocity, U∞, and δ990 , which is the 99% boundary-layer thickness at the inlet of the stored region.91

Figure 1(b) shows the skin-friction coefficient Cf plotted against the streamwise location. The gray lines are the skin-92

friction correlations for the boundary layer, in which the turbulent skin-friction is estimated by 0.370(log10Rex)−2.58493

[28] while the curve for laminar flow is given by 0.664Re−1/2x . The boundary-layer thickness δ99 is shown as a function94

of x in figure 1(c).95

Figure 2 shows contours of streamwise velocity on a single plane at height y = 0.50. It shows the streaky structures96

in the laminar portion that are vortical but should not be counted as part of the TBL portions in the flow. The latter97

appear first as spots that grow and merge, ultimately forming the TBL region (see Zaki [29] for a recent review of98

bypass transition). Distinguishing among these regions is the main challenge considered in this work.99

III. SELF-ORGANIZING MAP AS CLUSTERING TOOL100

Since our main goal is to distinguish between TBL and non-TBL regions in the flow, we consider machine learning101

“classifier” methods that can cluster the data into groups. The SOM by Teuvo Kohonen [22] is an unsupervised102

machine learning algorithm and is often used as a clustering tool. “Unsupervised” means that humans do not need103

to interfere in the training process, and it also means that the data need not be “labeled”, meaning that we do not104

need to know ahead of time how to distinguish the flow regions.105

A. Review of SOM method106

A SOM consists of a competitive learning neural network of nodes (or “neurons”) is a competitive learning algorithm107

that is fundamentally different from machine learning methods that apply error-correction learning (e.g. multilayer108

feedforward networks). For clarity the description below is the original SOM with only two nodes, and will be followed109

by a summary of a more efficient variant (batch SOM) adopted in this work. Here, we also refer to an illustrative110

physical example in order to assist in the description of the SOM algorithm, but the generality is retained. As the111

http://turbulence.pha.jhu.edu
https://doi.org/10.7281/T17S7KX8
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FIG. 1. (a) Flow configuration of the current transitional boundary layers with free stream turbulence. Flow is in the x
direction and from left to right. The region covered by data provided in JHTDB is shown as black box. Instantaneous coherent
structures are identified by iso-surface of Q-criterion, colored by their wall normal heights. The boundary layer thickness δ99
is shown as blue line, and the value at the inlet of the stored region, δ990 , is used as reference length scale. (b) Skin-friction
coefficient Cf and (c) boundary layer thickness δ99 as a function of streamwise position x. The lengths are normalized by δ990 .
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FIG. 2. Contours of streamwise velocity on a single plane at height y = 0.50. In the laminar region there are streaks with
streamwise vorticity that should not be counted as turbulent region.

method is introduced, we will refer to how it would be applied to the identification of the TBLI at the wall—the112

problem examined in detail in §III C.113

SOM consists of components called nodes. In general, an M -group clustering task involves M nodes – here we will114

use M = 2 since we only wish to classify each point in the flow as either TBL or non-TBL. In the present study,115

we will use M = 2 nodes since we only wish to classify each point in the flow as either TBL or non-TBL. Each of116

the nodes has a position (“weight”) in the space of input vectors that we wish to classify. In our application, we117

will use a list of certain flow variables as the components of the input vector. In our first illustrative example to be118

presented below in In the example of wall TBLI identification (§III C), we will use three variables: magnitudes of119

the two wall-stress components, |∂u/∂y|y=0 and |∂w/∂y|y=0, and the streamwise location x. We will be interested in120

distinguishing TBL and non-TBL regions on the wall plane.121

In the space of input vectors, the two nodes are first initialized with random positions X(v), where v = 1 (for the122

TBL node) or v = 2 (for the non-TBL one). From there a sample vector from the input data set is selected randomly123

(Dk) and its Euclidean distances to the two node vectors are calculated. The node who is closest to the selected input124

data is termed as the best matching unit (BMU) u, i.e.125

||Dk −X(u)|| ≤ ||Dk −X(v)||,∀v = 1, . . . ,M. (1)

The update of the SOM weights, i.e. the update of the positions of the SOM nodes in the input space, corresponding126
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FIG. 3. Sketch of original Self Organizing Map (SOM) as applied to a problem with two classes. Data (grey points) are
described by two coordinates X = (X1, X2) (a 2D state vector). The green and red circles represent the two nodes. The open
circle represents the first randomly chosen datapoint with position D1 towards which the closest of the initial nodes is drawn
most strongly. After a few (N) iterations over the training data and nodes, the two nodes move to locations representing the
clusters.

to Dk and BMU X(u) is127

Xn+1(v) = Xn(v) + h(n)(u, v) [Dk −Xn(v)] ,∀v = 1, . . . ,M, (2)

where n is the iteration index and h(n)(u, v) is a neighborhood function. From here we see that by selecting one128

input data Dk, the entire SOM map weight vectors will be updated, and then the algorithm will advance to the next129

iteration after selecting all the data points (in a random order). The neighborhood function h(n)(u, v) can be, for130

example, the learning rate α(n) ∈ (0, 1) if the distance between X(v) and X(u) is smaller than the neighborhood radius131

r(n) and zero otherwise. Both α(n) and r(n) are usually decreasing monotonically as iteration index n increases to132

ensure the convergence of the results. Usually, the iterations with r(n) greater than some threshold (which is typically133

chosen as unity if the input variables are properly normalized) are called ordering phase. In this phase, the network134

orders itself to maintain the topological features of the input data in the input space. After r(n) decreases to less135

than or equal to unity, the iterations are called tuning phase, since for r(n) ≤ 1 only the BMU itself will learn from136

the selected data sample.137

The sketch in figure 3 illustrates the above SOM approach. The two nodes (v = 1, 2) are initially placed randomly138

at n = 1. After the first iteration n = 2, the node that is initially closest to some randomly chosen data point Dk=1139

(shown as empty circle), namely node v = 2 at initial position X1(2), is drawn towards that data point to arrive at140

X2(2). Note that X1(1) is also dragged towards the data points and is repositioned at X2(1), because the distance141

between X(1) and X(2) is smaller than the initial neighborhood radius r1. Iterating by drawing randomly from all142

the data repeatedly, the two nodes tend to a configuration where they are placed near the “center” of each of the two143

distinctive groups of data. The data can now be classified by proximity to either of these nodes, thus defining a line144

(or hyperplane) separating the two clusters (shown as dashed red line in the sketch).145

For faster and simpler computations, a batch SOM algorithm is often used instead of the original SOM (Eq. 2)146

described above. In the batch algorithm, a sub-list of all the input data points Dv, who all have the BMU Xn(v),147

are collected. The number of the data points in this sub-list is denoted as m
(n)
v , and the mean position of the data148

points within this sub-list is denoted as D
n

v . The weight (position) vector of Xn(v) is then moved to the center of all149

the input vectors for which it is a BMU or for which it is in the neighborhood of a BMU, i.e.150

Xn+1(v) =

∑
w∈P (n)

v
m

(n)
w D

n

w∑
w∈P (n)

v
m

(n)
w

,∀v = 1, . . . ,M, (3)

where the neighborhood set P
(n)
v consists of all nodes within the neighborhood radius r(n) from node v at iteration n.151

Similarly to the original SOM, the batch SOM (Eq. 3) contains an ordering phase (when r(n) > 1) and a tuning phase152

(when r(n) <= 1); the tuning phase of the batch SOM is identical to the k-means algorithm [23, 24]. However, the153

SOM is less likely to be trapped in local minima than k-means due to the coupling of nodes in the ordering phase [30].154

It should be noted that the batch SOM contains no learning rate function α(n). It provides more stable asymptotic155

values for the weight (position) vectors X(v) than the original SOM. For both the original or batch SOM, the weight156

vectors of the nodes can be initialized to random values.157

This algorithm is implemented in many software packages, such as MATLAB’s neural network machine learning158

toolbox which we use here, scikit-learn (a Python library) and TensorFlow (a Google’s open-source software library).159
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In MATLAB, the neighborhood radius function r(n) is given as:160

r(n) = 1 + (r(1) − 1)(1− n− 1

no
), (4)

where r(1) = 3 is the initial neighborhood radius and no = 100 is the number of iterations of ordering phase. The161

memory and computational time requirements of this algorithm are linearly proportional to the product of the size162

of the input data D and the number of clusters M .163

B. SOM inputs and outputs, and postprocessing164

To identify TBL and non-TBL regions, the machine learning algorithm must have information about the flow.165

As reviewed in §I, velocity, velocity perturbations and vorticity (which is a linear function of velocity gradients)166

contain useful information to distinguish TBL/non-TBL regions. To make the current unsupervised machine learning167

method as simple as possible, we here use local velocity and first-order spatial information, i.e. we use velocity, velocity168

fluctuations and velocity gradients. It should be noted that the instantaneous spanwise velocity w and its fluctuation169

w′ are the same, since the time-averaged spanwise velocity, which is in the homogeneous direction, is zero. Therefore,170

we only keep w (or w′) in the input data. One should also note that, since the turbulence is manifest by large171

fluctuations, the magnitude of these variables, rather than the value itself, is used as representative of “turbulence”.172

Therefore, we use the absolute values of these variables as input features. Besides these flow variables, the x and173

y coordinates are also important, since the flow in a boundary layer develops downstream and the turbulent region174

expands in the wall-normal direction. To avoid biased sampling from the non-uniform DNS grid in the y-direction, the175

data are spatially interpolated onto a uniform grid. We should also emphasize that the data are spatially interpolated176

onto a uniform grid in order to avoid biased sampling due to the non-uniform DNS grid in the y-direction. The177

clustering of grid point in the near-wall region, which was required to resolve the flow, would cause TBL data points178

to be much more numerous than the non-TBL points. Such imbalance in the data can have adverse influence on the179

performance of clustering algorithms [31].180

How to scale, or non-dimensionalize the input features, is very important in the use of SOM algorithm. This is181

because that SOM use the Euclidean distance to measure the similarity between vectors. If one variable has values182

over three orders of magnitude (e.g. the x-coordinate) and another variable has values only up to one (e.g. the183

streamwise velocity u), the former will dominate the similarity metrics while the latter will show negligible impact.184

Thus, one would usually want the input features to be equally important at least in an initial guess. The easiest way185

to equalize the variables is to normalize them all to unit-variance. Hence, all variables f are standardized to fs where186

fs = f/σf and σf is the standard deviation of f , computed over the entire flow domain considered in the analysis.187

We note that the mean of f is not subtracted since simple translations in the state space do not affect the results. As188

an example, the normalization of |u′| is performed using its variance σ2
|u′| =

(
|u′| − |u′|

)2
, where the overline denotes189

averaging over the entire sample space.190

As mentioned before, the number of clusters has to be specified in advance. As the goal of this work is to develop a191

method to identify the TBL/non-TBL regions with the least possible user intervention, we set the number of clusters192

to M = 2, with the expectation that two clusters will represent the TBL and non-TBL regions respectively. The193

inputs to the SOM algorithm are summarized in table I. It should be emphasized that the current method does not use194

any neighboring point information other than the gradients; only local data are used as input. Using neighborhood195

information may cause unwanted spatial filtering on the data which will smooth the TBLI [9].196

A training using 120 million data points with 16 dimensions would take 1 hour with 100 GB memory. However,197

After the training, the SOM outputs the final position (weight) vectors of the two nodes in the space of input data.198

Those data points whose input vectors are closer to the weight vector of one node are classified as one group, while199

the other points are the other group.200

Lastly, a post-processing step is undertaken to account for small-scale intermittency. Even within the TBL region201

there are many small regions (holes) that should be considered part of TBL but that could fall into the non-TBL202

group during the SOM classification. In order to count such points as TBL, any topologically closed region that is203

classified as non-TBL and fully surrounded by the TBL region (non-TBL holes) will be “filled” and re-classified as204

TBL. The TBLI will then be the surface separating both regions.205
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Input # Description Expression Normalization (σ)

1-3 Instantaneous Velocity |u|s, |v|s, |w|s 0.1312, 0.0229, 0.0264

4-5 Velocity fluctuations |u′|s, |v′|s 0.0400, 0.0229

6-14 Velocity gradients

|∂u/∂x|s, |∂v/∂x|s, |∂w/∂x|s
|∂u/∂y|s, |∂v/∂y|s, |∂w/∂y|s
|∂u/∂z|s, |∂v/∂z|s, |∂w/∂z|s

0.0243, 0.0246, 0.0270
0.1595, 0.0296, 0.0536
0.0626, 0.0385, 0.0306

15-16 Coordinates xs, ys 286.6778, 8.2739

17 Number of clusters, M 2 —

TABLE I. Inputs to the SOM algorithm. Inputs # 1-16 are standardized input features, and each of them has unit-variance.
The normalization column shows the standard deviations σ of the input features in the entire 3D domain.
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FIG. 4. (a) Wall contour of |∂u/∂y|s and identified TBLI using SOM. (b) Scatter plot of |∂u/∂y|s, |∂u/∂y|s and xs: blue
circles, non-TBL data points; green circles, TBL data points; +, weight (position) vectors of two neurons nodes. The TBLI
is a bisecting plane of the two weight vectors in the space constructed by the input features |∂u/∂y|s, |∂u/∂y|s and xs. For
convenience, the original x is also shown at the top axis.

C. Illustrative application at the wall in two spatial dimensions206

Considering that we are analyzing a 16-dimensional problem (see table I), it is useful first to consider a simpler,207

lower-dimensional example. A special region in a wall-bounded flow is the no-slip boundary. There, all three velocity208

components are zero, and therefore the velocity gradients in the wall-parallel directions (∂/∂x and ∂/∂z) are strictly209

zero. In addition, since ∂u/∂x = ∂w/∂z = 0 at the wall, ∂v/∂y = 0 due to incompressibility. Therefore, only210

three out of the 16 input features are useful at the wall; they are |∂u/∂y|s, |∂w/∂y|s and xs. Therefore, in this case211

X = (X1, X2, X3) with X1 = |∂u/∂y|s, X2 = |∂w/∂y|s and X3 = xs.212

Figure 4(a) shows the wall contours of |∂u/∂y|s and the TBLI (black line) obtained from SOM applied to the213

three-dimensional wall data only, clearly showing that the method distinguishes between TBL and non-TBL regions214

on the wall plane. As desired, laminar streaks are not catalogued as TBL. In this case the input data vectors may215

be visualized via scatter plot in the three-dimensional state space (figure 4(b)). The two nodes (neurons) onto which216

the SOM has converged (two black crosses) are located apart from each other. The non-TBL data (blue circles) are217

all closer to the left node and appear clustered around a curved cylindrical shape. The data points classified as TBL218

(green circles) appear more spread out and are all closer to the right node. A bisecting plane, equidistant from both219

nodes, separates both regions. If the distance were not measured with the Euclidean norm, that separating surface220

may not be a plane. Note that the plane is tilted in all three directions, i.e. the SOM finds that all three state variables221

are relevant in making the classification into TBL and non-TBL regions. Mapping the plane onto the physical domain,222

and excluding the holes inside the turbulent region, yields the TBLI (black line) shown in 4(a). Thus it is evident223

that the identified TBLI corresponds to a bisecting hyperplane in the input state space.224
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IV. RESULTS FOR THE THREE-DIMENSIONAL FLOW DOMAIN225

Next, the SOM is applied to a snapshot of the transitional boundary layer introduced in section II. The entire 3D226

flow domain is considered by computing the 16 components of the state vector at all points in the flow. To sample227

physical space in an unbiased fashion, instead of using data on the simulation grid points that are clustered near the228

wall, we use a spatially uniform mesh consisting of (nx, ny, nz) = (831, 280, 512) points to cover the entire flow domain229

stored in the database. We use the fourth-order Lagrange polynomial spatial interpolation and fourth-order finite230

difference differentiation scheme implemented in the JHTDB web services [27]. The SOM is applied using M = 2 and231

it converges after about 500 iterations. The small non-TBL holes inside the TBL region are “filled” as described above.232

The results can be cast as visualizations of the interface separating the TBL and non-TBL regions, or mathematically233

as a hyperplane in the 16-dimensional state space.234

A. Visualizations of the TBLI235

Several visualizations of the TBLI identified by the SOM are shown in figure 5. Panel (a) shows the growth of the236

TBL region downstream from patches of turbulence. Some selected stream-wise and cross-stream planes (two planes237

at z = 122.6 and at x = 613.1) are shown in figures 5(b), (c) and (d) respectively, on which the SOM-identified TBLI is238

shown alongside |v′|s+ |w′|s color contours. The visualizations show how the boundary layer grows in the wall-normal239

direction with downstream distance, and that the free-stream turbulence and the laminar steaks can be distinguished240

from the TBL region. These visualizations confirm that the SOM can provide satisfactory TBLI detection without241

using a threshold when applied in the entire 3D flow domain.242

We note that the ranges of the variables in the entire 3D domain are substantial. For example, the mean value243

of |∂u/∂y| as function of y varies over two orders of magnitude within the thickness of the boundary layer. As a244

result, a single threshold set on the gradient, or any other variable, would have been unlikely to work across the entire245

height. Indeed previous researchers chose different thresholds at different wall-normal heights, and then reconstructed246

the 3D TBLI (e.g. Nolan and Zaki [17] who used y-dependent thresholds on |v′| + |w′|). There are also variations in247

the streamwise direction, that in the past have been addressed using x-dependent normalizations of vorticity (see the248

definition of ω∗ by Borrell and Jiménez [6] and §V C below) for application to fully developed turbulent boundary249

layers. For transitional portions of the boundary layer, reformulation of the algorithm is required [19]. In the present250

method, a threshold based on a linear combination among all 16 input variables is determined by the SOM without251

additional user input.252

Next, we show that the SOM obtained, or trained, on one snapshot of the transitional data set can be used to very253

efficiently classify another snapshot of the same flow. Figure 5(e) shows the result of applying the trained SOM to254

another instant of the flow separated from the first snapshot by a time interval 1175δ990/U∞ (significantly larger than255

the advection time across the transition zone). The results demonstrate that the free-stream vortical perturbations,256

streaks, spots and the fully turbulent zone are properly identified for an independent realization of the same flow,257

even though naturally the TBLI is different in its details. The reason for this good performance is that even a single258

snapshot in the training set is quite large and includes sufficient data to construct an accurate descriptor of the TBLI.259

In figure 6, we plot the average height of the SOM-determined TBLI, 〈yI(x)〉, normalized by the boundary-layer260

thickness, δ99(x). The average was evaluated by applying the SOM to 97 snapshots equi-spaced in time, spanning261

close to one flow-through time. Since the instantaneous interface undulates to capture the instantaneous edge of the262

turbulent region, its mean value bears a more physical interpretation, relative to the larger 99% thickness that is263

based on the mean-velocity profile. At x = 1000, 〈yI〉 is approaching 0.7δ99.264

B. Hyperplane representation of the SOM classifier265

The outputs of the SOM are the coordinates of the two nodes in the state space as well as the bisecting hyperplane.266

In our application, the resulting plane is represented according to267

a ·X + 1 = 0, (5)

where

a =[0.19,−0.15,−0.16,−0.16,−0.16,−0.17,−0.10,−0.15,

− 0.15,−0.17,−0.16,−0.17,−0.16,−0.17,−0.08, 0.15]
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FIG. 5. (a) Top view of TBLI identified by the SOM algorithm. The surface is colored by its local wall-normal height. In
(b,c,d), |v′|s + |w′|s contours are shown together with the TBLI (black line) and the boundary layer thickness δ99(x) (white
dashed line). Three different cuts are shown: streamwise at z = 122.6 between x = 200 and 500 (b); between x = 500 and
800 (c), and a spanwise plane at x = 613.1 (d). Panel (e) shows the TBLI obtained by applying the SOM trained from (a) to
another temporal snapshot, separated by a time 1175δ990/U∞. The colormap in (e) is the same as in (a).

are the coefficients on each of the state input variables (flow features) within the vector

X =[|u|s, |v|s, |w|s, |u′|s, |v′|s, |∂u/∂x|s, |∂u/∂y|s, |∂u/∂z|s,
|∂v/∂x|s, |∂v/∂y|s, |∂v/∂z|s, |∂w/∂x|s, |∂w/∂y|s, |∂w/∂z|s, xs, ys].

If a ·X + 1 < 0 the point is classified as turbulent, while if a ·X + 1 > 0 it is non-turbulent. The coefficients of268

x and y have different signs, indicating that these two inputs have opposite effects on the classification: the TBL269

region becomes dominant as x increases, i.e. farther downstream, and y decreases, i.e. nearer to the wall; conversely,270

non-TBL region is found at smaller x and higher values of y. This intuitive difference in the sign of x and y is but271

an example of how the weights of the SOM encode information about the flow. We observe that the coefficients of all272

16 flow variables are of the same order of magnitude , which indicates that determination of the TBLI relies on all273

the input data. Often such analysis can be used to argue that some parameters are irrelevant. Here we find that the274

method relies on all the input data. We performed additional training (not shown here) which includes z coordinate,275

as well as those variables in Table I. As anticipated, the resulting coefficient of z was two orders of magnitude lower276

than other coefficients, which is consistent with z not providing useful information since the flow is homogeneous in277

that direction. This also demonstrates that the SOM has the ability to discover and disregard irrelevant inputs.278

Next, we inquire how different the coefficients would be if we trained the SOM on another snapshot of data, taken279

at a different time separated by 1175δ990/U∞ (significant larger than the advection time across the transition zone).280
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We find that the coefficients of the hyperplane function (5) calculated from two independent snapshots differ by less281

than 2%, and only 4 grid points are classified into different region in the whole 3D domain using the two different282

hyperplane functions. The reason for this insensitivity is that there are sufficient data points in a single snapshot so283

that the training sample provides a (nearly) complete state-space representation.284

Results suggest that this hyperplane representation can be used as a general tool to separate the TBL/non-TBL285

regions in a transitional boundary layer, at least for the present ranges of free-stream turbulence intensity and Reynolds286

number.287

V. COMPARISON WITH OTHER DETECTION METHODS288

Borrell and Jiménez [6] proposed a dimensionless vorticity ω∗ = ω(δ+99)1/2(ν/u2τ ) as the detector variable in a289

fully turbulent boundary layer. This non-dimensional vorticity becomes independent of the streamwise location, or290

Reynolds number, and therefore a single threshold can in principle be applied in the entire three-dimensional flow if291

there is no transitional region in the domain considered for the analysis. For a transitional boundary layer, Nolan and292

Zaki [17] used |v′|+|w′| as the detector variable, which successfully separated the TBL region from the laminar streaks.293

To select the threshold, Otsu’s method [18], which was first applied to transitional flows by Nolan and Zaki [17] and294

subsequently adopted by others [32–34], identifies an optimum threshold that minimizes the intraclass variance, or295

maximizes the interclass variance. In this section, the TBLI from SOM is compared with the two previously proposed296

approaches: the |v′|+ |w′| and ω∗ methods, the former also with Otsu’s method to chose a threshold.297

A. Comparison with the cross-stream fluctuation method298

Figure 7(a) shows contours of |v′|s + |w′|s on the plane y = 0.50, which visually display two distinct regions: the299

TBL region with high velocity fluctuations and the non-TBL region with small amplitudes. Results from the SOM300

and from |v′| + |w′| thresholded using Otsu’s method are compared, when applied to a single plane, as was done by301

Nolan and Zaki [17]. The SOM now uses 15 variables because y is fixed, but otherwise proceeds as described above.302

Figure 7(b) shows the PDF of |v′|s + |w′|s from various regions in the flow. The blue filled function shows the overall303

PDF on the entire plane, while the black dashed and solid lines show the PDFs of |v′|s+ |w′|s within each of the TBL304

and non-TBL regions as classified by the SOM. The classification is visualized in figure 7(c). As desired, the SOM305

does not classify the streaks in the laminar region as TBL (see figure 2), although they contain significant vorticity.306

The results from the SOM are compared to the two approaches to identify the TBL regions, one based on the PDF307

of |v′|+ |w′| and the other using Otsu’s method to chose the threshold. Considering the former approach, a plateau308

is seen in the PDF profile between 0.8 and 1.5 (the orange region in figure 7(b)). Here we choose 1.0 as the threshold309

and the result is shown in figure 7(d). Otsu’s method [18] that identifies an optimum threshold that minimizes the310

intraclass variance (or maximizes the variance among classes) yields a threshold of 2.2 as marked by an orange line311

in figure 7(b). The resulting TBL and non-TBL regions on the data plane are shown in figure 7(e). By comparing312

the three methods, while the threshold from Otsu’s method is relatively high in this case, it seems that the SOM313

result is quite similar to the plateau method, on this plane. The PDFs of |v′|s + |w′|s in the TBL/non-TBL regions314

detected by the SOM are shown in figure 7(b), demonstrating again different behavior than a single threshold that315

would separate the two PDFs into two non-overlapping regions. However, the plateau in the total PDF lays between316

the two peaks of PDF profiles of the TBL/non-TBL regions found by the SOM method.317
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FIG. 7. (a) Contour map of |v′|s + |w′|s at y = 0.50. (b) The PDF of |v′|s + |w′|s. The blue filled profile shows the overall PDF
on the entire plane and a plateau is seen in the range of values indicated by the orange band. The black dashed and solid lines
are the PDFs in the SOM-determined TBL/non-TBL regions. The threshold picked by Otsu’s method is shown as the orange
line. Panels (c)-(d) show the TBL/non-TBL regions (blue, non-TBL region, yellow, TBL region) identified using: (c) the SOM
algorithm, (d) the threshold on |v′|s + |w′|s chosen within the PDF plateau, and (e) the threshold identified by Otsu’s method.
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FIG. 8. Results when applying various methods on a streamwise vertical plane at z = 122.6 in the transitional boundary
layer data set. Panels (a)-(b) show TBL/non-TBL regions identified by the SOM algorithm and Otsu’s method applied to
|v′|s + |w′|s, respectively. The background shows |v′|s + |w′|s contours, the black line is the TBLI, and the white dashed line
is the δ99(x). (c) shows the PDF of |v′|s + |w′|s on the entire plane. See figure 7(b) for legend.

The |v′| + |w′| thresholding method has the drawback that the proper threshold depends on y. To illustrate this318

known issue [17], we now apply the method in vertical x − y planes, i.e. including variations in y in the data, but319

attempting to use a single threshold. Figure 8(a) shows the contour of |v′|s+|w′|s and the SOM-determined TBL/non-320

TBL regions (black line) at plane z = 122.6. Now the SOM includes the full 16 variables since y is also relevant. Here321

the free-stream turbulence is clearly seen in the contour plot, but the SOM is able to distinguish it from the near-wall322

turbulent boundary layer. The PDF of |v′|s + |w′|s at plane z = 122.6 is shown in figure 8(c). As is evident, there is323

no plateau region in the PDF and thus the plateau method is not applicable in this case, while the SOM algorithm324

is not affected. Otsu’s method picked the threshold equal to 3.3, leading to results shown in figure 8(b). The SOM325

provides visibly more appropriate output than Otsu’s method which should instead be applied to separate y planes.326

The PDFs of |v′|s + |w′|s in the TBL/non-TBL regions detected by the SOM algorithm are presented in figure 8(c)327

as well, again confirming that the SOM does not separate the TBL/non-TBL regions based on a single threshold of328

a single parameter.329

B. Vorticity and cross-stream fluctuation methods applied to 3D data330

The vorticity magnitude is often used as a detector function for identification of the TBLI (or TNTI in the literature’s331

terminology) — see e.g. Bisset, Hunt, and Rogers [4], Borrell and Jiménez [6], Lee, Sung, and Zaki [20]. Figure 9(a)332
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FIG. 9. PDFs of (a) |ω|s and (b) |v′|s + |w′|s in the entire 3D domain. See figure 7(b) for legend.

(a) (b)

0 2 4 6
0

2

4

6

|v′|s

|w
′ | s

0

0.03

0.06

0 1 2 3 4
0

2

4

6

|du/dz|s

|u
| s

0

0.25

0.50

FIG. 10. Joint PDFs of (a) |v′|s vs. |w′|s and (b) |∂u/∂z|s vs. |u|s in the TBL (color contour) and the non-TBL (black line)
regions in the entire 3D domain. The lines from top right to bottom left in (a) are isolines with PDFs equal to 0.05, 0.07, 0.5,
1, 1.5 and 2 respectively. The lines from top to bottom in (b) are isolines with PDFs between 0.01 and 0.1 with a constant
step of 0.01.

shows the PDF of |ω|s in the whole 3D domain (blue region), and in the two regions identified by the SOM (non-TBL333

as dashed line and TBL as solid line). The figure shows that the vorticity PDF profiles in the TBL and non-TBL334

regions overlap significantly. The PDF in the non-TBL zone extends to high vorticity values, which may be indicative335

of streaks in the boundary layer. On the other hand, the SOM-identified TBL region has small vorticity amplitudes336

near the edge of the boundary layer relative to the near-wall levels. In this way, the vorticity PDF in the TBL region337

extends to the low vorticity values. Thus, again due to the overlap of the TBL/non-TBL PDF profiles, there should338

not exist a single threshold to easily separate the TBL/non-TBL regions in the 3D domain. In addition, if one insists339

on using a single threshold in this case, the threshold should probably be picked between the peaks of TBL/non-TBL340

region PDF profiles as determined by the SOM; the threshold picked by the Otsu’s method (orange line in figure 9(a))341

seems too high.342

Figure 9(b) shows the PDF of |v′|s + |w′|s, similar to the analysis in §V A but now in the entire 3D domain. Again343

the total PDF does not display a plateau hence it is challenging to select a single threshold. This difficulty led [17] to344

use a threshold that is a function of distance from the wall. Our SOM obviates this step, and is applied directly to345

the 3D data. In addition, the resulting peaks of |v′|s + |w′|s PDF in the SOM determined TBL/non-TBL regions are346

clearly separated from each other.347

Figure 10 shows two selected joint PDF plots obtained in the entire 3D domain within either the TBL (color348

contour) or the non-TBL (solid lines) regions, as determined by the SOM. The peaks of joint PDFs in TBL/non-TBL349

regions are overlapped, similar to the PDFs in figure 9, showing that it would appear difficult to choose a single350

threshold on combinations of these two variables in the entire 3D domain.351

C. Comparison with the ω∗ method in fully turbulent boundary layer352

To compare the SOM with the ω∗ method of Borrell and Jiménez [6] which was developed for a fully turbulent353

boundary layer (i.e. not including transition), we now apply the SOM to a different data set than that considered in354

§IV, namely on a sub-domain of a fully turbulent boundary layer DNS data set [20].355

Figure 11(a) shows the PDF of log10(ω∗) at different y/θin heights in the sub-domain, where θin is the momentum356

thickness at the simulation inlet. The PDF has two well-defined regions: the bottom-right corner shows the high357

vorticity within the near-wall turbulent boundary layer and the top-left region represents the non-turbulent free358
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FIG. 11. Fully turbulent boundary layer without free stream turbulence. (a) PDF of log10(ω∗) at different y/θin. (b) PDF of
log10(ω∗) in the whole 3D domain. (c,d) log10(ω∗) contour, TBLIs identified using SOM (black solid line) and δ99 (blue dashed
line) at z/θin = 1.875 and x/θin = 900, respectively

stream. The non-zero vorticity in the ideally irrotational outer flow is owing to the finite accuracy of the numerical359

scheme. The two regions can be easily distinguished as their vorticity values differ by about two orders of magnitude.360

The near-wall turbulent region and the free stream are connected by a band which spans over −1 ≤ log10(ω∗) ≤ −0.5.361

This is also seen in the PDF profile evaluated over the entire three-dimensional domain and shown in figure 11(b),362

filled region: a plateau connects the near-wall turbulent region at right and the free stream with residual low vorticity363

at left. Previous researchers (e.g. Borrell and Jiménez [6], Lee, Sung, and Zaki [20]) selected vorticity thresholds within364

this plateau to detect the TBLI.365

Figures 11(c,d) show contours of ω∗ on two planes (streamwise and cross-stream, respectively), with contours366

in a range corresponding only to the interval suggested for thresholding from the PDF in figure 11(a) (namely367

−1 ≤ log10(ω∗) ≤ −0.5). The SOM using the same 16 input variables as in §IV is applied to this snapshot of data.368

The classification into TBL and non-TBL regions yields the interface marked by the black line in figures 11(c,d). The369

TBLI detected by the SOM falls within the range of −1 ≤ log10(ω∗) ≤ −0.5 (figures 11(c,d)). However, it does not370

correspond to a single scaled vorticity threshold, as demonstrated by the PDFs of ω∗ in the SOM’s TBL and non-TBL371

regions shown in figure 11(b). Clearly the SOM can classify the two peaks of the total PDF profile into TBL and372

non-TBL regions respectively, without using a single threshold for the TBLI detection. We conclude that in this case,373

the SOM provides results that are similar, but not precisely the same, to those from previously proposed thresholding374

method using ω∗.375

It is important to recall that when using the SOM machine-learning approach, users do not have to normalize the376

vorticity in the very particular way that ω∗ is defined, plot the PDF in a logarithmic scale, and choose a threshold377

within the plateau if one exists, or check whether the threshold appears (subjectively) acceptable; the SOM algorithm378

only requires sufficient data input values, normalized by their standard deviations over the domain of interest.379

D. Robustness380

We have seen that the current SOM method can separate the free-stream turbulence and the near-wall turbulent381

region (c.f. figures 5 and 8), which is recognized as a challenge for TBLI identification. The question is how robust is the382

current identification method to varying levels of free-stream turbulence. It would be surprising if the SOM proposed383

here would work for cases in which the free-stream turbulence levels approach those in the turbulent boundary layer.384

To explore this question, we have applied the SOM to cross-flow planes at various downstream locations in another385

fully turbulent boundary-layer data set [35]. It includes higher free stream turbulence intensity. Specifically, the386

free-stream turbulent intensity in the three selected cross-flow planes (figure 12) are 6%, 3% and 2% respectively. In387

all planes, the traditional TBLI detection methods should not work: there are no distinct, or well-defined, regions as388

seen in the case of fully turbulent boundary layer without free-stream turbulence (c.f. figure 11(a)), and the contours389

of ωs and |v′|s + |w′|s show it would be hard to use a single threshold to find the TBLI. In the plane with 6% FST390

intensity, the SOM provides somewhat satisfactory TBLI identification. However, some free-stream turbulence is also391
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FIG. 13. TBLI detection results using SOM with noise. The input data is at y = 0.50 (same as figure 7), but 10% white
Gaussian noise has been added to all input variables in the whole domain. The yellow and blue colors are the TBL and non-TBL
regions with the original input, while the black line is the TBLI with the noisy data.

detected. The results are cleaner further downstream as the free-stream turbulence decays and becomes closer to the392

levels of the data set considered in §IV. This shows that while powerful in distinguishing nearly laminar or very weakly393

turbulent regions from the boundary-layer turbulence, the SOM method as applied here could not clearly distinguish394

between the high free-stream turbulence and the near-wall turbulence in the boundary layer when the two turbulence395

levels are comparable. We also note that initial attempts to use 3 classes (M = 3) for the entire data to attempt396

to distinguish possible further classes in the flow did not yield meaningful results. The unsupervised learning was397

effective only in distinguishing between two classes.398

Finally, the question of whether the SOM method is robust to noise is addressed by evaluating the SOM-determined399

TBLI in data to which noise has been added. Specifically, we add white Gaussian noise to each of the 16 components400

of the data inputs to mimic the measurement errors: the standard deviation of the noise is 10% of the original values401

and the mean is zero. The SOM is then applied to this noisy data set, and the obtained TBLI is compared to the402

results without noise. As shown in figure 13, the identified TBLI is indistinguishable in the two cases.403
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VI. CONCLUSIONS404

In the present study we have proposed to use a SOM, a class of unsupervised machine learning, to classify points405

in a flow as either belonging to the boundary layer turbulent region or not, and use the classification as a means to406

detect the TBLI. As input state variables for the SOM algorithm, the magnitudes of velocity, velocity fluctuations407

and velocity gradients normalized by their standard deviations, were chosen. The hope was that when applied to408

a transitional boundary layer flow, the algorithm would automatically distinguish between these two types of flow409

regimes without the need for user-specified thresholds.410

The SOM was first tested on a two-dimensional subdomain of the flow, the wall surface. There, only three input411

variables were used, proportional to the two components of the wall stress and downstream distance. It was confirmed412

that application of the SOM to this input data yielded a clustering into two unlabelled categories, of which one was413

clearly the laminar region on the wall including streak signatures, and the other was the fully turbulent region.414

The SOM was then applied to a full 3D domain that included weak outer turbulence, streaky laminar regions near415

the wall before transition to turbulence, patches of turbulence and then the fully turbulent boundary layer. Input416

variables consisting of magnitudes of velocity, fluctuations, velocity gradients and point position were assembled as417

16-dimensional input vectors. When applied to classify the 16-dimensional data into two groups, the SOM yielded418

two node positions. Each point in the flow could then be compared to these two positions and classified depending on419

its (Euclidean) distance in the state space of normalized variables. A final post-processing step consisted in filling the420

typically small laminar holes (topologically closed) that are often found deep in the turbulent region and classifying421

them also as TBL. Visualizations of the resulting two regions and of the TBLI between them confirmed that the422

classification results are consistent with the visual appearance of the flow. The classification could be cast as a423

hyperplane in 16-dimensional state space and the respective coefficients were all non-negligible, i.e. none of the input424

variables used could be discarded as unimportant. We verified that when SOM was applied to another snapshot, very425

similar hyperplane coefficients were obtained, and when applied to an entirely different snapshot, the trained SOM426

also yielded excellent identification of the TBLI.427

A more detailed analysis was performed, comparing the approach to vorticity and cross-flow velocity magnitude428

thresholds. In all cases, examinations of the probability density functions in the identified TBL and non-TBL regions429

highlighted the difficulties in using single thresholds. Moreover, tests with synthetic noise added to the data yielded430

nearly identical results.431

Certain limitations of the SOM method were identified. User input is required in selecting a list of input flow432

variables. In particular, the choice of normalization was found to have an effect. For example, we found that when433

normalizing with the min-max span of each of the input data instead of the root-mean-square, rather poor results were434

obtained. Also, when applied to a data set in which the free-stream turbulence intensity approached the intensity of435

the boundary-layer region, not surprisingly the method was not able to uniquely identify only the turbulence in the436

boundary layer and began to include some of the turbulence from the free stream.437

Nonetheless, the overall conclusion is that the SOM-based data clustering approach could successfully distinguish438

the weakly turbulent outer flow and the strong turbulent boundary layer region, and the interface separating the two439

regions, in a transitional boundary layer. More work is needed to explore and document applications of SOMs to440

other flows, with different levels of free-stream turbulence, and also classifying more than two types of flow regions.441
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