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Turbulent and other nonlinear flows are highly complex and time dependent, but are not fully
random. To capture this spatiotemporal coherence, we introduce the idea of a linear neighborhood,
defined as a region in an arbitrary flow field where the velocity gradient varies slowly in space over
a finite time. Thus, by definition, the flow in a linear neighborhood can be approximated arbitrarily
well by only a subset of the fluid-element trajectories inside it. This slow spatiotemporal variation
also allows short-time prediction of the flow. We demonstrate that these linear neighborhoods are
computable in real data using experimental measurements from a quasi-two-dimensional turbulent
flow, and find support for our theoretical arguments. We also show that our kinematically defined
linear neighborhoods have an additional dynamical significance, in that the scale-to-scale spectral
energy flux that is a hallmark of turbulent flows behaves differently inside the neighborhoods. Our
results add additional support to the conjecture that turbulent flows locally tend to transport energy
and momentum in space or in scale but not both simultaneously.

I. INTRODUCTION

Turbulent flows mix very efficiently. However, although turbulence tends to enhance mixing globally, at a local
level mixing is typically not spatiotemporally uniform even in a turbulent flow. Instead, there are often distinguished
spatiotemporally compact regions of fluid elements, commonly known as coherent structures, that evolve without
significantly mixing with the surrounding fluid [1]. We shall refer to such behavior as kinematic coherence, since the
coherence is defined with respect to the (Lagrangian) kinematic evolution of fluid elements according to the Eulerian
velocity field. However, the concept of coherence can be extended to other transported dynamical fields such as
turbulent kinetic energy, which also displays coherently evolving regions [2]. Of particular relevance in turbulent flows
is the flux of energy between scales, which is also spatiotemporally nonuniform and well correlated with the flow [3].
Few links, however, have yet been made between concepts of kinematic and dynamical coherence [2, 4].
Coherent structures have been studied from different perspectives for many different reasons, including modeling,

flow control, and transport. Here, we focus on concepts of coherence as they relate to transport and mixing. In the
past few decades, there has been a proliferation of techniques aimed at finding and characterizing regions of coherent
transport based on the flow kinematics, typically in the Lagrangian framework [1, 2, 5]. Many of these diagnostic
methods are based on physical intuition for what properties a kinematic coherent structure may be expected to have
[5]; these include stable and unstable manifolds [6], finite time Lyapunov exponents (FTLE) [7, 8], finite size Lyapunov
exponents (FSLE) [9], mesochronic analysis [10], extremally attractive or repulsive surfaces [1], flow barriers under
diffusion [11], and shape coherence [12]. More analytical methods that define coherent structures by solving specified
mathematical coherence problems [5] have also been developed, such as those based on transfer operators [13, 14],
fuzzy clustering [15], spectral clustering [16], and graph coloring [17]. Most of these methods are rooted in the
underlying assumptions that fluid elements inside coherent structures should not mix significantly and should move
in fairly similar ways over the lifetime of the structure, and their efficacy is validated in the same fashion.
Here we approach coherence from a somewhat different starting point, namely that the behavior of the set of fluid

elements inside a coherent structure ought to be predictable from knowing the behavior of just a few of them. Thus,
we define this version of coherent structures—which we term Linear Neighborhoods (LNs)—as regions in which using
an unsteady but spatially linear approximation to the flow field based on one central trajectory is highly accurate
across the entire structure. This definition specifically requires the variation of velocity gradient in the LN to be slow
over a finite time. In this way, we generalize our previous work on what we termed hyperbolic neighborhoods [18]
by relaxing any requirements of hyperbolicity and by incorporating a timescale during which the LN has predictive
power.
In addition to showing that this definition of coherence is computable and reasonable, we also demonstrate its

connection to the turbulent flow dynamics. We do this rather than compare our LNs to other definitions of coherent
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structures (such as those described above) in detail because there is no a priori reason why LNs should provide
the same information as, say, FTLEs; thus, drawing links with the flow dynamics is more informative than such
a comparison. In previous work, we argued that the local, instantaneous spectral energy flux between scales, the
hallmark of turbulence, is highly sensitive to the advective history of the flow [19], since advection may upset the
delicate alignment between the turbulent stress and the scale-dependent rate of strain that is required for efficient
spectral transfer [19, 20]. But since the flow inside LNs is by definition much simpler than in the rest of the domain,
we find that the spectral energy flux is enhanced inside these regions the longer they exist. Thus, we identify a
dynamical role of these LNs [4] and, with the support of experimental data, make the conjecture that the turbulent
dynamics have a tendency to move energy between scales or in space at a single scale, but rarely do both at the same
time.
We begin below by describing our definition of LNs in Sec. II. In Sec. III, we describe our experimental setup

and the results of applying the definition to these experimental flows. Then, in Sec. IV, we describe the connections
between LNs and the local spectral energy transfer. Finally, in Sec. V, we summarize our results and conclude.

II. DEFINING LINEAR NEIGHBORHOODS

In any complex, unsteady flow, most coherent structures will only exist over a finite time interval. For concreteness,
we therefore consider times in an interval t ∈ [t0, t0 + T ], with the initial time t0 and the time-of-flow T being fixed.
Let x be the trajectory of a fluid element, and let y be the trajectory of another fluid element that is nearby at the
initial time t0, so that

y(t0) = x(t0) + δx(t0), (1)

where δx(t0) is presumed to be small. Now, because both x and y are trajectories associated with the (unsteady and
potentially turbulent) velocity field u, they must obey the integral equations

x(t0 + T ) = x(t0) +

∫ t0+T

t0

u(x(t), t)dt (2)

and

y(t0 + T ) = y(t0) +

∫ t0+T

t0

u(y(t), t)dt . (3)

Subtracting eq. (2) from eq. (3), we obtain

δx(t0 + T ) = δx(t0) +

∫ t0+T

t0

[u(y(t), t)− u(x(t), t)]dt , (4)

which is an exact representation of δx(t0+T ). Now, if δx(t0) is small, it is reasonable to make a linear approximation
for the velocity difference in eq. (4). Doing so gives

δx(t0 + T ) = δx(t0) +

∫ t0+T

t0

∇u(x(t), t)[y(t)− x(t)]dt+R , (5)

where the remainder term R satisfies

R ≤ C sup
t∈[t0,t0+T ]

∣

∣δx(t)
∣

∣

2
, (6)

where the notation | · | denotes the length of a vector, for some constant C that in general will depend on T and the
smoothness and boundedness of u.
At the initial time instant t0, we seek a neighborhood around the point x(t0) such that after trajectories have

evolved to time t0 + T , the spatially linear approximation in eq. (5) obtained by neglecting the error term R is
acceptable. In other words, we require the linear approximation for δx(t0 + T ) in eq. (5) with R = 0 to be much
larger than R. Since R can be exactly obtained by comparing eq. (4) with eq. (5), we arrive at the condition

∣

∣

∣

∣

∣

∫ t0+T

t0

∇u(x(t), t) [y(t)− x(t)] dt

∣

∣

∣

∣

∣

≫
∣

∣

∣

∣

∣

∫ t0+T

t0

[u(y(t), t)− u(x(t), t)−∇u(x(t), t) (y(t)− x(t))] dt

∣

∣

∣

∣

∣

. (7)
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FIG. 1. (a) Schematic of the quantities involved in defining a linear neighborhood (LN). (b) Spacetime plot of several LNs
found in the experimental data. The red curves show the projection of the LNs at the initial time t0.

This condition requires that the linear estimate of the displacement δx(t0 +T ) = y(t0 +T )−x(t0 +T ) be very good,
meaning that we can obtain the final-time deviation δx(t0+T ) with high fidelity knowing only the initial displacement
δx(t0) and the trajectory x.

We can therefore define the linear neighborhood (LN) NE,T (t0) of a point x(t0) at the initial time t0 as the set

NE,T (t0) :=

{

y :

∣

∣

∣

∣

∣

∫ t0+T

t0

∇u(x(t), t)δx(t)dt

∣

∣

∣

∣

∣

> E

∣

∣

∣

∣

∣

δx(t0 + T )− δx(t0)−
∫ t0+T

t0

[∇u(x(t), t)δx(t)] dt

∣

∣

∣

∣

∣

}

. (8)

This set depends both on the integration time T—which allows us to set the time span over which we require the
linear approximation slaved to the trajectory beginning at x(t0) to hold—and the constant E > 1. We introduce E
to allow the precise specification of how good the linear approximation has to be; the larger E is, the more accuracy
we are requiring, and thus presumably the smaller NE,T (t0) will be. We call x the center trajectory of the LN, and
note that all trajectories inside the LN associated with x can be well approximated knowing it alone. This definition
differs from our previous work on hyperbolic neighborhoods [18] in that we do not require x to have any particular
properties (such as hyperbolicity) and that we explicitly build a timescale of evolution T into the definition of LNs via
the integrals. Thus, we are generalizing our previous work [18] both by defining LNs associated with any trajectory
in the flow and by requiring nearly linear evolution over some finite time span; the central idea of looking for regions
where linear behavior dominates over nonlinear behavior, however, is qualitatively the same.

This definition is schematically shown in fig. 1a. In a two-dimensional flow, the LN of a trajectory will be a three-
dimensional tube in spacetime as shown in fig. 1b; however, for ease of visualization, we will plot LNs at the initial
time-slice only in what follows (as is commonly done for FTLE fields). One should remember, though, that any
trajectory starting inside the LN at this initial time slice will still experience the linear flow effect described in eq. (8)
during the entire integration time. Also, we note that the definition of LNs is not restricted to two-dimensional flows.
In a three-dimensional flow, the LN will exist in a four-dimensional spacetime, but is still completely definable and
computable if the velocity field is known.

III. EXPERIMENTS

Both to demonstrate that our definition of LNs is calculable in real flows and to explore what effects LNs may
have on the flow dynamics, we have applied the definition to measurements obtained from an experimental quasi-two-
dimensional turbulent flow. We briefly describe the experiment below before presenting our results.
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A. Experimental Methods

As we have presented elsewhere in detail [21–24], our apparatus consists of a thin layer of an electrolytic fluid
with lateral dimensions of 86 × 86 cm2 driven by electromagnetic forces. Experiments were conducted with a 5 mm
layer of a solution of 16% by mass NaCl in water, with a density of ρ = 1101 kg/m3 and a kinematic viscosity of
ν = 1.25×10−6 m2/s. A smooth flat glass floor coated with a hydrophobic wax is used to support the electrolyte, and
the glass floor is painted black on the underside to improve imaging quality. We float an additional 5 mm fresh-water
layer above the electrolyte to create a miscible density interface that defines the horizontal plane of the flow we study.
Under the glass floor, an array of 34×34 permanent magnets with diameters of 12.7 mm, thicknesses of 3.2 mm, and

a center-to-center spacing of Lm = 25.4 mm (which sets the dominant length scale of the flow) is placed to generate a
vertical magnetic field in the apparatus. The strength of each magnet is roughly 600 gauss on their surfaces, and the
magnets are arranged in stripes of alternating polarity. A DC electric current of 3.30 A is passed laterally through
the electrolyte via a pair of copper electrodes. Because of the orthogonal current and magnetic fields, a Lorentz body
force is produced on the fluid. This force is large enough to produce complex spatiotemporal dynamics and weak
turbulence, but not so large as to drive significant out-of-plane motions [23]. We define an in-plane Reynolds number
Re = u′Lm/ν, where u′ is the in-plane root-mean-square velocity and ν is the kinematic viscosity of the electrolyte,
as a nondimensionalization of the strength of the forcing. In the experiments described below, this Reynolds number
is 200.
The flow is measured using particle-tracking velocimetry (PTV) [23, 25]. We seed the electrolyte with fluorescent

polystyrene tracer particles with diameters of 50 µm (and thus a Stokes number of O(10−4)) that are small enough
to follow the flow accurately [26]. The mass density of the tracer particles lies between that of fresh water and the
electrolyte, and so the tracer particles stay at the interface. We illuminate the tracer particles with LED lamps and
image their motion in a subdomain measuring 12Lm × 9Lm in the center of the apparatus at a rate of 60 frames
per second with a 4 megapixel camera. We record roughly 30,000 particles per frame, so that the velocity fields are
highly resolved in space. We work with velocity fields in what follows rather than raw particle trajectories because
they give results that are less noisy and with higher spatial resolution [27]. We also post-process these velocity fields
by projecting them onto a basis of streamfunction eigenmodes to remove any slight three-dimensional motion [23].

B. Experimental Results

To explore the consequences of our definition of LNs, we generate a set of Lagrangian trajectories for virtual fluid
elements started initially on a regular grid by numerically integrating their equations of motion through the measured
velocity fields using second-order Runge-Kutta integration. We then apply eq. (8) to each trajectory to extract its
corresponding LN. Note that some LNs are smaller than our experimental resolution, and appear to be empty sets.
For convenience, we define t0 as 0 for all results that we present. Equation (8) has two tuning parameters that can

change the LN associated with a given trajectory: E, which specifies the required accuracy of the linear approximation,
and T , the length of time for which the LN must persist. In fig. 2, we fix the integration time T to be one eddy
turnover time TL = Lm/u′ and vary E to assess its effect on the LNs. We plot in fig. 2 a scalar field whose value at
a given location is the area of the LN (at the initial time) associated with the trajectory that began at that point.
In general, larger LNs are associated with “stronger” linearity, so this field gives a sense of the degree of linearity in
the flow. It is clear from fig. 2 that the degree of linearity in the flow has a nontrivial spatial structure. In general,
we also find that the size of the LNs decreases as E increases, as expected; however, some trajectories have a strong
enough influence over their neighbors that they continue to dominate a measurably large LN even for relatively large
values of E.
In fig. 3, we again look at the areas of LNs, but now we fix E = 20 and instead vary the integration time T . Just

as one would expect, larger values of T lead to small LNs, since over a longer time span there is a higher likelihood
that a given trajectory inside an LN will feel effects from outside that pull it away from the center trajectory. What
is intriguing, though, is that qualitatively the spatial structure of the LN area field remains the same even as T is
varied. This result suggests that trajectories that evolve in a fairly linear way over short times are likely to continue
to experience a linear flow even over longer times. However, this statement only holds in a gross sense; the details of
the LN area fields change for different values of T .
Looking only at the scalar field of the areas of the LNs as in figs. 2 and 3 hides the details of the shapes of the

LNs, because these fields reduce the LNs to a single number. We therefore show the full LNs themselves in fig. 4(a)
for E = 50 and T = TL. Each curve represents the boundary of one LN, and only those LNs with areas larger than
our minimum spatial resolution are shown. It is clear that many of these LNs overlap, showing that some regions of
the flow are (as one would expect) much less complex than others. This overlapping is also consistent with figs. 2 and
3, given that those figures show that LNs with large areas tend to cluster together. Building on this observation, in
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(a) (b)

(c) (d)

FIG. 2. Scalar fields of the area of the LN associated with each point at the initial time: the color of each point shows the
initial-time area of the LN associated with that point. Colors are on a logarithmic scale, and the colormap is uniform for all
panels. Data are shown for (a) E = 5, E = 10, E = 15, and E = 20. In all cases, T = TL. The full measurement domain is
shown, measuring 12Lm × 9Lm.

fig. 4(b) we show the union of these LNs. By construction, any trajectories beginning in regions of the flow covered
by this union can be well approximated by only a small subset of trajectories—namely the center trajectories of the
LNs that make up this union. (Indeed, to a slightly less well defined level of approximation, one could likely use only
one center trajectory for each set of overlapping LNs.) This small subset of center trajectories can then be used to
approximate the full flow in the entire domain of the flow covered by the union of LNs.
As a final note, we stress here that we have defined LNs based on a somewhat different notion of coherence from

what has been used before to detect coherent structures. Thus, there is no reason that our LNs should look the
same as what one would find using another method. However, it would also be surprising if the LNs were completely

different. Thus, to contextualize our results, we show in fig. 5 two other scalar fields commonly used for detecting
coherent structures: the FTLE and the Okubo–Weiss parameter [28, 29]. We calculate the FTLE by first computing
the flow map Φ(x, t0, T ), the vector field that gives the position of the fluid element that was at x at time t0 at the
later time t0 + T . The flow map can be used to compute the Cauchy–Green strain tensor

Cij =
∂Φk

∂xi

∂Φk

∂xj

, (9)

and the FTLE is given by log(
√
λmax)/T , where λmax is the largest eigenvalue of the Cauchy–Green tensor. The

FTLE field is a Lagrangian measure, and ridges of the FTLE field tend to correspond to hyperbolic structures in the
flow [1]. The Okubo–Weiss parameter is defined as Λ = − det∇u = (ω2 − s2)/4, where s2 is the square of the strain
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(a) (b)

(c) (d)

FIG. 3. Scalar fields of the area of the LN associated with each point at the initial time. Colors are on a logarithmic scale, and
the colormap is uniform for all panels (and the same as in fig. 2. Data are shown for T = 0.25TL, T = 0.5TL, T = 0.75TL, and
T = TL; E is fixed at 20 for all cases. The full measurement domain is shown, measuring 12Lm × 9Lm.

(a) (b)

FIG. 4. (a) Visualization of each LN present in the flow at a single instant of time, for E = 50 and T = TL. (b) The union of
the LNs shown in (a). The full measurement domain is shown, measuring 12Lm × 9Lm.
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FIG. 5. (a) FTLE field computed for an integration time of T = 3TL. (b) Okubo–Weiss parameter. Both fields are shown for
the same data as in figs. 2-4.

rate and ω2 is the square of the vorticity. The Okubo–Weiss parameter is Eulerian, and is typically used to partition
the flow into regions that are instantaneously dominated by rotation (Λ > 0) and those dominated by strain (Λ < 0).
There are some qualitative similarities between these two fields and the LNs shown above, but the details are (as one
would expect) different. We leave a detailed comparison of the spatial structure of the LNs and these (and other)
coherence metrics to future work.

IV. SPECTRAL ENERGY FLUX

Instead, we here explore the connection between LNs and the flow dynamics. As we have defined them, LNs are
purely kinematic entities, in that they are determined only by where fluid elements go with no requirements as to why

they go there. However, kinematics and dynamics in a real flow are of course linked. Here we show how this linkage is
reflected in the dynamical properties of the flow associated with LNs. To do so, we use filter-space techniques (FSTs)
to resolve the energetic coupling between scales of motion simultaneously in space and in time [3, 19, 22, 30–36].
The idea of an FST is straightforward. We apply a low-pass filter with a cutoff length scale of r to the measured

velocity field, which suppresses all the variation on scales smaller than r. Mathematically, we define the filtered

velocity field u
(r)
i (x, t) as

u
(r)
i (x, t) =

∫

G(r)(x− x
′, t)ui(x

′, t)dx′, (10)

where G(r) is a kernel that implements the filter. FST results are fairly insensitive to the precise form of the filter
G(r); for concreteness, we here take G(r) to be an isotropic finite impulse response filter constructed from a sharp
spectral filter with a cutoff wavenumber of 2π/r smoothed with a Gaussian window function to reduce ringing.
After filtering, the equation of motion of the retained kinetic energy K(r) = (1/2)[u(r)]2 can be written as

∂K(r)

∂t
= −∂J

(r)
i

∂xi

− ν
∂u

(r)
i

∂xj

∂u
(r)
i

∂xj

−Π(r), (11)

where summation is implied over repeated indices, and J
(r)
i is a spatial current that contains terms similar to those

in the equation of motion for the full kinetic energy. The term

Π(r) = −
[

(uiuj)
(r) − u

(r)
i u

(r)
j

] ∂u
(r)
i

∂xj

= −τ
(r)
ij s

(r)
ij (12)

is new and arises from the filtering of the nonlinear term in the kinetic energy equation [22, 32, 33]. This term acts
as a source or sink of kinetic energy in the retained field, and so represents the energy transfer between the resolved
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scales (that is, those larger than r) and the suppressed scales (that is, those smaller than r). Π(r) can be written as

the inner product of s
(r)
ij , the rate of strain of the filtered velocity field, and τ

(r)
ij , a turbulent stress tensor. Our sign

convention is that Π(r) > 0 indicates energy transfer from large scales to small scales, while Π(r) < 0 indicates energy
transfer from small scales to large scales.
In two-dimensional flow, Π(r) can be equivalently expressed in terms of the largest eigenvalue of the (deviatoric)

stress tensor λ
(r)
τ , the largest eigenvalue of the strain rate λ

(r)
s , and the angle Θ

(r)
sτ between the corresponding eigen-

vectors ê(r)τ and ê
(r)
s as [35–37]

Π(r) = −2λ(r)
s λ(r)

τ cos 2Θ(r)
sτ . (13)

This expression makes it clear that the alignment between the eigenframes of τ
(r)
ij and s

(r)
ij is essential for determining

both the amount of energy transferred between scales as well the direction of the transfer, since the eigenvalues λ
(r)
τ

and λ
(r)
s are both non-negative. As we have previously suggested, we can therefore think of | cos 2Θ(r)

sτ | as an efficiency

of the cascade [19, 20]. When Θ
(r)
sτ = π/4, the flux vanishes regardless of the magnitude of the stress or the rate of

strain; when Θ
(r)
sτ < π/4, the energy flux will be directed toward larger scales (inverse cascade), while when Θ

(r)
sτ > π/4

the energy will flow toward smaller scales (forward cascade).
In our previous work, we argued that turbulent advection tends to disturb the delicate angle alignment between

the rate of strain and stress that is required for net energy transfer between scales, thus reducing the efficiency of

the turbulent cascade [19]. Here, we specifically study the evolution of the angle Θ
(r)
sτ for trajectories inside and

outside LNs, with the hypothesis that because inside LNs the flow is linear and thus less complex, the advection is not
strong enough to disrupt the stress/strain-rate alignment. Hence, we would expect that the longer a trajectory spends

inside an LN, the more Θ
(r)
sτ will tend to zero along the trajectory, meaning that the efficiency of spectral transfer

will increase. Conversely, we expect that outside the LNs, the more complex advection will keep the stress/strain
alignment near its mean value (of about 0.64 radians or 37◦ [19]).

In fig. 6, we test this hypothesis by plotting ensemble averages of the time evolution of Θ
(r)
sτ for trajectories that

begin inside and outside LNs for several different filter scales r. In this case, we fix T = TL but vary E. As expected,

we see that Θ
(r)
sτ decreases for trajectories inside LNs as time evolves for t < TL, the duration within which we define

the LN to have predictive capability. This trend is stronger for higher values of E; that is, the more stringent we

make the linear approximation, the stronger an effect we see. For times longer than T , the decreasing trend in Θ
(r)
sτ

stops, since the trajectories need not remain in LNs past that time. For shorter values of T , this observation also
holds, as shown in fig. 7 where we fix E = 50 but vary T ; note that when T is short, though, that the identified LNs
may actually persist for a longer time, leading to a somewhat longer time over which the alignment increases.
Thus, we demonstrate a dynamical significance for LNs: because the flow inside LNs is by construction less complex

than that outside the LNs, trajectories inside them display more coherent dynamics that allows the preferential
alignment of the stress and the strain rate. LNs are, however, finite-time structures; thus, as time progresses longer
than the lifetime of the LN, their influence is lost and trajectories that began inside the LNs return to sharing the
spectral properties of a typical trajectory in the flow.
We are thus led to an intriguing conjecture. Inside LNs, the flow is by definition less mixing than it is in the rest

of the domain, because the behavior of all of the fluid-element trajectories in the LN can be well predicted by the
behavior of just one of them. Since amount of chaotic or turbulent advection is typically required to mix efficiently,
LNs are thus regions where spatial mixing is not particularly strong. Yet, as we have shown, the spectral energy
transfer inside LNs is more efficient than it is outside them. Since spectral transfer is the redistribution of energy
and momentum across scales, this increased efficiency suggests that the flow inside LNs can be thought of as strongly
mixing in scale. This finding—that the flow in LNs mixes well in scale but not in space—is in line with our previous
results [19] where we showed that large fluctuations in turbulent stress along trajectories leads to a reduction of the
cascade efficiency. Thus, we suggest that in general, turbulent flows mix efficiently in space or in scale, but typically
not both at the same time.

V. SUMMARY AND CONCLUSIONS

We have described a new way of quantifying coherence in turbulent or other unsteady flows by searching for regions
in the flow in which a spatially linear approximation for the velocity is adequate over a specified timescale. We have
shown that these linear neighborhoods exist in real flows, even when the degree of linearity is constrained to be very
high. Unlike some other kinds of coherent structures, however, these LNs also play a dynamical role in the turbulence:
since the flow inside them is less complex, the turbulent stress and strain rate are free to align inside them, leading
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FIG. 6. Evolution of the angle Θ
(r)
sτ between the turbulent stress and strain rate for trajectories that begin inside LNs. The

curves have been ensemble-averaged over many LNs. Each LN was computed for T = TL, as indicated by the vertical dashed

lines. The horizontal dashed lines show Θ
(r)
sτ = π/4, for which the energy flux vanishes and which separates forward from

inverse energy transfer. In each panel, data are shown for four filter scales in the inverse energy cascade range: r = 3L (red),
r = 3.5L (green), r = 4L (blue), and r = 4.5L (black). Each panel shows computations for a different value of E, with (a)
E = 30, (b) E = 50, (c) E = 70, and (d) E = 90.

to efficient spectral energy transfer. We have demonstrated this behavior in an experimental quasi-two-dimensional
turbulent flow. Thus, we are led to the conjecture that, on the average, turbulent flows tend to efficiently mix in
space or between scales, but not both at the same time.
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FIG. 7. Evolution of Θ
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sτ , as in fig. 6, for fixed E = 50 but for (a) T = 0.5TL and (b) T = 0.75TL. As in fig. 6, the horizontal

dashed lines show Θ
(r)
sτ = π/4 and the vertical dashed lines show the time for which the LNs were computed.
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