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Abstract11

Several results on sedimenting equal spheres obtained by resolved simulations with the Physalis12

method are presented. The volume fraction ranges from 8.7% to 34.9% and the particle Galilei13

number from 49.7 to 99.4. The results shown concern particle collisions, diffusivities, mean free14

path, particle pair distribution function and other features. It is found that many qualitative15

trends found in earlier studies continue to hold in the parameter range investigated here as well.16

The analysis of collisions reveals that particles interact prevalently via their flow fields rather than17

by direct contacts. A tendency toward particle clustering is demonstrated. The time evolution of18

the shape and size of particle tetrads is examined.19
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I. INTRODUCTION20

The importance of fluids with suspended settling particles in natural and engineering21

systems such as sedimentation, fluidized beds, sediment transport and many others has mo-22

tivated numerous experimental, theoretical and computational studies. Theoretical progress23

is hampered by the inherent great complexity of the phenomenon, especially when effects due24

to a finite particle Reynolds number become significant. In this situation, particle-resolved25

numerical simulations and a detailed analysis of the results thereby obtained offer hope to26

gain the insight necessary for progress in the modeling of such systems.27

Table I summarizes the parameter range covered by several experimental and numerical28

studies of sedimenting particles (labels E and N, respectively). The earlier papers focused29

on the Stokes regime. The advent of new numerical methods and more powerful computers30

has opened the way to the study of Reynolds number effects. By and large, in the param-31

eter range where studies overlap, findings have been consistent. For example, the volume32

fraction dependence of the average settling speed has been found to be well correlated by33

the Richardson-Zaki expression [1, 2] modified by a pre-factor as suggested in later work34

(see e.g. Refs. [3–5]). A larger velocity fluctuation amplitude in the vertical rather than35

the horizontal direction is reported by many authors [see e.g. 6, 7]. Connections of these36

phenomena with the pair distribution function and its dependence on the particle volume37

fraction and particle Reynolds number have also been pointed out [see e.g. 8]. The vexed38

question of the divergence of the velocity fluctuations with vessel size [9] has received much39

attention especially in the dilute, low-Reynolds-number regime [see 10, for a good summary].40

The matter has been resolved by showing that the predicted divergence only occurs with a41

hard-sphere particle distribution which in practice does not persist due to the evolution of42

the suspension microstructure, in particular with increasing Reynolds number.43

These results are very helpful in that they begin to flesh out a picture of the dynamics of44

these systems. However, as can been from the Table, the region of parameter space covered45

by these studies is still limited, especially in view of the range relevant for many applications.46

In the present paper we use the Physalis numerical method [see e.g. 11] to examine many47

of the issues studied by previous investigators extending the parameter range, in particular48

by considering moderately dense suspensions at single-particle Reynolds numbers up to49

114. In addition, we study particle collisions, clustering and the time evolution of tetrads,50
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Reference Type Ga ρp/ρf φ (%) Ret = dwt/ν

Ham & Homsy (1988) E ∼ 0.04 2.24 2.5 – 10 < 10−4

Nicolai et al. (1995) E ∼ 0.1 2.53 0 – 40 < 10−3

Segre et al. (1997) E ∼ 0.05 ∼ 1 0.1 – 5 1.2× 10−4

Segre et al. (2001) E 0.04 – 5 – 50 10−4

Chehata Gomez et al. (2009) E ∼ 0.03 2.6 – 4.2 0.1 – 0.8 ∼ 4× 10−5

Snabre et al. (2009) E 0.17 1.34 10 – 55 1.6×10−3

Ladd (1993) N – – 5 – 45 0

Climent & Maxey (2003) N 1.4 – 17.9 0.9 – 1.5 1 – 12 0.1 – 10

Yin & Koch (2007) N 4.5 – 28.5 2.0 0.5 – 40 1 – 20

Yin & Koch (2008) N 1.9 – 28.5 2.0 1 – 20 0.2 – 20

Hamid et al. (2013) N 2.3 5 1 – 50 0.28

Hamid et al. (2014) N 1.0 – 17.9 5 1 – 40 0.05 – 10

Uhlmann & Doychev (2014) N 121, 178 1.5 0.5 141, 233

Zaidi et al. (2015) N 0.4 – 54.3 2.5 – 2.7 ≤ 40 0.01 – 50

Fornari et al. (2016) N 145 1.02 0.5 – 1 188

Present work N 50 – 99 2.0 – 5.0 8.7 – 34.9 44 – 114

TABLE I. Parameter ranges addressed by some previous experimental and numerical studies (type

labels E or N, respectively) of settling particles in a fluid; Ga is the Galilei number, ρp/ρf the

particle-to-fluid density ratio, φ the particle volume fraction and Ret the single-particle terminal

Reynolds number; when not explicitly given in the original reference, the Galilei number was

calculated from (2).

four-particle structures. We find that several earlier results on the two-particle distribution51

function, particle diffusivity and particle velocity fluctuations hold also in the parameter52

range considered here. Several previously identified qualitative features of the results, such as53

trends with increasing volume fraction, are found not to be intrinsic to the system dynamics,54

but dependent on the normalization used to present the results. Additional information and55

two animations are presented in the Supplemental Material [12].56
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II. SIMULATIONS57

The numerical simulations generating the data used for this paper have been described58

in some detail in an earlier publication [13] to which the reader is referred for details. Here59

we present a brief summary.60

We carry out resolved simulations of equal spheres of radius a, diameter d = 2a and61

density ρp suspended in an upward fluid flow. The pressure gradient driving the fluid is set62

in such a way that the mean settling velocity of the spheres vanishes. The computational63

domain is a parallelepiped with a horizontal cross section of dimensions 20a × 20a and a64

vertical extent of 60a; periodicity conditions are applied on all boundaries. With 500, 1000,65

1500 and 2000 equal particles the mean particle volume fraction φ takes the values 8.7%,66

17.5%, 26.2% and 34.9%, respectively. According to [5], for volume fractions greater than 5%67

and domain sizes greater than 10 particle diameters, particle wakes are sufficiently disrupted68

by other particles that periodicity conditions do not introduce undesirable artifacts. We69

consider four different values of the particle-to-fluid density ratio, ρp/ρf = 2.0, 3.3, 4.0, 5.0.70

The simulations are performed with the Physalis method, a complete description of which71

is available in several papers including, most recently, [11]; implementation details are de-72

scribed in [14]. The Navier-Stokes equations are solved on a fixed Cartesian grid by a73

projection method. The fluid-particle coupling is based on the fact that, in the vicinity of74

the no-slip particle surfaces, the fluid motion differs little from a rigid-body motion. This75

circumstance permits the Navier-Stokes equations to be linearized to the Stokes form, for76

which Lamb [15, 16] obtained an exact solution in the form of a series. This analytical77

solution is used to transfer the no-slip condition holding at the particle surface to the closest78

Cartesian grid nodes, thus bypassing the difficulties deriving from the complex geometrical79

relationship between the spherical particles and the underlying Cartesian grid. We use 880

mesh lengths per particle radius which, thanks to the spectral convergence of the Lamb81

solution, and on the basis of earlier validations tests, are sufficient for an accurate resolution82

of the flow.83

In addition to fluid-dynamic forces, obtained from the the Physalis method, particles84

interact via lubrication and collision forces. The former are implemented by explicitly adding85

the analytical expressions available in the literature. The latter are implemented by means86

of a Hertzian contact model described in detail in [11]. To avoid the very stringent time step87
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ρp/ρf Ga Ret Ret from Eq. (2)

2.0 49.7 43.27 44.17

3.3 75.4 76.60 78.40

4.0 86.1 91.57 93.82

5.0 99.4 110.8 113.7

TABLE II. Galilei number, single-particle Reynolds number Ret from present simulations, and

values of Ret that satisfy the correlation (2) from Ref. [5] for the four particle-to-fluid density

ratios considered in this study.

constraint required by the use of a realistic value of the particle Young’s modulus, we used a88

fairly small value of this modulus, 0.65 MPa. The collisional Stokes number Stc = ρ∗Rer/9,89

with Rer the particle Reynolds number based on the relative velocity, characterizes the90

strength of the collisions [see e.g. 17]. Typical values of Stc encountered in the present91

simulations were at most 10-20. Thus, collisions are dominated by the fluid viscosity and92

lubrication forces and are too weak to result in a rebounding motion of the colliding particles93

(see figure 6 in Ref. [11]). For this reason, the use of a smaller Young’s modulus cannot94

affect the results in a significant way.95

At each time step the particle position and orientation are updated on the basis of the96

calculated forces and couples of hydrodynamic origin, collisions, gravity and buoyancy. Hy-97

drodynamic forces and couples are found directly from the coefficients of the Lamb expansion98

with no need for additional calculation. The particle surface is sharp and the no-slip condi-99

tion at the particle surface is satisfied to analytical accuracy whatever the level of truncation100

of the series in the Lamb solution. The simulations described in this work were carried out101

retaining 25 coefficients in the Lamb series, which corresponds to retaining multipoles up102

to and including order 2. The simulation parameters for ρp/ρf = 3.3 were chosen to match103

one of the experiments reported in [1] with glass beads in a liquid mixture.104

In order to characterize the balance between gravity and viscous dissipation it is conve-105

nient to use the Galilei number106

Ga =
1

ν

√(
ρp
ρf
− 1

)
d3g , (1)

in which g is the acceleration of gravity and ν the fluid kinematic viscosity; the values of Ga107

corresponding to the present simulations are shown in Table II. By carrying out separate108
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simulations in domains with size 20a × 20a × 80a we have calculated the terminal settling109

velocity wt of single particles for the density ratios used in this study. The results are shown110

in the form of the single-particle Reynolds number Ret = dwt/ν in Table II, together with111

the values of Ret obtained from the empirical relation [5]112

Ga2 =





18Ret[1 + 0.1315Re
0.82−0.05 log10Ret
t ] 0.01 < Ret < 20

18Ret[1 + 0.1935Re0.6305t ] 20 < Ret < 260
, (2)

with the Galilei numbers used in the simulations. The numerical results and the values of113

Ret that satisfy this correlation are found to be in very good agreement with each other.114

Particles were initially randomly arranged in the computational domain and, before data115

were recorded, allowed to reach a statistically steady state as revealed by the average values116

of the fluid velocity and particle velocity fluctuations. For the lower densities and volume117

fractions we could run the simulations up to dimensionless times νt/d2 = 24.3. However,118

as the density ratio and volume fraction increase, inter-particle interactions become more119

frequent and energetic, which requires a smaller time step and more iterations for conver-120

gence. In these cases, for practical reasons, we only integrated up to νt/d2 of about 14.2.121

Due to computational constraints, we were unable to run some simulations at the higher122

volume fractions and density ratios.123

III. RESULTS124

The present simulations are conducted in the frame of reference in which the mean vertical125

particle velocity 〈wz〉 vanishes at each time step; here the angle brackets denote the average126

over the particles. Thus, the frame of reference used here is appropriate for the description127

of a fluidized-bed-like system. The mean vertical fluid velocity 〈uz〉 (with angle brackets128

here denoting the time and volume average over the fluid phase) calculated in this system is129

readily converted to the mean particle settling velocity in a sedimentation set-up in which130

the mean overall volumetric flux of the mixture vanishes [see e.g. 5]. Upon effecting this131

change of axes we can compare our results with numerous others available in the literature.132

We have done so in our earlier paper [13] finding good agreement with the Richardson-Zaki133

correlation as modified in later work (see e.g. Refs. [3–5]). The reader is referred to that134

paper for details.135
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ρp/ρf φ(%) 〈uz〉/ũ τpũ/d ρp/ρf φ(%) 〈uz〉/ũ τpũ/d

2.0
8.7 0.871 1.515

4.0
8.7 0.852 4.646

n=3.305
17.5 0.881 1.315

n=3.052
17.5 0.845 4.198

26.2 0.899 1.112 26.2 0.866 3.672

34.9 0.884 0.926 34.9 0.882 3.155

3.3
8.7 0.860 3.475

5.0
8.7 0.857 6.375

n=3.102
17.5 0.850 3.125

n=3.003
17.5 0.851 5.796

26.2 0.871 2.713 26.2 0.868 5.118

34.9 0.874 2.325 34.9 0.873 4.460

TABLE III. Calculated vertical mean fluid velocity 〈uz〉 normalized by the reference velocity (3)

and dimensionless particle characteristic time defined in (5) for the present simulations; n is the

exponent from (4).

Due to numerical error and random fluctuations the mean particle velocity does not136

remain zero even if it so initialized. To avoid the drift that would unavoidably accumulate137

over time due to these factors, the applied pressure gradient is adjusted by means of a PID138

controller ensuring that the mean particle acceleration vanishes at each time step. The139

adjustments are very small and they take place at a very high frequency incommensurate140

with any of the other time scales exhibited by the numerical results. A careful analysis has141

convinced us that no significant artifacts are introduce by this procedure.142

In principle, the physically relevant velocity to be used in the scaling of the numerical143

results is the mean fluid-particle relative velocity which, however, is itself a result of the144

calculations. For convenience we will therefore use a reference fluid-particle relative velocity145

ũ defined by146

ũ

wt
= (1− φ)n−1 , (3)

in which n is the Richardson-Zaki exponent for which Garside and Al-Dibouni [2] give the147

relation148

5.1− n
n− 2.7

= 0.1Re0.9t . (4)

The reference velocity (3) has the advantage of being easy to calculate from a knowledge of149

wt for which reliable correlations are available in the literature [see e.g. 18]. The values of n150
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FIG. 1. Two examples of the time dependence of the instantaneous fluctuations of the square of

the particle velocity in the vertical (upper lines, blue) and horizontal directions with respect to

the time-mean values indicated by the horizontal lines; the left panel is for φ = 8.7% and the right

panel φ = 34.9%, both with ρp/ρf = 3.3. The intervals of time during which the vertical velocity

fluctuation differs by ±10% from the mean are highlighted. The time history shown is a fraction

of the total length of the simulation. The reference velocity ũ is defined in (3).

used in the present paper to calculate (3) are shown in Table III; they have been discussed151

and compared with other work in Ref. [13].152

The relation between the calculated vertical mean fluid-particle velocity and the reference153

velocity (3) is shown in Table III, which confirms the close quantitative relationship of the154

two quantities. The difference of 〈uz〉/ũ from 1 shows the need for the modification of the155

Richardson-Zaki correlation by the insertion of a prefactor as mentioned before. The Table156

also includes the normalized characteristic particle relaxation time τp defined by157

τp =
d2

18ν

ρp
ρf

[
1 + 0.15

(
d〈uz〉
ν

)0.687
]−1

. (5)

The mean particle-fluid relative velocity can be readily found from the data in the Table as158

〈uz〉/(1− φ) [see e.g. 5].159

A. Clustering160

The quantity161

〈[w′i(t)]2〉
〈u2z〉

=
〈[wi(t)− 〈wi〉]2〉

〈u2z〉
, (6)
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represents the instantaneous fluctuation of the square of the particle velocity in the vertical162

(i = z) and horizontal (i = x, y) directions. The mean values of this quantity in the two163

directions are represented by the horizontal lines in the two panels of figure 1. The upper164

lines in these two panels show examples of the time dependence of the vertical component165

of this quantity for a low- (left) and a high-concentration case, φ = 8.7% and φ = 34.9%,166

respectively, with ρp/ρf = 3.3. The lower lines represent the analogous horizontal velocity167

fluctuations. While the latter exhibit small statistical fluctuations around their mean value,168

a striking feature of the squared vertical particle velocity fluctuations is the presence of169

long-lived prominent peaks above and minima below the mean values. The intervals of time170

during which the fluctuation differs by ±10% from the mean are highlighted in the figures.171

For both volume fractions the peaks can be as large as 35% above the mean value and are172

interspersed by smaller-amplitude fluctuations. For the higher-concentration case the peaks173

are more frequent and have a shorter duration. In both cases the lifetime of the peaks is174

longer than the particle integral time scale defined in (15) and shown later in figure 11. In175

spite of their magnitude, as shown in figure 9 of the Supplemental Material, these velocity176

fluctuations are smaller than those reported in the literature for Stokes flow.177

Since the particle velocity averaged over all the particles vanishes, the upper lines in the178

figure also represent the mean square of the vertical particle velocity fluctuations. It would179

therefore be difficult to explain the presence of the long-lived high peaks other than by180

the formation of relatively long-lived particle clusters involving enough particles to leave a181

visible signature on the mean settling velocity. The total drag on the particles forming the182

cluster would be less than if the particles were well separated, and this would increase the183

relative particle-fluid velocity causing the peaks. During the periods of smaller-than-average184

velocities, particles may be relatively well separated and “fall” close to their terminal velocity185

relative to the fluid, which would be exactly zero in a completely homogeneous system. The186

shorter lifetime of clusters with increasing particle volume fraction demonstrated in figure 1187

can be explained by the increasing importance of collisions or, more generally, particle-188

particle interactions, which would tend to disrupt close particle arrangements.189

The presence of clusters is visually evident in the movies available as Supplemental Ma-190

terial [12] for this paper. Nicolai et al. [19] observed the existence of clusters in their191

experiments, as did Ladd [20] in his simulations, with both studies in the low-Reynolds192

number regime. The more recent study by Uhlmann & Doychev [21] at two values of the193
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FIG. 2. Probability density function of Voronoi volumes normalized by the particle volume vp =

π
6d

3 for the two cases of figure 1, namely φ = 8.7% (left) and φ = 34.9%, both with ρp/ρf =

3.3. The lines marked with circles (blue) are the average for the periods of greater-than-average

velocity in figure 1, while the lines marked with squares (orange) are the average for the periods of

smaller-than-average velocity. In the right image the two lines essentially superpose while, in the

right one, a somewhat larger probability of smaller value of the Voronoi volumes is visible for the

greater-than-average velocity periods.

Galilei number, Ga = 121 and 178, also showed the presence of clusters at Ga = 178, but194

not as clearly for Ga = 121. These authors explained their results on the basis of known195

features of single-particle settling wakes, which are certainly important at the very dilute196

conditions that they considered, φ = 0.5%. These considerations, however, are probably not197

very relevant for the present range of concentrations and, besides, the study at two values198

of Ga did not permit them to establish whether the clustering that they observed has a199

gradual or an abrupt onset.200

Uhlmann & Doychev [21] established their results on clustering by means of an analysis201

of the Voronoi tessellation of their particle centers. The results of a similar analysis for the202

cases of figure 1 are shown in figure 2 [22]; the lines marked with circles and squares (blue203

and orange, respectively) have been obtained by averaging the Voronoi PDF over the time204

intervals of greater- or lower-than-average velocity marked in black in figure 1. For the lower205
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FIG. 3. n(r) is the average number density of particles with center in spherical shells of different

radii r centered on each particle during the periods of time highlighted in figure 1. The figure shows

the PDF of n(r)/〈n〉, with 〈n〉 the mean number density over the computational domain, for r/a

= 2.25 (blue), 2.50 (orange), 3 (green) and 3.50 (red) and the same conditions as in the previous

two figures. The solid and dashed lines are the values of n(r)/〈n〉 during the high- and low-velocity

intervals, respectively. For the low-concentration case on the left note the higher probability of

larger values of n(r)/〈n〉 during the higher-velocity periods highlighted in figure 1. For the denser

case, this effect is only apparent for r = 3.5 a (red), and it is also present for n(r) < 〈n〉.

volume fraction (left) one can detect a slight bias toward smaller volumes, but for the higher206

volume fraction the two lines essentially superpose.207

An alternative to the Voronoi analysis is the following. Let n(r) be the average number208

density of particles with center in spherical shells of different radii r centered on each particle209

(referred to as “test particle”) during the periods of time highlighted in figure 1; the test210

particle is included in the count. Figure 3 shows the PDF of this number divided by the211

mean number density, n(r)/〈n〉, for r/a = 2.25, 2.50, 3 and 3.50; the vertical dashed line212

shows the average number density over the entire computational domain. The smaller the213

radius, the larger the fluctuations. The solid and dashed lines are the average number214

densities of particles during the high- and low-velocity intervals, respectively. For the low-215

concentration case, φ = 8.7%, (left panel in figure 3) there is a significant probability of216

finding a normalized number density during the peak events larger than that during the217
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periods of low values of 〈w2
z〉. In reading these figures it should be noted that the tick marks218

are separated by two orders of magnitude and the curves, in the region of interest, are nearly219

vertical. For the higher volume fraction (right panel in figure 3) differences become legible220

only for the largest radius, r/a = 3.50 (red). Since, in this case, the average particle number221

density is larger, revealing the concentration anomaly requires counting a larger number222

of particles and, therefore, a larger r. Additional results of this type for the other cases223

simulated are presented in the Supplemental Material. Interestingly, the effect appears to224

be present not only for n(r) > 〈n〉, but also for n(r) < 〈n〉, in which the particle number225

is smaller. Since, for r fixed, there can be many more particles near the test particle in the226

dense as compared with the dilute case, there is a significantly larger probability to encounter227

spherical shells with n(r) < 〈n〉. These results support the conjecture that the peak periods228

of 〈w2
z〉 correspond to the formation of denser particle clusters which extend at least as far229

as r = 3.5 a. This clustering effect appears to be weaker at the higher volume fractions, for230

which the Voronoi analysis does not suggest any clustering while the alternative one gives a231

weak indication of its presence.232

An examination of the probability density function of wz (not shown) reveals that high-233

velocity events with wz > 0 and wz < 0 occur in approximately the same number, although234

the frequency of the events with wz > 0 tends to increase slightly with the volume fraction.235

B. Two-particle distribution function236

Several investigators have studied the two-particle distribution function g(r, θ) in systems237

of the type investigated here. Yin & Koch [5] and Hamid et al. [8] considered single-particle238

Reynolds numbers up to 20 and 10, respectively, while the Reynolds number range considered239

in [7] extends up to 50; all these authors considered volume fractions comparable with ours.240

For low concentrations, all these studies agree in reporting an anisotropic distribution241

with more particles near the test particle in the horizontal direction, θ ∼ π/2, and fewer242

particles in the vertical direction, θ ∼ 0. Yin & Koch [5] find the greatest anisotropy for φ243

= 1% and Ret = 10, a regime in which the mixture behavior is dominated by anisotropic244

wake interactions. As the volume fraction increases, the anisotropy decreases. Increased245

inertia from Ret = 1 to 10 enhances the anisotropy [5, 8]. The origin of this preferential246

arrangement, which has theoretically been known for a long time (see e.g. [23, 24]) and247

12



0
π
3

2π
3

π
20

1

2

3

r/
d

0
π
3

2π
3

π
20

1

2

3

r/
d

0
π
3

2π
3

π
20

1

2

3

r/
d

0.0

0.5

1.0

1.5

FIG. 4. The pair distribution function g(r, θ) for φ = 8.7% (left) and 34.9% (center) for ρp/ρf =

2 (Ret = 43.27); the image on the right is for φ = 8.7% and ρp/ρf = 5 (Ret = 110.8).
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FIG. 5. Angular averages of the pair distribution functions shown in the previous figure. The solid

lines are the average over the entire range 0 ≤ θ ≤ π/2; the dashed lines are the average over a

vertical sector 0 ≤ θ ≤ π/12 and the dotted lines over a horizontal sector 5π/12 ≤ θ ≤ π/2.

verified experimentally [25], lies essentially in a Bernoulli effect as the flow blockage offered248

by two neighboring particles increases the velocity of the fluid between them and lowers the249

pressure.250

The Reynolds number range in the present work goes up to 110 but the results found251

by previous investigators for smaller inertia are essentially confirmed. Figure 4 shows the252

two-particle distribution function for φ = 8.7% and 34.9% with ρp/ρf = 2 (Ret = 43.27), as253

well as φ = 8.7% with ρp/ρf = 5 (Ret = 110.8); additional results of this type are shown254

in the Supplemental Material [12]. A comparison between the first two panels (constant255

Ret, increasing φ) shows the fading of the anisotropy with increasing concentration. A256

comparison between the first and last panels shows the enhanced particle number in the257

horizontal direction and closer to the test particle caused by the increased inertia in the258
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the theory of granular flows.

latter one. A different view of the same information is provided in figure 5, where the lines259

show three angular averages of g(r, θ). The solid lines are the average over the entire range260

0 ≤ θ ≤ π/2, the dashed lines are the average over a vertical sector 0 ≤ θ ≤ π/12 and the261

dotted lines over a horizontal sector 5π/12 ≤ θ ≤ π/2. A comparison of the first two panels262

(φ = 8.7% and 34.9%, Ret = 43.27), shows that the anisotropy strongly decreases as the263

concentration increases, although it is not completely removed. The peaks around r/2a = 2264

indicate the gradual build-up of a “cage” of particles around the test particle, with a slightly265

stronger effect in the horizontal direction.266

For the largest Reynolds number (last panel) the peak in the horizontal direction is higher267

and it moves closer to the test particle. The average in the vertical sector extends further268

out from the test particle and is slightly decreased. A plausible explanation of these results269

is that, at higher Ret, the vertical orientation of particle pairs is less stable as the couple270

that causes the broad-side rotation is stronger and the fluid dynamic force that tends to271

separate horizontal pairs is less effective due to the particle inertia.272
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C. Particle collisions273

A specific phenomenon caused by larger inertia, particularly at moderate to large volume274

fractions, is an increased frequency of particle collisions. As described in [11], the collision275

algorithm used in the simulations embodies a nonlinear Hertzian contact model which is276

activated whenever the distance between two particle centers becomes equal to a diameter.277

This model is complemented by a lubrication interaction when the distance between the278

particle surfaces is less than a radius. Figure 6 shows our results for the volume fraction279

dependence of the normalized collisional frequency f∗,280

f∗ = fcd

(
1

3
〈w ·w〉

)−1/2
, (7)

with fc the computed value and the angle brackets denoting the particle average as before.281

The results shown are the average number of actual Hertzian contacts per particle per unit282

time. Normalization by the particle number is useful in that it admits proper accounting of283

multi-particle collisions. The dashed line is the Enskog collision frequency for elastic hard284

spheres [see e.g. 26, 27]285

fE = 4g2(φ)d2n

√
π

3
〈w ·w〉 , (8)

normalized in the same way; here g2(φ) is the angle-averaged two-particle distribution func-286

tion at contact, approximated by the Carnahan-Starling formula287

g2(φ) =
1

2

2− φ
(1− φ)3

. (9)

Given the presence of hydrodynamic resistance, kinetic theory over-predicts the computed288

collisional frequency, although it provides a good account of the volume fraction dependence289

except for the lightest particles, which are most affected by the fluid. The collisional fre-290

quency increases with the particle mass, as expected from the fact that, with larger inertia,291

hydrodynamic forces become less and less able to prevent a close approach. The division292

of the collisional frequency by
√
ρp/ρf produces an approximate collapse of the results as293

shown in the right panel of figure 6. This result might reflect a role of the added mass in de-294

termining the relevant mean particle kinetic energy 〈w ·w〉 for the purposes of scaling some295

aspects of the system dynamics; a similar collapse is found below for the particle diffusivity.296

15



10−2 10−1 100 101 102 103
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FIG. 7. Examples of the time dependence of the mean squared particle displacement in the ver-

tical, 〈r2z(t)〉/2ũtd (upper lines), and horizontal, 〈r2⊥(t)〉/2ũtd, directions. In the right panel the

displacement is normalized by ũ2t2. The horizontal lines are the long-time and short-time mean

values.

D. Particle diffusion coefficient297

The connection between the particle velocity correlation tensor 〈wi(t+ τ)wj(t)〉 and the298

particle diffusivity Dp is well known:299

D(ij)
p = lim

t→∞

1

2t
〈ri(t)rj(t)〉 = lim

t→∞

∫ t

0

〈wi(τ)wj(0)〉dτ , (10)

in which ri(t) = xi(t)− xi(0)−
∫ t
0
〈wi(τ)〉dτ is the displacement of the test particle from the300

initial position corrected for the mean displacement of all the particles. While in principle301

D
(ij)
p is a tensorial quantity, we find that the off-diagonal components are very small so that302

we limit ourselves to presenting results for the diffusivity in the vertical and in the horizontal303

directions, Dz
p and D⊥p , respectively, the latter calculated in the horizontal plane.304

The time dependence of 〈r2z(t)〉/2t and 〈r2⊥(t)〉/2t is shown in the left panel of figure 7,305

where the asymptotic approach to a constant for both the vertical and horizontal directions306

is evident. The right panel shows instead 〈r2z(t)〉/t2 and 〈r2⊥(t)〉/t2. The constant values307

of these quantities for short times indicate the prevalence of the so-called ballistic regime,308

during which the particle velocity maintains a correlation with itself.309
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FIG. 8. Particle diffusivities in the vertical (left) and horizontal (center) directions normalized as in

(11); the last panel is the ratio of the two diffusivities and illustrates the marked anisotropy of the

diffusion process in the system investigated. The dashed lines are the predictions from the theory

of granular flows (11). The symbols denote the different particle-to-fluid density ratio: ρp/ρf = 2

(asterisks), 3.3 (squares), 4 (circles) and 5 (triangles).

The two sides of (10) provide two alternative ways to calculate the particle diffusivity, one310

from the mean-square displacement, the other from the integral of the velocity correlation.311

The results for Dz
p and D⊥p calculated from the mean-square displacement as shown in the312

left panel of figure 7 are shown in figure 7, in which the dashed line is the prediction from313

the kinetic theory of granular gases [see e.g. 27], corrected for the factor of 3 used in the314

definition of the diffusion coefficient in that theory:315

DE =
9

8

1

d2g2(φ)n

√
1

3
〈w ·w〉 . (11)

The results are made dimensionless by division by
√

1
3
〈w ·w〉. The computed and kinetic316

theory results are comparable in magnitude, but there are significant differences in their317

concentration dependence. In the vertical direction, for φ = 8.7%, kinetic theory over-318

predicts the diffusivity, probably as a result of the hydrodynamic force on the particles that319

hinders their random motion. However, the trend reverses with increasing φ, for which320

kinetic theory predicts a much stronger decrease than the found in the simulations. A321

likely explanation is that the flowing fluid enhances the mobility of the test particle by322

breaking up the “cages” formed by the surrounding particles thus favoring its escape. While323

the flowing fluid enhances the vertical particle displacements, it has a much smaller effect324

in the horizontal direction. Thus, the horizontal diffusivity is lower than the kinetic theory325
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FIG. 9. Normalized particle mean free path defined in (12) in the vertical (left) and horizontal

direction; the dashed line is the kinetic theory prediction (13). The symbols denote the different

particle-to-fluid density ratio: ρp/ρf = 2 (asterisks), 3.3 (squares), 4 (circles) and 5 (triangles).

prediction at low volume fractions due to hydrodynamic resistance, while it is found to follow326

the kinetic theory prediction at higher concentration for which the absence of a mean flow327

does not enhance particle mobilities. This explanation is in accordance with the build-up328

of the cage structure mentioned before and with the radial distribution function mentioned329

at the end of section III B. Interestingly, as shown in the Supplemental Material [12], a330

division of both Dz
p and D⊥p by

√
ρp/ρf provides an excellent collapse of both diffusivities331

similarly to what was found for the collisional frequency. The last panel in figure 7 is the332

ratio Dz
p/D

⊥
p : one observes a marked anisotropy with a minimum around φ ' 26.2%.333

In the Stokes regime the diffusivity is predicted to scale proportionally to the product334

of the particle diameter and the mean particle-fluid velocity [28, 29]. We have tried to335

normalize our calculated results for the diffusivity by d/ũ (see figure 13 below) and by d/wt336

(figure 5 of the Supplemental Material), but we found that these scalings do not collapse337

them any better than the scaling used in plotting figure 8.338

Following the approach of kinetic theory, we can obtain an estimate of the particle mean339

free path λ as340

λii
d

=

√
Dii
p

fcd2
. (12)
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FIG. 10. Two examples of the velocity autocorrelation (14) for φ = 8.7% (left) and φ = 34.9%,

both for ρp/ρf = 3.3. The upper (orange) and lower (blue) lines are for the horizontal and vertical

velocity, respectively. On the lower horizontal axis time is normalized by the particle relaxation

time τp defined in (5. On the upper axis time is normalized by the particles settling time scale

ũt/d.

The kinetic theory prediction for this quantity is341

λE
d

=
1

6
√

2φg2(φ)
. (13)

Figure 9 compares these two quantities. In the vertical direction, our calculated mean free342

path is longer than the kinetic theory prediction in agreement with the enhanced mobility343

previously demonstrated by the results for Dz
p. In addition, the flow caused by a particle344

tends to displace the particles toward which it moves, a process that cannot happen in a345

granular gas without interstitial fluid. This effect is analogous to that of a repulsive inter-346

particle force in kinetic theory, which is also known to increase the diffusivity [see e.g. 30].347

In the horizontal direction kinetic theory under-predicts the mean free path as well, but348

by a significantly smaller margin. Again we see here the effect of the absence of a mean349

horizontal fluid velocity resisted by a force comparable to gravity.350

We now turn to the second way to estimate the diffusivity, namely by integrating the351

normalized velocity correlation352

Rii =
〈wi(t)wi(0)〉
〈w2

i 〉
. (14)
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It may be noted that the denominator is the same quantity shown by the horizontal lines in353

figures 1 and 7. Figure 10 shows two examples of the dependence of Rii on time for ρp/ρf =354

3.3 and φ = 8.7% and 34.9% with two different normalizations, the particle relaxation time355

on the lower horizontal axis and the particle settling time on the upper one. Comparison of356

these two scales reveals that the velocity remains correlated for a time during which particles357

fall by about three diameters. As found by several earlier investigators [6, 8, 19], the velocity358

de-correlates much faster in the horizontal than in the vertical direction. The correlation359

lasts longer at low volume fraction due to the weaker particle-particle interactions caused360

by the larger mean separation.361

To examine the importance of direct collisions on the correlation we can examine the362

integral time scale defined by363

Tii = lim
t→∞

∫ t

0

〈wi(τ)wi(0)〉
〈w2

i 〉
dτ , (15)

the average of which is shown in figure 11 normalized by d/ũ. This time scale shows a strong364

decrease with increasing φ. If direct collisions were the major factor affecting the velocity365

correlations, one would expect that the product Tiifc would be approximately constant.366

This, however, is not the case as shown in figure 12, where this product is found to undergo367

a marked increase with φ, primarily due to the increase of the collisional frequency. This368

result indicates that direct collisions are mostly weak, as already remarked in section II. The369

conclusion that must be drawn is that the most significant agents causing the de-correlation370

of a particle velocity are the flow fields produced by the particles that it encounters rather371

than direct contacts as in a granular gas.372

The result for the particle diffusivity calculated from the velocity correlation integral373

(open symbols) is compared with that calculated with the mean-square displacement shown374

earlier (solid symbols) in figure 13. Here, unlike figure 8, we normalize Dp by ũd to bring375

out the presence of a maximum around φ ∼ 10-15%, which was also found e.g. in [8]. The376

effect of this normalization is due to the rapid decrease of the mean fluid-particles relative377

velocity with particle concentration, as represented by ũ, which is faster than the decrease378

of
√
〈w ·w〉. This second normalization, however, appears to be less justified by the physics379

of the particle diffusion, which is directly dependent on the particle velocity fluctuations,380

incorporated in the earlier normalization by the use of
√
〈w ·w〉.381

The two ways to calculate Dp have an average difference of 5%. In view of the difficulty of382
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accurately estimating the velocity correlation and its integral, reliance on the mean-square383

displacement method is probably justified.384

E. Velocity fluctuations385

Velocity fluctuations in sedimenting suspensions have been investigated by many authors386

motivated by the predicted divergence with container size at low Reynolds numbers. The387

current understanding of this matter is summarized in the review [10]. Since our domain388

size is fixed, we cannot comment on this aspect.389

Our results for the particle velocity fluctuations normalized by the particle terminal390

velocity wt (not shown) confirm those presented in [8] in their common Reynolds number391

range. We find a peak at our second lowest volume fraction (φ = 17.5%) and a decrease392

thereafter. Figure 14 shows the present results normalized by ũ rather than wt. With this393

normalization the fluctuations increase with φ and appear to saturate at our largest volume394

fraction φ = 34.9%. The different trends obtained with the two normalizations depend395
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on the fact that, while ũ decreases with concentration, wt is independent of the particle396

concentration. At the larger Reynolds numbers they studied, Ret = 20, [31] found a very397

slow decay of 〈w2
z〉/w2

t . We find similar results in our higher Reynolds number range for all398

the volume fractions we simulated.399

The last panel in figure 14 is the ratio of the vertical and horizontal velocity fluctuations.400

There is a marked anisotropy with a minimum around φ = 26.2% which, not coinciden-401

tally, occurs at the same volume fraction where the anisotropy of the diffusivities is also a402

minimum.403

In figure 9 of the Supplemental Material, the velocity fluctuations encountered in this404

study are compared with those available in the literature at Reynolds numbers of order405

10−4 − 10−3 summarized in figure 4 of Ref. [10]. Qualitatively, the fluctuations that we406

calculate tend to be significantly smaller (by about a factor of two) than those found at407

small Reynolds numbers. A plausible explanation of this difference is that, at small Reynolds408

number, the region of fluid affected by a particle is not mostly limited to the wake, as at409

finite Reynolds number, but extends much farther out thus affecting many more particles.410

IV. TETRADS411

Some interesting information on the behavior of the system under consideration can be412

obtained by a study of the time evolution of the shape and orientation of groups of four413
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particles – particle tetrads. This study enables us to probe the small-scale dynamics of414

the particulate phase beyond the one- and two-particle information considered up to this415

point. Studies of this type have been carried out e.g. in polymer science [see e.g. 32, 33], in416

the theory of random walks [see e.g. 34], single-phase turbulence [see e.g. 35–38] and other417

areas [see e.g. 39].418

A. Tetrad geometry419

Several different ways of investigating tetrad geometry have been proposed [see e.g. 38].420

We use an approach common in the polymer literature [32, 34] in view of its intuitive appeal.421

At each instant of time, we define a coarse-grained velocity gradient tensor Mji around422

the instantaneous center of each tetrad by minimizing the quantity[38]423

K =
4∑

n=1

3∑

i=1

[
(wni − ui)−

3∑

j=1

(xnj − xj)Mji

]2
, (16)

in which xni and wni represent the ith component of position and velocity of the nth particle424

in the tetrad and425

xi =
1

4

4∑

n=1

xni , wi =
1

4

4∑

n=1

wni , (17)

are the position and velocity of the center of the tetrad. The velocity gradient tensor Mji426

that minimizes K is the solution of the linear system427

3∑

k=1

GikMkj = Wij , (18)

in which Gik is the shape (or gyration) tensor [32, 33, 40]428

Gij =
1

4

4∑

n=1

(xni − xi)(xnj − xj) , (19)

and429

Wij =
1

4

4∑

n=1

(xni − xi)(wnj − wj) . (20)

The eigenvectors of the shape tensor430

Gvk = λkvk , (21)
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with λk the respective eigenvalues, identify the principal axes of the tetrad orientation. For431

an isotropic tetrad, λ1 = λ2 = λ3. The normalized eigenvalues432

Ik =
λk

3λ
, (22)

are defined in terms of the mean value λ = 1
3

(λ1 + λ2 + λ3). The deviation of the normalized433

eigenvalues from 1/3 provides a measure of the anisotropy of the shape tensor.434

The antisymmetric part of the velocity gradient tensor describes the rotation of the tetrad,435

while the symmetric part Sij = 1
2

(Mij + Mji), on which we focus, carries information on its436

deformation. The eigenvectors sk of S are the directions of the principal axes of strain.437

The primary measure of the tetrad size is the radius of gyration RG defined by438

R2
G = Tr(Gij) = λ1 + λ2 + λ3 = 3λ . (23)

The shape of the tetrad can be further characterized by two dimensionless parameters, the439

shape variance ∆, also called “relative shape anisotropy,” and the shape factor S. The shape440

variance is defined as441

∆ =
3

2

Tr(Ĝ2
ij)

(TrGij)2
, (24)

where Tr(Ĝ2
ij) =

∑3
k=1(λk − λ)2 is proportional to the variance of the eigenvalues of the442

deviatoric part of Gij, defined by Ĝij = Gij −λδij. It can be shown that 0 ≤ ∆ ≤ 1 [33]. For443

a spherically symmetric particle arrangement the shape variance vanishes, while it reaches444

its maximum value 1 when the centers of the four particles fall on a straight line; for a right445

tetrad with three isosceles triangles ∆ = 1/9. The shape factor S is defined by446

S = 27
det(Ĝij)

(Tr(Gij))3
, (25)

where det(Ĝij) =
∏3

k=1(λk − λ). It can be shown that −1
4
≤ S ≤ 2 [33]. For a prolate447

particle arrangement λ1 > λ > λ2, λ3 and S is positive while, for an oblate arrangement448

with λ1, λ2 > λ > λ3, S is negative.449

B. Tetrad Initialization450

At the initial instant of each realization we select four-particle groups with an initial451

distance between any two particle centers between slightly less than 2a (to account for the452
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TABLE IV. Number of tetrads tracked for each case

φ ρ∗ # of Tetrads

0.087 [2, 3.3, 4, 5] [1376, 2871, 3569, 4332]

0.175 [2, 3.3, 4, 5] [34327, 52686, 61903, 67910]

0.262 [2, 3.3, 4, −−] [104230, 174862, 197487, −−]

0.349 [2, 3.3, −−, −−] [84339, 232426, −−, −−]

very small overlap occurring during collisions) and 2.5 a. To ensure a reasonable degree453

of isotropy in the initial tetrad configuration we only use tetrads with an initial shape454

variance of ∆ ≤ 0.15. These choices strike a balance between the number of tetrads sufficient455

for statistical convergence and the removal of a significant contamination by anisotropic456

structures.457

In view of the triply periodic nature of the simulation, we prefer not to follow the tetrads458

much beyond the time when the average radius of gyration exceeded 20a, the shortest459

dimension of our computational domain. Since this criterion was applied to the average460

radius of gyration rather than to each individual tetrad, one would expect that the radius461

of gyration of some tetrads would have exceeded 20a. However, this is not a serious concern462

because, as will be seen below, tetrads tend to elongate in the vertical direction, in which the463

domain size is 60a and, furthermore, one can account for a particle exiting the computational464

domain simply by adding the width of the domain to the position of its image inside the465

domain. Since the time to reach 〈RG〉 = 20a was shorter than the duration of the simulations,466

we carved up each simulation into several portions that were used to populate the ensemble467

over which averages were calculated. The time necessary for a doubling of 〈RG〉 was used to468

define the interval between the starts of successive portions. The number of tetrads tracked469

in this way for each set of parameters is presented in Table IV.470471

C. Shape evolution472

Results from simulations with different particle densities are represented by different473

colors: gray for ρp/ρ = 2, green for ρp/ρ = 3.3, red for ρp/ρ = 4 and blue for ρp/ρ = 5;474

increasing volume fractions are indicated by increasing color saturation. In the presentation475
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FIG. 15. Time dependence of the normalized mean tetrad radius of gyration defined in (23); ρp/ρf

= 2 (gray), 3.3 (green), 4 (red) and 5 (blue).

of results used here time is non-dimensionalized by d/ũ, and results for the same particle476

density, but different volume fraction, essentially superpose so that lines with different hues477

are barely distinguishable. This collapse shows the effectiveness of the Richardson-Zaki478

factor (1− φ)n−1 appearing in the definition (3) of ũ in accounting for the effect of volume479

fraction. In figure 10 of the Supplemental Material we non-dimensionalize time by the480

diffusive scale d2/ν and the effect of volume fraction is more clearly visible.481

1. Mean482

The radius of gyration averaged over all tetrads is shown as a function of the scaled483

dimensionless time tũ/d in figure 15. The horizontal black dashed line identifies the length484

of the smallest dimension of the computational domain and the other dashed line has a slope485

1/2. The time scale d/ũ does a good job of collapsing all the results not only for different486

volume fractions, but also very nearly for different particle densities, while it is found that487

the a characteristic time based on the granular temperature does not (not shown).488

The tetrads maintain a size close to the initial one for the time required to move by489

one or a few diameters relative to the fluid, indicating that the constituent particles are still490

experiencing a similar flow environment and similar hydrodynamics forces. This corresponds491

to the ballistic regime in the right panel of figure 8. At ũt/d ∼ 5, at which time RG has grown492

to approximately 1.5d, the radius of gyration enters a diffusive growth regime proportional493
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FIG. 16. Time dependence of the normalized eigenvalues of the shape tensor, (22); ρp/ρf = 2
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to
√
t. This is approximately the time when the horizontal diffusivity approaches a constant494

value as shown in the left panel of figure 7. It is interesting that the time scale used495

here collapses the results also in the intermediate period between the ballistic and diffusive496

regimes. This feature must depend on the relative smallness of the velocity fluctuations497

compared with the mean relative velocity with respect to the liquid already found in figures 1498

and 14.499

The normalized shape eigenvalues (22) averaged over all the tetrads are shown in figure500

16. After a short initial time ũt/d ∼ 1, during which the tetrads remain close to their initial501

shape, the normalized eigenvalues start evolving until they reach approximately steady values502

around ũt/d ∼ 10. The curves corresponding to different Galilei numbers collapse reasonably503

well, but not as well for different φ. The numerical values of the 〈Ik〉’s show that the initially-504

regular tetrads evolve into thin elongated structures at long times. Interestingly, the same505

trend is found in single-phase homogeneous turbulent flow [38, 41]. The author of the latter506

reference attributes this result to a diffusive process with a separation-dependent diffusivity507

á la L.F. Richardson [42]. Around ũt/d ∼ 102, we begin to see a departure from the steady508

state that corresponds to 〈RG〉 approaching the shortest dimension of the computational509

domain.510

The behaviors of the shape variance ∆ and shape factor S, shown in figure 17, are compat-511

ible with this interpretation. The asymmetry parameter ∆ reaches a value of approximately512
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FIG. 17. Time dependence of the shape variance ∆, (24), and shape factor S, (25); ρp/ρf =

2 (gray), 3.3 (green), 4 (red) and 5 (blue). Increasing hue saturation corresponds to increasing

particle volume fraction (see Supplemental Material [12]).

0.6, which is compatible with a very small third eigenvalue, i.e., with the particles forming513

a thin tetrad. The shape factor reaches a steady state value of S ≈ 0.75, indicating prolate514

shapes, as also demonstrated by the normalized eigenvalues of figure16.515

The shape and symmetry of the tetrads remain approximately constant up to ũt/d ∼ 1.516

Over the following decade of time, the tetrads change shape rapidly, ultimately reaching517

approximately steady values around ũt/d ∼ 10. The appearance of all these figures changes518

from ũt/d ∼ 100 onward, probably an effect of the tetrad size approaching or exceeding the519

dimensions of the computational domain.520

2. Shape Alignment521

The alignment ez · vk(t) of the tetrad principal axes with ez, the direction of gravity,522

is shown in figure 18. The initial value of this quantity, close to 0.5, indicates that the523

initialization of the tetrads is not preferentially aligned with any direction. With time, the524

tetrad’s largest principal axis tends to become preferably aligned with gravity and the cosine525

of the angles that the intermediate and minor axes form with gravity decreases indicating526

a tendency toward a horizontal arrangement. Up to ũt/d ∼ 5 − 10, however, the average527

of ez · vk(t) does not deviate very much from 0.5. This effect indicates that, initially, the528

tetrads mostly respond to the local flow conditions, with gravity emerging only later as a529
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FIG. 18. Time dependence of the alignment of the tetrad principal axes with gravity. Colors refer

to different particle-to-fluid density ratios: ρp/ρf = 2 (gray), 3.3 (green), 4 (red) and 5 (blue).

Increasing hue saturation corresponds to increasing particle volume fraction (see Supplemental

Material [12]).
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FIG. 19. Time dependence of the alignment of the tetrad principal axes with the principal rate

of strain at the initial instant corresponding to the largest eigenvalue. Colors refer to different

particle-to-fluid density ratios: ρp/ρf = 2 (gray), 3.3 (green), 4 (red) and 5 (blue). Increasing hue

saturation corresponds to increasing particle volume fraction (see Supplemental Material [12]).

dominant factor in the determination of their shape.530

Figure 19 shows the alignment vk · s1(0) of the principal shape axes with the initial prin-531

cipal strain axis. At initialization, the tetrad shape is uncorrelated with the local particle532

field strain direction and the average value of the cosine is about 0.5. As the particles in533
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the tetrad adapt to local conditions, however, the major, intermediate, and minor principal534

shape axes begin to align with their respective counterparts of the principal strain axes.535

Comparison with figure 18 shows that this process occurs before the shape principal axis v1536

has had a chance of aligning with gravity, which suggests that the origin of this alignment537

is kinematic rather than dynamic. This is another interesting point of contact with single-538

phase homogeneous turbulence [38]. Unlike that case, however, we found little indication of539

preferential alignment of the angular velocity of the tetrads with the eigenvector correspond-540

ing to the middle eigenvalue of the strain tensor. It appears therefore that analogies that we541

have encountered are mostly due to kinematical effects, whereas the alignment of the angular542

velocity depends on dynamical features specific to single-phase turbulence. Eventually, near543

the onset of the diffusive behavior, the principal directions and strain become unaligned as544

the local conditions that generated the initial strain evolve.545

A consideration of figures 15 to 19 together shows the presence of three distinct phases546

of the tetrads’ evolution. In the first one, up to ũt/d ∼ O(1), very little is happening: over547

times of this length the particle move a distance of the order of their diameter and there is548

little evolution of their shape. In a second phase, up to ũt/d ∼ O(10), the complexity of549

the mutual interactions gradually pushes the quantities characterizing the tetrads toward550

an approximately steady state with prevalent stretch along the initial principal strain axis;551

this dynamics acquires a diffusive character under the action of the relatively small mutual552

disturbances. Finally, for later times, diffusion continues, but the effect of gravity becomes553

determinant and the principal shape axis tends to align vertically.554

V. SUMMARY AND CONCLUSIONS555

In this paper we have studied the settling of equal spheres suspended in an upward fluid556

motion extending the parameter range with respect to that used by previous investigators.557

By and large our results agree with previous ones for the quantities investigated earlier and558

the parameter ranges where there is an overlap. A new feature identified in this study is the559

tendency toward particles clustering as revealed by the large excursions above and below560

the mean value of the square of the mean particle velocity fluctuations.561

We have studied particle collisions comparing the results with those of the kinetic theory562

of granular gases. Another feature of this work that has not been considered before is the time563
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evolution of tetrads, arrangements of four particles. Initially the size and orientation of the564

tetrads is little affected by the fluid motion, but eventually they evolve into thin, elongated565

structures preferentially aligned with the direction of gravity. This result is in agreement566

with the markedly anisotropic nature of the particle diffusivity and velocity fluctuations,567

which are larger in the vertical than in the horizontal direction. The transition toward an568

anisotropic structure occurs on the same time scale as the initial ballistic regime of the569

particles displacement is replaced by a diffusive regime.570

It may be hoped that results of the type we have presented will foster the formulation571

of useful reduced descriptions of particle-fluid systems. We have taken a small step in this572

direction in an earlier paper [13] in which we have shown that the averaged-equation theory573

for kinematic waves can be recovered from the results of resolved simulations. Much work574

remains to be done however. The smoothening out of the statistical fluctuations of resolved575

simulations, while leaving the effect of the most important physical processes intact, is still576

an unsolved problem. For example, if an efficient and accurate method can be developed577

for this purpose, it will be possible to examine in detail the proposed closure relations of578

averaged-equation models and judge their validity. By gradually increasing the particle579

density with respect to that of the fluid one may hope to gain an understanding of the580

nature of the instabilities affecting gas-particles fluidized beds and the manner in which581

these instabilities are contained in the reduced equations models. A valuable outcome of582

these efforts would be an understanding of the correct way in which the many non-hyperbolic583

reduced-description models in existence should be rendered well-posed.584
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