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Abstract

Shock particle interaction is a fundamental problem in many engineering applications, with
the dynamics being heavily influenced by the incident shock Mach number and the particle
volume fraction. In this paper we present fully-resolved inviscid simulations of an incident
shockwave traveling through a bed of randomly distributed spherical particles. We vary the
strength of the incident shock along with the particle volume fraction in order to study the
complex wave interaction during shock particle interaction. In this study we are interested in
the early time behavior during which the particles do not move and hence in our simulations all
the particles are fixed in space. We compute the streamwise average of flow field quantities to
generate the x − t contour plots to study the unsteady oscillations inside the particle bed. We
observe that the transmitted shock slows down under certain conditions and it is partly due to
tortuosity and partly due to weakening caused by energy dissipation. We also present the force
histories of the streamwise drag and lift forces for all the particles. The random distribution of
particles leads to high variability in the drag force experienced by the particles. We compute
the mean peak drag force as a function of the streamwise location to study the mean behavior
of the transmitted shock. Based on our findings we propose simple modifications to improve
the current point particle models used in Euler-Lagrange simulations of shock interacting with
a bed of particles.

1 Introduction

It is important to understand the dynamics of a shock interacting with a bed of particles due to
its extensive industrial applications [1–5] and occurrence in nature [6, 7]. Currently, there is a lack
of understanding and data in terms of the physical mechanisms at play during shock interacting
with a bed of particles and the forces experienced by the particles. The primary goal of this study
is to fill this knowledge gap by performing fully-resolved inviscid simulations of an incident shock
traveling through a bed of mono-dispersed randomly distributed spherical particles. We note that
in a fully-resolved simulation the standard governing equations (Navier-Stokes or Euler) are solved
by resolving the flow to the finest relevant scale. In the Euler simulations that are discussed here,
the smallest relevant spatial scale is the particle diameter apart from the shock thickness. We vary
the strength of the incident shock and the particle volume fraction to study the effect of these two
parameters on the flow field and the forces experienced by the particles.

Previously, shock interaction with a single particle has been studied in depth by various re-
searchers [8–12] by carrying out experiments and performing numerical simulations. Recently, a

1



number of fully-resolved numerical simulations of shock interacting with multiple cylinders [13–15]
and multiple spheres [16–18] have been reported. For example, Sridharan et al. [16] investigated
the effect of inter-particle spacing and incident shock Mach number on the drag force experienced
by spherical particles arranged one after the other in a simple one-dimensional horizontal array.
Mehta et al. [17] carried out simulations of shock interaction with a one-dimensional transverse
array of particles and reported that in some cases the secondary wave interactions due to fluid
mediated particle-particle interaction can lead to forces higher than those induced by the incident
shock. Mehta et al. [18] reported results from numerical simulations of incident shock interacting
with a face-centered cubic (FCC) array of particles. They varied the incident shock Mach number
and particle volume fraction to study the effect of these parameters on the streamwise drag force
experienced by the particles. The complex physical mechanisms occurring during shock particle
interaction were identified and their effect on the overall flow and the drag forces experienced by
the particles was studied.

More recently, Mehta et al. [19] performed fully-resolved three-dimensional inviscid simulations
of an incident shock propagating through a random bed of mono-dispersed spherical particles,
similar to the one considered in this study. They varied the particle volume fraction but held
the incident shock Mach number, Ms, constant at 3. They reported that the random distribution
of the particles significantly altered the force history of each particle compared to that of an
isolated particle, and the fluid mediated particle-particle interaction resulted in high variability in
the peak streamwise drag force experienced by each particle. It was also found that the incident
shock weakened as it traveled through the particle bed. The weakening of the incident shock was
attributed to dissipation of energy due to formation of shocklets and bow shocks inside the particle
bed.

The goal of this work is to extend the simulations of Mehta et al. [19] to cases where the
incident shock Mach number is smaller than Ms = 3. We note that the critical Mach number for
an isolated particle is 0.6. If the relative Mach number of the post-incident shock flow is equal
to or greater than the critical Mach number then the flow will accelerate locally over the particle
to reach sonic or supersonic velocity. For a given incident shock, the post-incident shock flow can
have three regimes based on its Mach number, Mps. These distinct flow regimes are, subsonic
and subcritical (Mps < 0.6), subsonic and supercritical (0.6 ≤ Mps < 1), and supersonic and
supercritical (Mps ≥ 1). The inviscid flow behavior for these different flow regimes is distinctly
different and results in unique flow features around the particles. For Mps ≥ 1 a bow shock will
form upstream of the particle, and for 0.6 ≤ Mps < 1 a shocklet will form along the particle
surface. Both of these flow regimes are supercritical and the “steady-state”streamwise drag force
on a particle will be non-zero. Both, the bow shock and the shocklet also dissipate energy from
the flow resulting in weakening of the incident/transmitted shock as it travels through the particle
bed [18, 19]. For Mps < 0.6 the reflected waves are weak compression waves and the post-incident
shock inviscid drag force on a particle will be zero. As mentioned previously, the critical Mach
number stated here is for an isolated spherical particle and we expect it to be different for a bed of
particles. In fact the critical Mach number for a bed of particles will depend on the particle volume
fraction along with the incident shock Mach number.

In view of the above observations, we consider three incident shock Mach numbers, Ms =
1.22, 1.66, and 3. The corresponding post-incident shock Mach numbers are Mps = 0.31, 0.73,
and 1.36, respectively, which covers all three flow regimes discussed above. The particle volume
fraction, φ1, is also varied from 2.5, 10 to 20%. Varying the incident shock Mach number and particle
volume fraction results in nine unique combinations for the numerical simulations. The numerical
simulations performed in this study can be thought of as virtual experiments, where we can study
the effect of the particle volume fraction and the incident shock Mach number on the particles,
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and investigate the effect of the particles on the flow under certain specific conditions during shock
propagation. For all the simulations considered here, we observe large particle-to-particle variations
in the drag force. The unsteady flow inside the particle bed due to the secondary wave interactions
and locally oblique shocks results in transverse forces on the particles. The magnitude of the
transverse forces can be up to 40% of the streamwise drag force, and hence will have a significant
impact on the particle motion at later times and also on the overall flow dynamics. Fluid mediated
particle-particle interaction after passage of the incident shock can sometimes lead to forces much
higher than the drag force induced by the incident shock on the particles. These effects due to
presence of multiple particles are not captured by the current point-particle force models; see for
example, [20–23].

We also observe that for some of the simulations presented here the transmitted shock slows
down as it travels through the particle bed. Depending on the incident shock Mach number and
the particle volume fraction, the transmitted shock slowing down is either due to tortuosity or
a combination of tortuosity and transmitted shock weakening. The presence of particles results
in a tortuous path for the transmitted shock and causes it to slow down. For simulations with
supercritical post-incident shock flow the transmitted shock weakening can be attributed to the
formation of shocklets and bow shocks, which dissipate energy from the flow. For Ms = 1.22
and φ1 = 10 and 20%, the post-incident shock can reach sonic or supersonic velocities inside the
particle bed at later times due to nozzling of the flow. We compute the vorticity magnitude inside
the computational domain to measure the baroclinic generation of vorticity. We also compute
the streamwise average of flow quantities like pressure, density, and velocity to characterize the
strength of the reflected waves and the transmitted shock, along with the fluctuations inside the
particle bed. Finally, we present three-dimensional iso-surface contour plots of velocity magnitude
to identify the various flow features resulting due to shock interaction with the particle bed.

This paper is organized as follows. In section 2 we discuss the governing equations, the numerical
method, and the simulation setup employed in this study. The results of the numerical simulations
are presented in section 3, where we present the contour plots of flow properties, x − t plots for
all the simulations, and discuss the slowing down of the transmitted shock followed by the force
histories of all the particles. Finally, in section 4 we present the conclusions.

2 Numerics

In this paper we investigate an air-shock interacting with a bed of randomly distributed monodis-
persed spherical particles, similar to that considered by Mehta et al. [19]. We limit our discussion
to early times during which viscous mechanisms are weak and thermal effects are negligible. In
prior work we discussed the importance of the time scales associated with the problem of shock-
particle interaction [18] and validity of neglecting viscous effects and particle motion during early
times. Hence, we solve the standard three-dimensional Euler equations and the system of equations
is closed by assuming ideal gas equation of state for air. These equations are solved using a finite
volume method with body conforming unstructured tetrahedral meshes; see [19] for details. An
exhaustive grid resolution study for this setup was previously performed by Mehta et al. [18, 19]
and grids used for this study follow the guidelines provided by them to minimize the numerical
error along with minimizing the computational cost.

Shock interaction with a particle leads to unsteady forces on the particle. In this investigation
we present these unsteady forces in terms of the non-dimensional drag coefficient given by

~CD =
~F

1
2ρpsu

2
psA

, (1)
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where ~F is the force, ρps the post-incident shock density, ups the corresponding post-incident shock
velocity, and A the cross-sectional area of the particle. For a sphere, A = πd2p/4, where dp is the
particle diameter.

In this study we vary the particle volume fraction, φ1, from 2.5% to 20% and the incident shock
Mach number, Ms, is varied from 1.22 to 3, resulting in 9 combinations of φ1 and Ms for the simu-
lations. The three-dimensional simulation setup is shown in Fig. 1. Along the streamwise direction
the computational domain is separated into an upstream shocked region (red) without particles,
xupstream, and a downstream quiescent ambient region (blue) containing a random distribution of
particles, xpart. The leftmost edge of the particle curtain is located at x/dp = 0. The computational
domain details for all the particle volume fractions considered in this study are given in Table I.
The transverse length of the computational domain is given as (y, z)/dp in Table I.

TABLE I: Computational domain details for the particle volume fractions considered in this study.

φ1 dp (µm) Np xpart/dp xupstream/dp (y, z)/dp
2.5% 50 400 33 16 16

10% 100 200 17 9 8

20% 100 400 17 9 8

FIG. 1: The simulation setup at time zero.

To characterize the random distribution of particles, we compute the local volume fraction
associated with each particle. Voro++ [24], a three-dimensional Voronoi library, is used to compute
the local volume fraction, φi,1, associated with each particle. Based on the local volume, we compute
the fluctuation in the local volume fraction, φflui

, for each particle and it is given by

φflui
=

φi,1 − φ1

φ1
. (2)

Here, φflui
is the relative difference between the local volume fraction of ith particle and the global

particle volume fraction, φ1. The histograms of the distributions for φflui
for φ1 = 2.5, 10, and

20% are plotted in Fig. 2 (a), (b), and (c), respectively. A normal distribution fit is obtained for
the data and plotted as the red curve in Fig. 2. The local volume fraction fluctuation is due to the
random distribution of the particles and follows a Gaussian-like distribution.

The un-shocked state is quiescent ambient air with P1 = 101.325 (kPa) and ρ1 = 1.2048
(kg/m3). The post-incident shock conditions for an incident air shock are determined by the
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FIG. 2: Histogram plot of φflui
along with the normal fit for (a) φ1 = 2.5%, (b) φ1 = 10% , and

(c) φ1 = 20%.
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Rankine-Hugoniot relations for an ideal gas with γ = 1.4 and R = 287.04 (J/kg-K). Note that the
post-incident shock pressure, pps, for all the shock Mach numbers considered in this study, remains
well below the yield strength for most materials (0.2 GPa), and so we do not expect the particles
to deform.

The upstream or the left boundary of the domain is treated as a constant inflow boundary
with inflow set at post-incident shock properties. All the other boundaries, including the particle
surfaces, are treated as slip walls.

3 Numerical Simulation Results

In this section we present numerical simulation results of an incident shock propagating through
a random bed of particles that are held fixed in space. We compute the individual force histories
for all the particles as well as the peak streamwise drag force experienced by each particle. The
objectives of this study are twofold (i) to find out the effect of the particles on the incident shock
and its behavior as it travels through the particle bed and (ii) to find the impact of the incident
shock on a random bed of particles in terms of the forces experienced by them. To this end we
compute the cross-streamwise planar average of flow field properties like pressure and velocity to
compute the strength of the transmitted shock, and generate x − t contour plots to identify the
different physical mechanisms at play during shock particle interaction. We also present the force
histories for all the particles and compute the mean peak drag force to gain insights on the drag
force variability.

3.1 Flow-field plots

In this sub-section we study the effect of the particles on the flow. An incident-shock impinge-
ment on a bed of particles results in complex wave dynamics; i.e., a transmitted shock propagates
through the particle bed and a reflected wave travels upstream, and there are complex wave in-
teractions inside the particle bed. Contour plots of non-dimensional pressure, Mach number, and
non-dimensional vorticity magnitude are presented in Figs. 3-5. Note that the figures paint a
picture of the flow field at one particular instant of time, but in reality the flow is transient and
highly unsteady with three-dimensional flow features.

To highlight the three-dimensional nature of the problem and to observe the complex wave
structure inside the particle bed, we present iso-surface plots of the velocity magnitude in Fig.
3. The velocity magnitude, umag, has been non-dimensionalized by ups. Results for Ms = 3 and
φ1 = 2.5% and 20% are presented in Fig. 3 (a) and (b), respectively. The non-dimensional velocity
magnitude for Fig. 3 (a) is 0.6 and for Fig. 3 (b) is 0.4. In both figures we observe wakes that
form behind the particles. For φ1 = 2.5% case we can observe that the reflected shock has not fully
formed yet but we can observe the nearly planar transmitted shock at the far end of the particle
bed. For φ1 = 20% we can observe the reflected shock and the transmitted shock along with the
stationary wave that forms at the front edge of the particle bed.

Two-dimensional contour plots of flow properties are presented in Figs. 4 and 5. A cut-section
is taken through the three-dimensional computational domain. The white circles in the figures
represent the particles in the computational domain. Contour plots of non-dimensional pressure
along the x− z plane at y = 0 and t/τ = 12 are plotted in Fig. 4. For Ms = 1.22 (Fig. 4 (a-c)) it is
clear that the reflected waves for all the particle volume fractions are quite weak. In fact it is difficult
to observe the reflected waves traveling upstream of the particle bed for the cases of φ1 = 2.5%
and 10%. We can observe a weak reflected shock traveling upstream for the case φ1 = 20%. This
behavior indicates that the reflected compression waves for Ms = 1.22 and low particle volume
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FIG. 3: Iso-surface plot of non-dimensional velocity magnitude for Ms = 3 and for (a) φ1 = 2.5%,
and (b) φ1 = 20%.

fractions are weak and do not coalesce to form a reflected shock, but they are strong enough for
the case of φ1 = 20% to form a reflected shock. For all three particle volume fractions there are
small oscillations in the pressure field inside the particle bed. For Ms = 1.66 and 3 and all three
particle volume fractions considered here, we can clearly observe the signature of the reflected shock
and the transmitted shock. The magnitude of the wave oscillations also increases as compared to
Ms = 1.22 case. We observe the wakes that form behind the particles and shocklets stretching
out from the particles because of locally supercritical flow around the particles. The transmitted
shock exhibits a corrugated structure as it deforms around the particles and a non-planar shock
will result in transverse forces on the particles. The reflected shock is formed by coalescence of
individual reflected waves from the particles and requires a finite time to form. The strength of the
reflected shock and the time it takes to form is affected by the particle volume fraction. This can
be observed in Fig. 4 (d-f) and (g-i), where the reflected shock has barely formed for φ1 = 2.5%,
whereas it is slightly more developed for φ1 = 10%, but it is not yet planar, while it is fully formed
and planar for φ1 = 20%.

Contour plots of Mach number for φ1 = 20% along the x − y plane at z = 0 and t/τ = 7
are presented in Fig. 5 (a-c) for Ms = 1.22, 1.66, and 3, respectively. These contour plots are
enhanced to focus on the flow inside the particle bed. The overall qualitative behavior of the Mach
number contour plots is similar to that of the pressure plots. Even though the post-incident shock
Mach number for Ms = 1.22 is well below the critical Mach number (0.6), we can observe that
locally it accelerates to supersonic velocities (indicated by the arrows). This acceleration of the
flow can be attributed to local nozzling of the flow due to the presence of particles. This will
result in non-zero post-incident shock drag force on the particles and can also lead to dissipation
of energy and hence weakening of the transmitted shock. For Ms = 1.66 and 3, the post-incident
shock Mach number is supercritical and we can see shocklets extending from particle-to-particle
(indicated by the arrow). Also, we can observe wakes forming behind the particles. As mentioned
earlier, formation of shocklets and secondary wave interactions leads to non-zero drag forces on
the particles at later times and weakening of the transmitted shock due to dissipation of energy.
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The strength of the reflected wave increases as the particle volume fraction increases for a given
incident shock Mach number, highlighting the effect of the particle volume fraction. From the
contour plots it is clear that each particle has a slightly different flow field around it and will result
in particle-to-particle variation in the drag force.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 4: Contour plot of non-dimensional pressure at t/τ = 12 along the x − z plane at y = 0 for
φ1 = 2.5, 10, and 20% and (a-c) Ms = 1.22, (d-f) Ms = 1.66, and (g-i) Ms = 3, respectively.

We plot the non-dimensional vorticity magnitude in Fig. 5 (d-f) for φ1 = 20% and Ms =
1.22, 1.66, and 3, respectively, along the x−z plane at y = 0 and t/τ = 12. The vorticity magnitude
is non-dimensionalized by the inverse of the shock time scale, τ . Since we are performing inviscid
simulations, vorticity generation is due to baroclinic mechanism. Previously, we have performed
simulations of shock interacting with structured (simple cubic and face centered cubic) arrays of
particles and found out that vorticity production was negligible under similar conditions that are
considered here. Therefore, we believe that vorticity generation in this study is a result of breakage
of symmetry due to the random distribution of particles. The impact of numerical dissipation on
the vorticity magnitude is negligible as previously reported by Mehta et al. [19]. For Ms = 1.22
the vorticity magnitude is negligible for all the particle volume fractions considered in this study.
The vorticity magnitude for low particle volume fraction of φ1 = 2.5% and Mach numbers 1.66 and
3, is also negligible. For Ms = 1.66 and 3, the vorticity magnitude increases as the particle volume
fraction increases from 10 to 20%. We can observe that most of the vorticity is concentrated in the
wakes behind the particles. Particles that are downstream and in the wake of the upstream particles
will experience Saffman-lift like vorticity-induced force. Current point-particle drag models do not
account for rotational forces, even though their impact on the motion of the particles and overall
flow might be significant.
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(a) (b)

(c) (d)

(e) (f)

FIG. 5: Zoomed in contour plot of Mach number along the x − y plane at z = 0 and t/τ = 7 for
(a) Ms = 1.22, (c) Ms = 1.66, (e) Ms = 3; contour plot of non-dimensional vorticity magnitude
along the x− z plane at y = 0 and t/τ = 12 for (b) Ms = 1.22, (d) Ms = 1.66, and (f) Ms = 1.66;
φ1 = 20%.
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3.2 Cross-sectional average of the flow properties

It is clear from the flow field contour plots that a complex wave structure is setup inside the
particle bed once the incident shock travels through it. To characterize the strength of these waves
we compute the planar spatial average of density, pressure, and streamwise velocity at different
streamwise locations as a function of time. The averaging process employed in this study is similar
to the one previously used by Mehta et al. [19]. The computational domain is divided into 200
slices along the y−z plane for φ1 = 10 and 20% and 400 slices for φ1 = 2.5% and the flow properties
are averaged on each slice. The cross-sectional average of a flow variable, F (x, y, z, t), is defined as

〈F 〉(x, t) = 1

Ag

∫

Ly

∫

Lz

Ig(x, y, z)F (x, y, z, t) dydz, (3)

where Ly and Lz are the sizes of the computational domain along the transverse directions. Here,
Ig(x, y, z) is the indicator function that identifies the region occupied by the gas. Ig = 1 in the
gas and Ig = 0 inside the particle. Thus, the integral is defined only over the cross-sectional
area occupied by the gas and correspondingly Ag =

∫
Ly

∫
Lz

Ig(x, y, z) dydz is the cross-sectional area

occupied by the gas. The averaging process results in the data being a function of x and t.
The averaged flow properties are non-dimensionalized by the corresponding post-incident shock

properties. We generate x− t contour plots of the averaged data and plot them in Figs. 6-7. These
plots provide interesting insights on the effect of the particles on the overall flow. We can observe
the signature of the transmitted shock (right moving front) and the reflected wave (left moving
front). Note that the zig-zag (step like) pattern observed for the transmitted shock in some of the
x − t plots is due to the interpolation of the data (having fewer data points in time compared to
x). The cross-sectional average pressure inside the particle bed for Ms = 1.22 and φ1 = 2.5 and
10% is nearly constant, indicating that the flow is nearly steady (on average) with some minor
fluctuations. For Ms = 1.66 and 3 and all the particle volume fractions considered in this study,
the reflected wave is a shock, whose strength increases as the incident shock Mach number and
particle volume fraction increase. As the particle volume fraction increases from 2.5 to 10 and
20%, we can observe that oscillations appear inside the particle bed and their strength increases
as the incident shock Mach number increases. For a fixed particle volume fraction the speed of the
reflected wave decreases as the incident shock Mach number increases. This is because the speed of
the post-incident shock flow, which is in the opposite direction of the reflected shock, also increases.

It is interesting to observe from the x− t plots that the flow properties change abruptly across
the left edge of the particle bed located at x/dp = 0. This indicates that apart from the transmitted
shock and the reflected wave (shock), there can be other waves inside the particle bed. In this case
it appears that there is a stationary wave, since its position in time does not change, located at the
leftmost edge of the particle bed. The particle volume fraction changes from 0 to φ1 at the leftmost
edge of the particle bed, and this sudden change results in formation of the stationary wave. Mehta
et al. [19] have studied this stationary wave in detail and described it as the isentropic expansion
of the subsonic flow in a converging nozzle. For the simulation parameters considered by Mehta et
al. [18] in the previous study, they observed that the head of the expansion fan coincides with the
stationary wave, resulting in a resonant expansion fan at the leading edge of the particle bed. The
combination of these two waves results in a sudden jump in flow properties at the leading edge of
the particle curtain.

The x− t plots of the non-dimensional streamwise velocity are presented in Fig. 7. The overall
qualitative behavior is similar to that of the pressure plots. The signature of the oscillations inside
the particle bed is more pronounced in Fig. 7 compared to Fig. 6. The overall qualitative behavior
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FIG. 6: x − t contour plot of the non-dimensional cross-sectional averaged pressure, 〈P 〉/Pps, for
φ1 = 2.5, 10, and 20% and (a-c) Ms = 1.22, (d-f) Ms = 1.66, and (g-i) Ms = 3, respectively.

11



-15 -5 5 15 25 35

x/dp

0

4

8

12

16

20

t/
τ

0

0.4

0.8

1.2

<u>
ups

(a)

-9 -3 3 9 15

x/dp

0

3

6

9

12

15

18

t/
τ

0

0.3

0.6

0.9

1.2

<u>
ups

(b)

-9 -3 3 9 15

x/dp

0

3

6

9

12

15

18

t/
τ

0

0.3

0.6

0.9

1.2

<u>
ups

(c)

-15 -5 5 15 25 35

x/dp

0

4

8

12

16

20

t/
τ

0

0.4

0.8

1.2

<u>
ups

(d)

-9 -3 3 9 15

x/dp

0

3

6

9

12

15

18

t/
τ

0

0.3

0.6

0.9

1.2

<u>
ups

(e)

-9 -3 3 9 15

x/dp

0

3

6

9

12

15

18

t/
τ

0

0.3

0.6

0.9

1.2

<u>
ups

(f)

-15 -5 5 15 25 35

x/dp

0

4

8

12

16

20

t/
τ

0

0.4

0.8

1.2

<u>
ups

(g)

-5 -1 3 7 11 15

x/dp

0

3

6

9

12

t/
τ

0

0.4

0.8

1.2

<u>
ups

(h)

-5 -1 3 7 11 15

x/dp

0

3

6

9

12

t/
τ

0

0.4

0.8

1.2

<u>
ups

(i)

FIG. 7: x − t contour plot of the non-dimensional cross-sectional averaged streamwise velocity,
〈u〉/ups, for φ1 = 2.5, 10, and 20% and (a-c) Ms = 1.22, (d-f) Ms = 1.66, and (g-i) Ms = 3,
respectively.
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of the cross-sectional average density x− t plots is similar to that of the pressure and velocity plots
and hence not shown here.

3.3 Slowing down of the transmitted shock

To quantify the effect of the particles on the transmitted shock, we compute its location as a
function of time. To determine the location of the transmitted shock we compute the gradient
of the cross-sectional averaged pressure. A large spike in the gradient of pressure represents the
location of the transmitted shock. The x − t plots for the transmitted shock for Ms = 1.22, 1.66,
and 3 are plotted in Fig. 8 (a), (b), and (c), respectively. The y axis for these plots has been shifted
such that (t− tleft)/τ = 0 when the incident shock arrives at the left-most edge of the particle bed.
The dashed green curve in the plots represents the x− t curve for the incident shock in the absence
of particles (φ1 = 0%) and thus provides a benchmark for comparing the effect of the particles
(particle volume fraction) on the speed the transmitted shock.
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FIG. 8: The x− t plot of the transmitted shock for (a) Ms = 1.22, (b) Ms = 1.66, and (c) Ms = 3.

For the low particle volume fraction case of 2.5% (black curve) and Ms = 1.22 and 1.66, the
x − t plot coincides with the dashed green curve indicating that the transmitted shock does not
slow down for these cases, but for Ms = 3 we can see it slows down slightly at later times. Through
this behavior we can clearly observe the effect of post-incident shock Mach number on the decay
and eventual slowing down of the transmitted shock even for low particle volume fractions. For
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Ms = 1.22 and φ1 = 10 and 20%, we can observe that the transmitted shock slows down slightly
at later times. This behavior is the same for Ms = 1.66 and 3 and the effect of particles on slowing
down the transmitted shock is even more pronounced due to the formation of bow shocks and
shocklets. For Ms = 1.66 and 3.0 the slowing down of the transmitted shock is partly due its
decay caused by energy dissipation because of formation of shocklets and bow shocks inside the
particle bed. However, it is interesting to observe the slowing down of the transmitted shock for
Ms = 1.22 and φ1 = 10 and 20%. For these two cases, the flow could locally reach super-critical or
sonic velocities due to nozzling in the converging channels formed locally by the particles. Locally
super-critical flow would result in dissipation of energy because of formation of shocklets, which
can contribute to decay and slowing down of the transmitted shock.

At low Mach numbers a more important physical mechanism responsible for slowing down the
transmitted shock is tortuosity. Tortuosity is defined as the ratio of the length of the actual flow
path of the fluid particles to the shortest path length in the streamwise direction. Tortuosity
highlights the local complexity of flow paths through the particle bed. Effect of tortuosity on shock
propagation through porous media has been previously investigated by number of researchers [25,
26]. Here we are interested in exploring the effect of tortuosity on slowing down of the transmitted
shock. Following Matsumura and Jackson [27] we define tortuosity as

T =
umag

|u|
, (4)

where umag is the magnitude of the velocity (umag =
√
u2 + v2 + w2) and the overbar signifies the

average taken over the entire particle bed. We compute the tortuosity at the final time when the
transmitted shock is close to the farthest end of the particle bed. The part of computational domain
that does not include the particle bed has been neglected while computing the tortuosity. Higher
value of tortuosity indicates that a parcel of fluid will have to travel more in the transverse direction
than it will for a case which has lower tortuosity. Hence, a higher value of tortuosity indicates that
the flow in the streamwise direction will be slower and thus, it is partly responsible for slowing down
of the transmitted shock as measured in terms of its streamwise propagation. We plot tortuosity
as a function of particle volume fraction in Fig. 9 for all three incident shock Mach numbers.
For a given incident shock Mach number the tortuosity increases as the particle volume fraction
increases. This is expected since increasing particle volume fraction makes the particle bed more
tortuous and hence results in slowing down of the transmitted shock. However, it is interesting
to observe that for fixed particle volume fraction, the tortuosity increases as the incident shock
Mach number increases. This can be interpreted as the magnitude of transverse velocities, v and
w, increases at a higher rate as compared to the increase in the streamwise velocity as the incident
shock Mach number increases. The values of tortuosity presented in Fig. 9 are consistent with the
results of slowing down of the transmitted shock presented in Fig. 8.

3.4 Streamwise drag force

In the previous sub-sections we studied the complex flow field that is setup inside the particle bed
due to propagation of an incident shock. In this sub-section we study the effect of the flow field
on the particles in terms of the forces experienced by them. There is a rapid increase in the drag
force experienced by a single particle when a shock wave starts interacting with it. The streamwise
drag force reaches its peak value (first peak) when the incident shock is just about halfway across
the particle and then it starts to decrease rapidly as the shock travels completely over the particle.
The post-incident shock drag force depends on the post-incident shock flow and its Mach number.
The qualitative behavior of the drag force histories for the particles in the random pack are similar
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FIG. 9: Plot of tortuosity as a function of particle volume fraction for Ms = 1.22 (black curve),
Ms = 1.66 (red curve), and Ms = 3 (blue curve).

to that of an isolated particle, and any difference between them is due to the presence of multiple
particles in the random pack. The streamwise drag force histories for all the particles in the
computational domain are plotted in Figs. 10-12. Since the incident shock travels at a finite speed
and the particle bed also has a finite thickness in the streamwise direction, each particle interacts
with the incident shock at a different time with respect to the simulation start time. Therefore,
the time axis for Fig. 10 is shifted based on the incident/transmitted shock arrival time for each
particle, such that (t− tarrival)/τ = 0 when the incident shock arrives at the left stagnation point
of the particle. Shifting the time axis aligns the initial rise in the streamwise drag force for all the
particles. The streamwise drag force after (t− tarrival)/τ > 2 appears to be tangled in appearance
due the reflected waves from neighboring particles interacting with each other. The force histories
plotted in Fig. 10 are normalized by the corresponding peak force, CD,peak (first peak), experienced
by each particle when the incident/transmitted shock is interacting with the particle.

Results for Ms = 1.22 and φ1 = 2.5, 10 and 20% are plotted in Fig. 10 (a)-(c). From these
plots we can observe that the peak normalized force experienced by most of the particles is 1.0.
This is an artifact of the normalization, since the peak force experienced by most of the particles
is induced by the incident shock. It is interesting to note that scaling the force histories by their
corresponding incident shock induced peak force, CD,peak, does not make all the force histories to
collapse on each other at later times. This indicates that there is no perfect correlation between the
peak streamwise drag force and the drag force at later times, and the “favorable”conditions which
result in high peak streamwise force may not hold at later times. This is due to highly unsteady
and transient nature of the flow.

Comparing the results from Fig. 10 (a)-(c) against the drag force experienced by an isolated
particle, we can observe the effect of particle volume fraction on the streamwise drag force. For
φ1 = 2.5% the magnitude of the streamwise drag force at later times ((t− tarrival)/τ > 2) is quite
small and gradually approaches zero. For higher particle volume fractions, φ1 = 10% and 20%,
the magnitude of the post-incident shock drag force is higher compared to the φ1 = 2.5% case. In
addition, there is also much higher particle-to-particle variability. This behavior indicates that as
the particle volume fraction increases, the strength of the secondary wave interactions and wakes
inside the particle bed also increases as observed in Figs. 6 and 7. The reflected waves have to travel
farther in space in order to reach the neighboring particles for the low particle volume fraction case
compared to the higher particle volume fraction cases. Hence, for the low particle volume case, the
impact of the reflected waves on the streamwise drag force at later times is small since oscillations
decay. It is also clear that the strength of the reflected waves decreases at later times, indicating
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that an equilibrium state can be achieved eventually. When the equilibrium state is achieved, the
oscillations inside the particle bed will decay and the post-incident shock drag force will be zero
for all the particles. The possibility and the time it will take to reach the equilibrium state will
depend on the particle volume fraction and the post-incident shock Mach number.
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FIG. 10: Plot of normalized non-dimensional drag force, CD, as a function of non-dimensional
shifted time (t− tarrival)/τ , for φ1 = 2.5, 10, and 20% and (a-c) Ms = 1.22 , (d-f) Ms = 1.66, and
(g-i) Ms = 3, respectively.

The force histories for all the particles for an incident shock Mach number of Ms = 1.66 and 3
are presented in Fig. 10 (d)-(f) and Fig. 10 (g)-(i), respectively. The overall behavior of the force
histories is similar to that discussed previously for Ms = 1.22. For an incident shock of Ms = 1.66
and 3 the post-incident shock Mach number is supercritical. Owing to this the post-incident shock
flow accelerates to locally sonic or supersonic velocities around the particles, and result in the
formation of shocklets and bow shocks as seen in Figs. 4 and 5. The formation of shocklets and or
bow shocks around the particles results in non-zero streamwise drag force on the particles at later
times.
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In Fig. 10 we can observe that some of the particles have peak streamwise drag force sub-
stantially higher than CD,peak. In Fig. 11 we plot the force histories of some of the particles
which have normalized streamwise drag force, CD/CD,peak, greater than 1.0 for the φ1 = 20% and
Ms = 3 case. The shifted time axis has been plotted on a logarithmic scale. From this figure we
can observe that the normalized streamwise drag force increases from zero to 1.0 initially when
the incident/transmitted shock is just about halfway across the particle. This is the first peak
that a particle experiences and it is induced by the incident/transmitted shock. At later times the
normalized streamwise drag force increases beyond 1.0 for some of the particles. This increase in
drag force is due to the fluid mediated particle-particle interactions (secondary wave interactions).
Some of the particles have drag forces up to 80% higher than CD,peak. As mentioned previously,
point-particle force models are used for simulating flows with millions of particles. These point-
particle models are derived/generated for a single particle; i.e., they predict the drag force on each
particle in the particle bed as if every particle is isolated. This induces an inherent error by not
accounting for the variation in the drag force due to the presence of neighboring particles. It is clear
from the normalized force history plots that the secondary wave interactions and fluid mediated
particle-particle interactions can result in significantly higher forces than CD,peak. These higher
forces can significantly alter the particle motion and the overall flow, and need to be accounted for
when developing point-particle force models.
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FIG. 11: Plot of normalized drag coefficient, CD/CD,peak, as a function of logarithmic shifted
non-dimensional time, log ((t− tarrival)/τ), for six particles in the random bed for Ms = 3 and
φ1 = 20%.

In Figs. 10-11 we can clearly observe the particle-to-particle variability in the post-incident
shock drag force, but it is difficult to observe the variation in the peak drag force because of the
normalization and shifting of the time axis. To characterize the effect of the incident shock on the
particles and to condense the information from the force history plots, we plot only the CD,peak

(first peak) for each particle for all particle volume fractions and Ms = 1.22, Ms = 1.66, and
Ms = 3 in Fig. 12 (a), (b), and (c), respectively. The x-axis for these plots is the non-dimensional
streamwise location of the corresponding particle. It can be observed from these figures that
there is a substantial particle-to-particle variation in CD,peak. The reason for this particle-to-
particle variation is the random distribution of particles; every particle has a unique neighborhood
of particles surrounding it, which modifies the incident shock and results in a slightly different
CD,peak for that particle. The mean strength of the transmitted shock varies as it travels through
the particle bed and that also causes fluctuations in the values of CD,peak.

To gain insight on the varying strength of the transmitted shock we obtain an exponential fit
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FIG. 12: Plot of peak drag coefficient, CD,peak, along with the exponential curve fit for (a)Ms = 1.22
(b) Ms = 1.66, (c) Ms = 3; φ1 = 2.5%, φ1 = 10%, and φ1 = 20%.
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for the CD,peak data. It is plotted as the solid line in Fig. 12. The exponential fit is given by

〈CD,peak〉 = a exp−b(x/dp)+c, (5)

where a, b, and c are the fit parameters. The exponential fit can be thought of as the mean peak
drag force at a particular streamwise location in the particle bed and hence it can also be interpreted
as the mean shock strength at that streamwise location.

For Ms = 1.66 and 3.0 and all the particle volume fraction cases, the mean CD,peak decreases
as a function of the streamwise location. This behavior is expected since the post-incident shock
Mach numbers are supercritical for these incident shock Mach numbers and that causes dissipation
of energy because of formation of bow shocks and shocklets. For a fixed incident shock Mach
number the rate of decrease of mean CD,peak increases as the particle volume fraction increases.
For Ms = 1.22 and φ1 = 2.5% the mean CD,peak is nearly constant, indicating that the mean
strength of the transmitted shock remains constant as it travels through the particle bed. However,
it is interesting to observe that for Ms = 1.22 and φ1 = 10 and 20% there is a sharp decrease
in the mean CD,peak initially (close to the front edge of the particle bed) and then it reaches a
near constant value. The particles close to the front edge of the particle bed interact with an
un-disturbed planar shock and the CD,peak for these particles is close to that of an isolated particle.
Once the shock travels over these first plane of particles it deforms as it wraps around the particles.
This is the “entry”effect. For high particle volume fractions (10 and 20%) the transmitted shock
is always slightly deformed as it is traveling through the particle bed. For the case of Ms = 1.22
the amount of dissipation is quite small resulting in “steady”state for the transmitted shock and
hence the slope the mean CD,peak is nearly constant after a few diameters inside the particle bed.
For higher incident shock Mach numbers (1.66 and 3) its hard to observe the entry effect due to
the bulk effect of the particles on the transmitted shock. For these incident shock Mach numbers
there is dissipation resulting in weakening of the transmitted shock and hence negative slope for
〈CD,peak〉.

In Figs. 12 (b) and (c) we observe a large variation in the peak drag force experienced by
each particle. The physical mechanisms for particles experiencing variable drag force have been
previously discussed by Mehta et al. [18, 19]. They attributed the local variations in the peak drag
force to be due to either a constructive or a destructive interference of the shock wave. In other
words, shock focusing leads to an increase in the peak drag force and shock defocusing results in a
decrease. Following Mehta et al. [19] we compute the local fluctuation in CD,peak. It is given by

CD,flui
= (CD,peak − [CD,peak](x))/[CD,peak](x), (6)

where [CD,peak](x) is obtained from the linear (least squares) fit for the CD,peak data. The histogram
of the fluctuating peak drag force for φ1 = 2.5% and Ms = 1.22 is plotted in Fig. 13 (a). The
mean and standard deviation for the distribution is computed and a normal distribution fit for the
fluctuating CD,peak data is obtained. The magenta curve in the Fig. 13 (a) is the normal fit for
the data. The normal fit for Ms = 1.22 (black curve), Ms = 1.66 (red curve), and Ms = 3 (blue
curve) are plotted for φ1 = 2.5, 10, and 20% in Figs. 13 (b), (c), and (d), respectively. Through
these plots we can observe the impact of the particle volume fraction and the incident shock Mach
number on the fluctuations in CD,peak. We can observe that for all the cases considered here, the
fluctuations in the peak drag force follow a Gaussian like distribution. The x-axis in the plot can
be thought of as the percentage variation in CD,peak. The percentage variation in CD,peak increases
as the incident shock Mach number and the particle volume fraction increase. The fact that the
variation in the peak drag force follows a Gaussian like distribution can be helpful in improving
the current point-particle drag models. For example, we can add a stochastic variation (bound by
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the Gaussian distribution) to the mean peak drag force predicted by the existing model to capture
the variation in the peak drag force.
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FIG. 13: Plot of normal distribution fit for fluctuating peak drag coefficient for (a) Ms = 1.22 and
φ1 = 2.5%, (b) φ = 2.5%, (c) φ = 10%, and (d) φ = 20%.

3.5 Lift forces

As the incident/transmitted shock travels through the particle bed, it deforms when it wraps
around the particles as seen in Figs. 4 and 5. This local deformation is on the particle length
scale (particle diameter) and disrupts the planarity of the shock wave. Non-planar oblique shocks
induce transverse or lift forces on the particles. Another important physical mechanism responsible
for transverse forces experienced by the particles is the unsteady flow inside the particle bed as
a result of the random distribution of the particles. It has been previously discussed by Mehta
et al. [18] that lift forces for a transverse periodic face-centered cubic (FCC) array of particles
are zero. Thus, it should be noted that in the case of an incident shock interacting with certain
arrangement of particles, lift forces can be zero (it depends on the arrangement of the particles). In
the present study we have a random distribution of particles, which results in random fluctuations
in the flow field and hence, transverse forces on the particles. The lift force in the y direction,
CD,y, experienced by all the particles in the domain for Ms = 1.22 is plotted in Fig. 14 (a), (b),
and (c), for Ms = 1.66 in Fig. 14 (d), (e), and (f), and for Ms = 3 in Fig. 14 (g), (h), and (i), for
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φ1 = 2.5, 10, and 20%, respectively. The lift force in the z direction has similar overall behavior
and magnitude compared to CD,y and hence is not shown here. The lift forces exhibit tangled
behavior, similar to that shown by the streamwise drag force, CD. For most of the particles the
lift forces are non-zero at (t − tarrival)/τ = 0. This indicates that the transmitted shock induces
some lift force on the particles when it interacts with them. This is possible only if the transmitted
shock is locally oblique when it interacts with the particles. However, it is interesting to note that
the peak lift force for particles do not align with each other after shifting the time axis as they
did for the streamwise drag force in Fig. 10. This behavior indicates that the fluctuations in the
flow, at later times, generated by the random distribution of the particles can lead to substantial
lift forces. Thus, the magnitude and instance when the peak lift force occurs depends on the local
neighborhood of the particles and varies from particle-to-particle. For a fixed incident shock Mach
number, the magnitude of the lift force increases as the particle volume fraction increases. For
all the cases considered in this study, we can see that the mean lift force as a function of time
will be close to zero. However, it is important to note that the lift forces can be 20 to 40% of
the streamwise drag force and hence will play a big role in the motion of the particles and shock
transmission. Traditionally, numerical simulations of incident shock interacting with particles that
employ point-particle force models do not account for the lift forces on the particles.

4 Conclusions

In this paper we studied the effect of an incident shock interacting with multiple particles. Fully-
resolved three-dimensional inviscid simulations of shock traveling through a bed of particles were
carried out. A uniform random distribution of particles was considered, and both the incident
shock Mach number and the particle volume fraction were varied. We plotted the contour plots of
pressure, Mach number and vorticity magnitude to identify the complex physical mechanism at play
during shock particle interaction. The baroclinic mechanism of vorticity generation was responsible
for the vorticity inside the particle bed and it was generated due to breakage of symmetry by the
random distribution of the particles. We computed the cross-sectional average of flow quantities to
identify the complex wave structure inside the particle bed to characterize the strength the reflected
waves and transmitted shock. The transmitted shock weakened as it traveled through the particle
bed for all the cases with supercritical post-incident shock flow. In terms of decrease in the mean
peak drag force (as a function of streamwise location) and overall weakening of the transmitted
shock there is not much difference between supersonic and supercritical post-incident shock flow
cases. The post-incident shock flow being supercritical had a major impact on the transmitted
shock weakening, and that also resulted in a decrease in the mean peak drag force.

The presence of multiple particles altered the force history of each particle compared to the force
history of a single isolated particle for a given incident shock. We plotted the peak streamwise drag
force, CD,peak, for each particle to characterize the variability in the drag force and computed the
mean peak drag force as a function the streamwise location. The streamwise drag force histories
of all the particles were normalized by the peak drag force each particle experienced due to the
incident/transmitted shock. We observed that this normalization did not result in collapse of the
force histories on top of each other, indicating that there is no perfect correlation between the
peak drag force and the drag force at later times. We also observed that some of the particles had
normalized peak drag forces greater than 1. This behavior was a result of fluid mediated particle-
particle interaction, which can lead to forces higher than CD,peak after the incident/transmitted
shock has traveled around the particle.

Based on our findings we postulate that significant improvements can be made to current point-
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FIG. 14: Plot of non-dimensional y lift force, CD,y, as a function of non-dimensional shifted time
(t− tarrival)/τ , for φ1 = 2.5, 10, and 20% and (a-c) Ms = 1.22 , (d-f) Ms = 1.66, and (g-i) Ms = 3,
respectively.
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particle force models used in Euler-Lagrange simulations. The current point-particle force models
cannot capture the variability in the drag force and cannot predict forces greater than CD,peak,
because they are derived for a single isolated particle. We can make simple improvements to the
point-particle models like adding a stochastic force (bound by the Gaussian fit) to the varying mean
peak drag force to capture the variability in the peak drag force. Other improvements would be to
include lift forces and account for rotational forces on the particles due to the vorticity inside the
particle bed.
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