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Abstract

A One-Dimensional (1D) Reduced-Order Model (ROM) has been developed for a 3D Rayleigh-

Bénard convection system in the turbulent regime with Rayleigh number Ra = 106. The state

vector of the 1D ROM is horizontally averaged temperature. Using the Green’s Function (GRF)

method, which involves applying many localized, weak forcings to the system one at a time and

calculating the responses using long-time averaged Direct Numerical Simulations (DNS), the sys-

tem’s Linear Response Function (LRF) has been computed. Another matrix, called the Eddy Flux

Matrix (EFM), that relates changes in the divergence of vertical eddy heat fluxes to changes in the

state vector, has also been calculated. Using various tests, it is shown that the LRF and EFM can

accurately predict the time-mean responses of temperature and eddy heat flux to external forcings,

and that the LRF can well predict the forcing needed to change the mean flow in a specified way

(inverse problem). The non-normality of the LRF is discussed and its eigen/singular vectors are

compared with the leading Proper Orthogonal Decomposition (POD) modes of the DNS data. Fur-

thermore, it is shown that if the LRF and EFM are simply scaled by the square-root of Rayleigh

number, they perform equally well for flows at other Ra, at least in the investigated range of

5× 105 ≤ Ra ≤ 1.25 × 106. The GRF method can be applied to develop 1D or 3D ROMs for any

turbulent flow, and the calculated LRF and EFM can help with better analyzing and controlling

the nonlinear system.
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I. INTRODUCTION

Buoyancy-driven turbulence plays a key role in various geophysical and environmental

flows such as atmospheric and oceanic circulations as well as engineering systems such as

wind farms and Heating, Ventilation, and Air Conditioning (HVAC) technologies. As a

result, understanding, predicting, controlling, and optimizing buoyancy-driven turbulence

has been of significant interest to the fluid dynamics and climate science communities.

Given that Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES) of the

full-dimensional Navier-Stokes equations can become computationally prohibitive for fully

turbulent flows, which is the relevant regime in most of the aforementioned problems, a con-

siderable attention has been drawn recently to developing Reduced-Order Models (ROMs)

for these systems [1–9].

ROMs are low-dimensional models with low computational complexity that retain the

necessary dynamics of the turbulent flow, and can be as simple as a system of nonlinear

Ordinary Differential Equations (ODEs), or even simpler, linear ODEs, e.g.,

ẋ(t) = Lx(t) + f (t) . (1)

where x is the state vector, L is the system’s evolution operator or Linear Response Function

(LRF), and f (t) represents external forcings (actuations) and/or stochastic parameteriza-

tion of some unresolved physical processes [10–13]. This ROM (Eqn. (1)) can be used, for

example, to determine the time-mean response of the system to a forcing as 〈x〉 = −L−1 〈f〉,
where 〈 〉 denotes the long-time average, or to find the forcing required to produce a partic-

ular response as f = −L 〈x〉 (inverse problem), which can be used for flow control. Further-

more, the spectral properties of L provide information on the dynamics of the system (the

limitations and underlying assumptions of Eqn. (1) are discussed in section III).

In the fluid dynamics community, the most common model reduction approach is to

identify energetically dominant modes, obtained as top eigenvectors from some variant of

Proper Orthogonal Decomposition (POD) on the time series, and project the governing

equations onto the subspace spanned by these modes [10, 14, 15]. The POD-based methods

have been used to study various problems such as wall-bounded shear flows [16–18], cavity-

driven flows [19, 20], and flows past a cylinder [21–23] to name a few. Several studies have

employed POD to develop ROMs for buoyancy-driven flows such as the Rayleigh-Bénard

(RB) convection system [4, 5, 24–27], convection in laterally heated cavities [1, 2, 28, 29],
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gravity currents [6], and turbulence in wind farms [30–32]. However, because the POD

leads to a purely energy-based selection of leading modes, the modes may lack any true

dynamical relevance. Furthermore, the truncated (low-energy) modes may still play a crucial

role in the dynamics, especially for non-normal systems, where the transient growth can be

large [16, 33]. For instance, for examples of buoyancy-driven turbulence, Bailon-Cuba and

Schumacher [4] and Benosman et al. [29] showed that owing to the nonlinear interactions

between the retained and excluded POD modes, eddy momentum and heat fluxes are not

accurately captured, unless some semi-empirical mode-dependent closure models for the

viscosity and diffusivity coefficients are employed.

As an alternative to POD-based methods, calculating L in Eqn. (1) via the modes of

Koopman operator [34, 35] or their data-driven approximations obtained from Dynamic

Mode Decomposition (DMD) [20, 23, 36–39] has received significant attention and has been

applied to a variety of fluid flows, see, e.g., Mezić [40], Rowley and Dawson [33] and references

therein. These techniques have also been applied to a number of buoyancy-driven turbulent

flows. For instance, Kramer et al. [9] utilized DMD with sparse sensing to study convection

in a laterally heated cavity, Annoni et al. [7] and Annoni and Seiler [41] employed this

technique to develop ROMs for two-turbine wind farms in the planetary boundary layer,

and Giannakis et al. [42] conducted Koopman eigenfunction analysis of the 3D flow in

a closed cubic turbulent convection cell. While the Koopman/DMD-based methods have

produced promising results in these studies, particularly not far from the onset of linear

instability, application of these methods to fully turbulent flows, including buoyancy-driven

flows, remains a challenge and subject of extensive research.

Another recently developed framework, known as the resolvent approach, aims to find

the perturbations around the turbulent mean flow by knowing the mean profile a priori

and treating the Reynolds stress term in the Navier-Stokes equations as exogenous forcings

[43–46]. This unknown forcing is assumed to be connected to the velocity field response via

a linear operator called the resolvent. This method, which does not invoke any assumptions

with regard to the amplitude of the perturbations, accounts for the nonlinear interaction

between different modes through these forcings.

In the climate community, the most common methods for calculating L in Eqn. (1) are

Fluctuation-Dissipation Theorem (FDT) [3, 47, 48] and Linear Inverse Modeling (LIM)

[49, 50]; the latter is closely connected to DMD [38, 51]. Both LIM and FDT are data
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driven and obtained from the Fokker-Planck equation under certain conditions [3, 49, 51].

While both methods work well when applied to very simple models such as the Lorenz-96

equations, acquiring accurate L for more complex systems such as the quasi-geostrophic

equations or Global Circulation Models (GCMs) has been found challenging [8, 52–56].

In a different approach, Kuang [57] introduced the Green’s function (GRF) method, which

uses simulations with many weak, localized forcings to construct L (details are presented

in section IV). He showed that the LRF of a cloud-resolving convection model can be

accurately calculated using the GRF method. Hassanzadeh and Kuang [58] extended the

GRF method to an idealized GCM and found that the calculated LRF was fairly accurate for

the fully turbulent large-scale atmospheric circulation. They further showed that an Eddy

Flux Matrix (EFM), E, that relates changes in the divergence of turbulent eddy momentum

and heat fluxes q to a change in the state x via q = Ex can be accurately computed as

a bi-product of calculating L using the GRF method. In a second study, Hassanzadeh and

Kuang [8] used this accurate L to identify the source of inaccuracy in the LRF obtained

using FDT as a combination of the GCM operator’s non-normality and truncation of the

time series to a limited number of POD modes. These accurate LRF and EFM have been

also applied to study several aspects of atmospheric circulation in the tropics [59, 60] and

extratropics [61–63].

Given the success of the GRF method in calculating accurate L and E for fully turbulent

atmospheric flows and improving the understanding of the data-driven methods (as men-

tioned above), it is worthwhile to introduce and examine the GRF method in the context

of a canonical fluid dynamics problem that is of broader interest. This is the main purpose

of the current study. We also extend the work of Kuang [57] and Hassanzadeh and Kuang

[58] by showing that, at least for the problem studied here, the LRF and EFM, calculated

at a given parameter, can be simply scaled and applied to a wider parameter regime.

We have applied the GRF method to a 3D RB convection system (Figure 1) at the

Rayleigh number of Ra = 106, where the flow is far from the onset of linear instability and

fully turbulent. The RB convection system is a fitting prototype for buoyancy-driven flows

and has been widely used to understand the turbulence physics and to develop techniques

for analyzing turbulent systems [64–69]. Focusing on a 1D ROM for the 3D turbulent flow,

we have calculated L and E for horizontally averaged temperature and divergence of vertical

eddy heat flux at Ra = 106. Using several tests, we demonstrate that the calculated L and
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FIG. 1. Schematic of the 3D Rayleigh-Bénard (RB) convection system. Temperature at the top and

bottom walls is, respectively, maintained at constant values of Tt and Tb, where ∆T = Tb−Tt > 0.

The velocity boundary condition at the walls is no-slip, u = 0. The horizontal directions (x and

y) are periodic. In this study, Pr = 0.707 and 5× 105 ≤ Ra ≤ 1.25 × 106.

E can predict the response of the system to external forcings accurately. Furthermore, L can

calculate the forcing needed to achieve a specified mean flow. While L and E are obtained

for Ra = 106, we show that with a scaling factor that is simply proportional to
√
Ra, these

L and E work accurately at least for 5× 105 ≤ Ra ≤ 1.25× 106 as well.

The structure of this paper is as follows. The mathematical formulation of the RB system

and the pseudospectral solver used to conduct DNS are described in section II. The 1D ROM

is derived in section III. The GRF method is presented in section IV in detail. The accuracy

of L and E for Ra = 106 and for 5× 105 ≤ Ra ≤ 1.25× 106 are discussed in sections V and

VI, respectively. The spectral properties of the 1D ROM are investigated in section VII.

Section VIII concludes the paper with a brief summary of the present investigation and the

outlook for future work.

II. THE BOUSSINESQ EQUATIONS AND NUMERICAL SOLVER

We model the turbulent RB convection system using the 3D Boussinesq equations. We

non-dimensionalize length with the domain height Lz, temperature with ∆T = Tb − Tt, and

time with diffusive time scale τdiff = L2
z/κ where κ is the thermal diffusivity, to arrive at
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the following dimensionless equations

∇
∗ · u∗ = 0 , (2)

∂u∗

∂t∗
+ (u∗ ·∇∗)u∗ = −∇

∗p∗ + Pr∇∗2u∗ + RaPr (T ∗ − T ∗
cond)êz , (3)

∂T ∗

∂t∗
+ (u∗ ·∇∗)T ∗ = ∇∗2T ∗ . (4)

Here, u∗ = (u∗, v∗, w∗) represents the 3D velocity field, T ∗ shows the temperature, and

T ∗
cond = 1/2 − z∗ is the conduction temperature profile. Superscript ∗ denotes dimen-

sionless variables and operators hereafter. It should be noted that while τdiff is used

here following convention, we employ the dynamically more relevant advective time scale

τadv =
√

Lz/(gα∆T ) to non-dimensionalize time and vertical velocity when presenting the

results (τdiff/τadv =
√
RaPr ≈ 840).

The Rayleigh and Prandtl numbers are defined as

Ra =
gα∆TL3

z

νκ
, (5)

Pr =
ν

κ
, (6)

where g represents gravitational acceleration, α and ν indicate the thermal expansion coef-

ficient, and the kinematic viscosity of the fluid, respectively. The boundary conditions are

periodic in the horizontal (x and y) directions and fixed temperature and no-slip at the top

and bottom walls, i.e.,

u∗(x∗, y∗, z∗ = ±1/2, t∗) = 0 . (7)

In this study we use a fixed Pr = 0.707 (air), and develop the LRF and EFM for Ra = 106,

which is ∼ 585 times larger than the critical Rayleigh number for linear instability in this

RB setup [70]. The flow is fully turbulent at this Ra (see below). A number of additional

tests at a range 5× 105 ≤ Ra ≤ 1.25× 106 are also conducted and discussed in section VI.

DNS of Eqns. (2)–(4) is carried out using a pseudo-spectral Fourier-Fourier-Chebyshev

solver that is based on the code described in Barranco and Marcus [71]. Briefly, the solver

uses the second-order Adams-Bashforth and Crank-Nicolson schemes for the time integration

of the nonlinear and viscous terms, respectively. The no-slip and fixed temperature boundary

conditions are enforced following Marcus [72]. Variants of this solver has been used in the

past to study geophysical and astrophysical turbulence [73–77]. The computational domain

is L∗
x × L∗

y × L∗
z = π × π × 1 and the numerical resolution is 128× 128× 129.
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FIG. 2. Time series from DNS at Ra = 106 for (a) anomalous temperature (T−〈T 〉) at z∗0 = −0.18,

and (b) the principal component of the leading POD (PC1). Both time series are normalized with

their standard deviation (σ) so that they have the same variability. Time is scaled by the advective

timescale τadv .

For the DNS at Ra = 106, Fig. 2 exhibits the time series for the anomalous temperature

(T − 〈T 〉) at z∗0 = −0.18, and the principal component of the leading POD (PC1) obtained

via the singular value decomposition of the anomalous temperature. Overbar denotes the

spatially averaged variables over the entire x−y plane. These time series illustrate the chaotic

nature of the flow, as they show fast oscillations around the mean, and peaks that are a

few times larger/smaller than the standard deviation. Figure 3a demonstrates the power

spectra of these two time series, showing that their spectra are monotonically decaying (red

spectrum), and do not show any periodic or quasi-periodic behavior, which indicates that

the flow is in the fully turbulent regime. To further demonstrate this point, the singular

values si of different POD modes, and the fraction of variance accumulated up to each POD

mode, are shown in Figs. 4a and b, respectively. As can be seen, no sudden drop in the
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FIG. 3. (a) The Power Spectral Densities (PSDs) of the time series shown in Figure 2. The PSDs

are calculated by dividing the entire data consisting of 110000 samples (∼ 12820τadv) into 500

windows with the same length (∼ 26τadv), and carrying out fast Fourier transform (FFT) for each

window. The results of all windows are then averaged to obtain the plotted PSDs. Frequency ω

is normalized by the frequency of advective time scale ω̃ = 2π/τadv . (b) Autocorrelation rN of

anomalous temperatures (solid line) and Eddy Heat Flux, EHF (dashed line), shown as a function

of time scaled by τadv. The black lines show exponential fits.

values of singular numbers occurs, indicating the high-dimensionality of the system, even

when the flow is horizontally averaged.

III. 1D ROM FOR 3D RAYLEIGH-BÉNARD TURBULENCE

In the following, we proceed to derive the mathematical formulation of a 1D ROM in

the form of Eqn. (1) for the 3D RB convection system by first averaging all flow properties

and equations of motion in the horizontal (x and y) directions. The horizontally averaged

nonlinear Boussinesq equations can be written as

Ẋ = F (X) , (8)

where F is a nonlinear functional of the state vector X, which is a set of horizontally

averaged variables describing the system. Suppose the state vector evolves from
〈

X
〉

at
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FIG. 4. (a) Singular values si of different POD modes obtained by conducting singular value

decomposition on the longest available dataset for horizontally averaged anomalous temperature.

(b) Cumulative variance explained by the POD modes. The horizontal dashed and solid red lines

mark 0.95 and 0.99, respectively.

time t to
〈

X
〉

+x at time t+δt, in response to an external forcing such as f . Then Eqn. (8)

yields

ẋ = F
(〈

X
〉

+ x
)

+ f . (9)

If x is small, a Taylor expansion of Eqn. (9) gives

ẋ =
dF

dX

∣

∣

∣〈X〉
x+ f = Lx+ f , (10)

where the higher order terms (in x) are neglected (note that F
(〈

X
〉)

= 0). Eqn. (10)

shows that the LRF, L, is the Jacobian of the nonlinear operator F evaluated at mean

state
〈

X
〉

. To derive this ROM, we do not ignore the eddy-feedback, as we would if we had

ignored the nonlinear terms in Eqn. (8), but in the same fashion as Ring and Plumb [53] and

Hassanzadeh and Kuang [58], we assume that a function relating the eddy fluxes and state

vector has been linearized and included in L (see below for further discussion). Because we

do not know this function, we cannot calculate Eqn. (10) directly from Eqns. (2)-(4).
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It is also instructive to formulate the 1D ROM more explicitly from Eqn. (4), which

combined with Eqn. (2), can be rewritten, in dimensional form, as

∂T

∂t
+∇⊥ · (u⊥T ) +

∂ (wT )

∂z
= κ∇2

⊥T + κ
∂2T

∂z2
, (11)

where u⊥ = uêx + vêy, and ∇⊥ and ∇2
⊥ act only on the x and y directions. Averaging over

the x and y directions, and given the periodic boundaries, we find

∂T

∂t
+

∂Tw

∂z
= κ

∂2T

∂z2
. (12)

We can decompose T and w into horizontally averaged and around-the-mean perturbation

components as T (x, y, z, t) = T (z, t) + T ′(x, y, z, t) and w(x, y, z, t) = w(z, t) + w′(x, y, z, t).

Note that w = 0 from continuity. Eqn. (12) can thus be rewritten as

∂T

∂t
+

∂
[

(

T + T ′
)

w′

]

∂z
= κ

∂2T

∂z2
, (13)

which further simplifies to
∂T

∂t
+

∂
(

T ′w′
)

∂z
= κ

∂2T

∂z2
. (14)

The long-time averaging of Eqn. (14) leads to

〈

∂(T ′w′)

∂z

〉

= κ

〈

∂2T

∂z2

〉

. (15)

Suppose the system evolves from
〈

T
〉

(z) to
〈

T
〉

(z) + θ(z, t) in response to the external

forcing f(z, t). Eqns. (14) and (15) then show that the state-vector response θ, which

represents the horizontal-average of temperature departure from that of the unforced time-

mean flow, is governed by
∂θ

∂t
+ Eθ = κ

∂2θ

∂z2
+ f . (16)

The Eθ term represents the change in the divergence of vertical heat flux (second term on

the left-hand side of Eqn. (14)) caused by a change in the state θ. We emphasize that we do

not know the EFM, E, and we are not going to make any assumptions about its properties,

but we highlight that the representation of the eddy heat flux change via Eθ involves two

key assumptions:

1. The change in the divergence of vertical eddy heat flux, which we denote as ∂
(

θ′w′
)

/∂z

hereafter, can be fully described by θ. This is partly justified if eddies equilibrate
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rapidly with the new state
〈

T
〉

+ θ, which can be evaluated by comparing the auto-

correlation timescales of θ and ∂
(

θ′w′
)

/∂z [53, 58]. Figure 3b shows the autocorrela-

tion rN of the times series obtained from projecting θ and ∂
(

θ′w′
)

/∂z onto the leading

POD of θ following Ma et al. [62]. The results show that the e-folding decorrelation

timescale of eddies is ∼ 3.7 times smaller than that of θ, suggesting that the eddies

decorrelate quickly and equilibrate with the new state, e.g., after 3τadv, the ratio of rN

of eddies and θ is 0.064

2. ∂
(

θ′w′
)

/∂z changes linearly with θ. This is a reasonable assumption if θ has small

amplitude, and consistent with the assumption under which Eqn. (10) was derived.

In summary, Eqn. (16) shows that state vector x = θ describes the response of the system

and that the 1D ROM is

θ̇ = Lθ + f , (17)

where L = κD2−E. The operator D2 is the second derivative with respect to z. We show in

the next section that the matrix L (and matrix E) in Eqn. (17) can be accurately calculated

for a fully turbulent flow using the GRF method without any need for explicit knowledge or

approximation of E.

IV. THE GREEN’S FUNCTION (GRF) METHOD

In order to calculate L and E at Ra = 106, we follow the procedure described in [58].

First, we define a set of Gaussian basis functions of the form

Bn(z) = exp

[

−(z − zn)
2

z2w

]

(18)

where zw = Lz/20, zn = {−1,−0.95,−0.9,−0.85,−0.8,−0.7, ... 0 ..., 0.7, 0.8, 0.85, 0.9, 0.95, 1}×
Lz/2, and n = 1, 2, ... 25. Simpler choices for zn such as zn = {−1,−0.9,−0.8, ... , 0.8, 0.9, 1}×
Lz/2 were initially tried, but it was realized that in order to develop a reasonably accurate

ROM, basis functions should be denser near the walls to better resolve the sharp gradients

in the boundary layers. We calculate L and E in the space of these 25 basis functions rather

than for the entire grid space (129 points) to reduce the computational cost.

Second, forcings of the form fn(z) = an∆T/τdiff ×Bn(z) are added to the right-hand side

of Eqn. (4) one at a time, and a long DNS is then conducted at Ra = 106. ∆T = Tb − Tt is
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the temperature difference between the bottom and top walls (Fig. 1). an varies with zn and

is stronger near the walls. Its value is chosen, after some trial and error, such that it is not

too large to violate the linearity assumption in Eqns. (10) and (17), or too small, so that

the signal (i.e.,
〈

θ
〉

) to noise (i.e., standard deviation of θ) ratio becomes large. To obtain

large signal-to-noise-ratio within the linear regime, we have conducted long DNS that are

on average nearly 3200 times longer than τadv after the system reaches quasi-equilibrium.

Signal-to-noise-ratio and the degree of nonlinearity are quantified using the criteria defined

in Hassanzadeh and Kuang [58]. Based on these criteria, an is chosen to be 20 for all cases

except the first three near-the-wall basis functions for which an = 40.

Hereinafter, we refer to each forced DNS as a “trial”. To increase the accuracy of the

calculated ROM [57, 58], for each fn, one trial with positive and one trial with negative

forcing is conducted, and the time-mean response
〈

θ
〉

is calculated. Half of the difference

between
〈

θ
〉

for the positive and negative forcings is used as net response to fn (denoted as
〈

θ
〉

n
). Given the symmetries of Eqns. (2)-(4), we have only conducted the trials for the lower

half of the system −1 ≤ zn ≤ 0 (n = 1, 2, ... 13), and just used
〈

θ
〉

n
(z) =

〈

θ
〉

(26−n)
(−z) for

n = 14, 15, ... 25. Therefore, a total of 26 DNS are needed.

Each
〈

θ
〉

n
is projected via least-square linear regression onto the basis function space.

The resulting projection coefficients are
〈

θ
〉

n
(n = 1, 2, ...25), each of which is a column

vector with the length 25. fn is also a column vector with the same length, whose elements

are all zero, except for its nth element, which is equal to the amplitude of the forcing fn.

We can thus construct the following matrices for the time-mean responses and forcings in

the reduced dimension of 25

R =
[

〈

θ
〉

1

〈

θ
〉

2
...

〈

θ
〉

25

]

, (19)

F =
[

f 1 f 2 ... f 25

]

. (20)

The LRF L of the system is then calculated from the long-time averaged Eqn. (17) as

L = −FR−1 . (21)

The EFM, E, is evaluated from the same simulations using a similar procedure. 〈T ′w′〉 is
calculated for each trial and the net response to each fn (denoted as 〈θ′w′〉n) is obtained from

the positive- and negative-forcing trials. The vertical derivative of the eddy flux responses
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is then calculated and projected onto the basis functions to obtain

Q =
[ 〈

∂(θ′
w

′)
∂z

〉

1

〈

∂(θ′
w

′)
∂z

〉

2
...

〈

∂(θ′
w

′)
∂z

〉

25

]

. (22)

E is then computed as

E = QR−1 . (23)

The accuracy and predictive capabilities of L and E presented here are examined in detail

for several test cases in section V.

V. COMPARISON OF THE GRF-BASED ROM AND DNS AT Ra = 106

In the following section, we assess the accuracy of L and E obtained using the GRF

method by examining their capabilities to predict the time-mean response of temperature

and vertical eddy heat flux to external forcings. Furthermore, we study the performance

of L in calculating the forcing required for the control of time-mean flow. To find the

“true” responses or to evaluate the accuracy of the calculated forcing, long, forced DNS are

conducted. The details of all these test cases (denoted by ‘C’) are presented in Table I.

Some of the forcings used in these test cases are localized, e.g., the Gaussian forcing of C1,

but most of them are in the form of cosine or sinusoidal functions, which excite the flow

along the z direction and can lead to complex responses. For example, cosine forcings are

strong at the boundaries and lead to large eddy heat flux responses at the boundary layers,

and forcings with high wave numbers create multiple contiguous stabilized and destabilized

regions in the domain.

Figure 5 compares the ROM and DNS results for the time-mean response of horizontally

averaged temperature
〈

θ
〉

, scaled by ∆T , and eddy heat fluxes
〈

∂(θ′w′)/∂z
〉

scaled by

∆T/τadv, for three different cases (C1, C3, and C4; C2 is not shown for brevity). The

red shadings in this figure and other figures demonstrate the uncertainty in the time-mean

responses calculated from DNS. To find this uncertainty, each DNS time series is divided

into eight segments with equal length, and the standard deviation σ of the time-mean of

these segments are calculated. The solid blue lines show the mean of these eight segments,

while the shading shows ±σ. As shown in Fig. 5, despite the notable complexity of some

of the responses such as sharp gradients in the boundary layers and multiple extrema, the
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FIG. 5. Time-mean responses of temperature (left column) and eddy heat flux (right column) to

forcings (a-b) f1, (c-d) f3, and (e-f) f4 (see Table I). Solid lines show the “true” response obtained

from long forced DNS, and dashed lines show the predictions from L and E obtained using the

GRF method. The red shading shows the uncertainty in the time-mean responses calculated from

the DNS data (see the text for more details). For all cases, Ra = 106.
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TABLE I. Details of the test cases to be discussed in the present and next sections. f is the

external forcing for each test case and tDNS indicates the length of the DNS dataset. For most

cases, DNS with ±f (as well as control) are conducted to increase the accuracy and ensure the

linearity of the response, but to reduce the computational cost, for a few cases, indicated by ∗,

only positive forcing and control DNS are conducted. Error for temperature responses is defined as
∥

∥

〈

θ
〉

GRF
−

〈

θ
〉

DNS

∥

∥

2
/
∥

∥

〈

θ
〉

DNS

∥

∥

2
. Similar formulation is used to find the error in the divergence

of the vertical Eddy Heat Flux (EHF) response.

Case Figure Ra f/(∆T/τdiff ) θ error (%) EHF error (%) tDNS/τadv

C1 5a & b 106 10 exp
[

− (z∗−0.2)2

0.12

]

2.28 16.35 2307

C2 Not shown 106 20 cos(2πz∗) 5.35 6.08 2496

C3 5c & d 106 10 sin(2πz∗) 9.32 4.84 2460

C4 5e & f 106 10 cos(8πz∗) 9.45 16.82 3133

C5 6a & b 106 As in Fig. 7a 6.07 8.28 2554

C6 6c & d 106 As in Fig. 7b 19.41 11.05 2772

C7∗ Not shown 5× 105 10 exp
[

− (z∗−0.2)2

0.12

]

3.49 13.44 2135

C8∗ 8a & b 5× 105 10 cos(2πz∗) 4.36 7.02 2150

C9∗ 8c & d 7.5× 105 20 cos(2πz∗) 4.87 8.92 2543

C10 8e & f 1.25 × 106 20 exp
[

− (z∗−0.2)2

0.152

]

3.91 17.22 2719

pattern and amplitude of the temperature and eddy heat flux responses are well predicted

by L and E in all these test cases.

Knowing L also enables us to find the required forcing to produce a desired change in

the time-mean flow. This is of particular interest when flow control is intended. To test the

skill of L for such inverse problems, we have chosen two target profiles θtarget shown with

solid lines in Fig. 6a (C5) and Fig. 6c (C6). The forcings needed to change the mean-flow by

θtarget for these two cases are calculated as f = −Lθtarget and shown in Fig. 7. The forcing

profiles are not trivial, particularly near the walls, even for the simpler θtarget of C5. To

evaluate the accuracy of these predicted forcings, forced DNS with f5 and f6 are conducted

and the mean-flow changes are shown in Fig. 6a and c (dashed lines), which match the target

well, although the amplitude is larger for C5. The accuracy of E can further be examined

using these test cases as shown in Fig. 6b and d. As before, we find that E can well capture
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FIG. 6. (a)-(b) C5; (c)-(d) C6. (a) and (c): Solid lines show the target change in the mean-flow

θtarget while the dashed lines demonstrate the time-mean responses to forcings f5 (shown in Fig.

7a) and f6 (shown in Fig. 7b) obtained from long, forced DNS. (c) and (d): changes in vertical

eddy heat flux obtained from long, forced DNS (solid lines) or calculated by E (dashed lished).

As before, the red shading shows the uncertainty in the time-mean responses calculated from the

DNS data. For all cases, Ra = 106. More details are in Table I.

changes in the vertical eddy heat flux even for complex
〈

∂(θ′w′)/∂z
〉

profiles.

VI. EXTENDING THE 1D ROM TO OTHER VALUES OF Ra

In the previous section, we showed that L and E that are calculated using the GRF

method at Ra = 106 work well in predicting the response or forcing at this value of Ra.

As will be discussed in section VIII, the main drawback of the GRF method is that it is
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FIG. 7. The forcing that is predicted as f = −Lθtarget to lead to the target time-mean responses

θtarget. (a) f5 (θtarget is shown in Fig. 6a), and (b) f6 (θtarget is shown in Fig. 6c).

computationally expensive, therefore, it is worthwhile to explore how the L and E calculated

for one value of Ra can be used for other Ra numbers.

We have conducted several more forced DNS within the range of 5×106 ≤ Ra ≤ 1.25×106.

Details of some of these simulations are presented in Table I (C7-C10). The solid lines in Fig.

8 show the time-mean responses in temperature and vertical eddy heat flux while the dotted

lines show the predictions when the LRF and EFM of Ra = 106 are used. For
〈

θ
〉

, while the

general shapes of the profiles are well captured by L(106), the amplitudes are under- or over-

estimated, depending on Ra. These results suggest that the eigenvectors of L have remained

fairly unchanged for this range of Ra, and that only its eigenvalues have varied. For the eddy

heat flux, we find that if the response is calculated as E(106)L−1(106)f , then the prediction

is surprisingly accurate (Fig. 8b, d, and f), indicating that EL−1 remains approximately

constant for the aforementioned range of Ra. We highlight that this hypothesis is not based

only on these four observations, but more simulations in the range of 5 × 105 ≤ Ra ≤
1.25× 106 confirmed this hypothesis as well.

Based on the these observations, we postulate that L(106) and E(106) can be simply

scaled to find the LRF and EFM at a new Ra

L(Ra) = cfL(10
6) , E(Ra) = ceE(10

6) . (24)
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FIG. 8. Time-mean responses of temperature (left column) and eddy heat flux (right column) to

forcings (a-b) f8 (Ra = 5 × 105) (c-d) f9 (Ra = 7.5 × 105), and (e-f) f10 (Ra = 1.25 × 106) (see

Table I). Solid lines show the “true” response obtained from long forced DNS, dotted lines show

the predictions from L(106) and E(106), and dashed lines show the predictions obtained by the

LRF and EFM scaled according to Eqn. (27).
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Furthermore, the fact that EL−1 remains nearly constant suggests that the scaling factors

are the same: cf = ce.

To validate Eqn. (24), scaling factors are found as

cf (Ra) =

∣

∣

∣

∣

〈

θ
〉

GRF

∣

∣

∣

∣

∞
∣

∣

∣

∣

〈

θ
〉

DNS

∣

∣

∣

∣

∞

, (25)

ce(Ra) =

∣

∣

∣

∣〈∂(θ′w′)/∂z
〉

GRF

∣

∣

∣

∣

∞
∣

∣

∣

∣〈∂(θ′w′)/∂z
〉

DNS

∣

∣

∣

∣

∞

, (26)

where subscript GRF in the numerators indicates that L(106) and E(106) are employed, and

subscript DNS in the denominators shows results from long, forced DNS at Ra are used.

Figure 9 shows the scaling factors calculated for C2 and C8-C10 along with the power fit

to each of them. We find that cf ∼ ce and that both are approximately 0.5, suggesting the

scaling with
√
Ra. Therefore we can reasonably approximate the scaled L and E as

L(Ra2) =

√

Ra2
Ra1

L(Ra1) , E(Ra2) =

√

Ra2
Ra1

E(Ra1) . (27)

Dashed lines in Fig. 8 demonstrate the performance of L and E calculated using Eqns.

(27), for three different test cases with Ra1 = 106. As shown in this figure, predicted

responses agree closely with those of the DNS results, which substantiates the validity of the

scaling argument presented earlier for a fairly broad range of Rayleigh numbers. We also

highlight that the accuracy of the scaled LRFs and EFMs for a given Ra is comparable to

the accuracy of the L(106) and E(106). Whether this scaling holds for a larger range of Ra

is computationally expensive to test, and is left for future work.

VII. SPECTRAL PROPERTIES OF THE 1D ROM

As shown in previous sections, the L obtained using the GRF method can predict the

time-mean response of the 3D RB system to external forcings, or the forcing needed for a

given change in the time-mean flow, with high accuracy. In the present section, we study

some of the spectral properties of L. Figures 10 and 11 show the four slowest-decaying

eigenvectors of L and its eigenvalues, respectively.

The slowest-decaying mode is real, mostly in the interior (outside the boundary layers),

and decays with a timescale of ∼ 17 τadv. This eigenvector coincides with L’s “neutral

vector”, which is the right singular vector with smallest singular number and the system’s
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FIG. 9. Scaling factors cf and ce demonstrated by blue circles and red crosses, respectively. The

solid lines are the power fits to the corresponding discrete data whose functions are shown in the

figure.

most excitable dynamical mode because it is the largest time-mean response to external

forcings [78, 79]. The leading POD of a turbulent flow (POD1) is expected to be identical

to its neutral vector if the forcing from turbulent eddies is spatially uncorrelated and has

uniform variance everywhere [79]. Figure 10a shows that the POD1 of the (unforced) DNS

and L’s neutral vector are different, which is not surprising given that the presence of the

boundary layers and turbulent plumes makes the flow anisotropic and spatially correlated.

Just to demonstrate this point, for the L calculated using the GRF method and Gaussian

white noise ξ(t), we have integrated

ẋ(t) = Lx(t) + ξ(t) , (28)

using the Euler-Maruyama method. The leading POD of this dataset is shown in Fig. 10a,

which, unlike the POD1 of DNS, agrees with the neutral vector of L.

The second slowest-decaying mode (Fig. 10b) is real as well but spans both the interior and

boundary layers and decays faster than 1/τadv. The third slowest-decaying mode (Fig. 10c)

is real and mostly varies in the interior. The fourth slowest-decaying mode (Fig. 10d) is

complex with both real and imaginary parts of the eigenvector changing across the interior

and boundary layers. This mode decays with the time scale of ∼ 0.37 τadv and oscillates
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FIG. 10. The first four leading (i.e., slowest-decaying) modes and neutral vector of L and the

leading POD modes. Solid blue (red) lines show the real (imaginary) part of L’s eigenvectors. The

green dashed lines show the leading POD modes (time-mean removed) obtained from the unforced

DNS. The first four leading POD modes of unforced DNS explain around 48%, 20%, 15%, and

7.5%. In panel (a), the magenta dash-dot and yellow dotted line display, respectively, the neutral

vector of L and POD1 of the data obtained from the stochastic ODE (28); both lines coincide with

the eigenvector. The eigenvalues of the shown eigenmodes are (a) −0.058 1/τadv , (b) −1.303 1/τadv ,

(c) −1.506 1/τadv , and (d) (−2.726 + 0.504i) 1/τadv (see Fig. 11). All these modes are projected

onto the grid space and normalized to have the magnitude of one.
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FIG. 11. (a) Eigenvalues of L nondimenzionalized using the advective time scale τadv . (b) The

ǫ-pseudospectrum of L (Eqn. 29) calculated following Trefethen and Embree [80], which shows

the non-normality of L. The numbers on the isolines are − log(ǫ). In panel (a), only the first 15

eigenvalues (out of 25) are shown for better illustration and to keep the focus on the eigenvalues

corresponding to the slowest-decaying modes. This has caused the large difference in the range of

x-axis of the two panels.

with the frequency of around 2ω̃.

Figure 11a shows the eigenvalues of L, which all have negative real parts (i.e., decaying).

Except for the slowest-decaying mode, all other eigenmodes decay with timescales faster

than τadv; all eigenmodes of L decay faster than the diffusive time scale τdiff (∼ 840τadv).

Figure 11b depicts the ǫ-pseudospectrum of L (Λǫ(L)) given by [80]

Λǫ(L) = {z ∈ C :
∥

∥(zI− L)−1
∥

∥

2
≥ ǫ−1} . (29)

Here ǫ is the measure of proximity of a point in the complex plane C to the spectrum

of L. The calculated pseudospectrum shows that L is non-normal and supports transient

growth [81, 82]. The non-normality of L also suggests that estimating L accurately using

data-driven techniques such as Fluctuation-Dissipation Theorem (FDT) can face similar

challenges reported in Hassanzadeh et al. [66] if POD modes are used as basis functions. In

fact, recently Khodkar and Hassanzadeh [51] have shown that for this system, POD-based

FDT does not provide an accurate L. Guided by the results of Fig. 11(b), they proposed
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using DMD modes as the basis functions instead, and showed that DMD-enhanced FDT

provides an accurate L, as accurate as the GRF-based LRF, for this system.

VIII. CONCLUSIONS

We have developed a 1D linear ROM in the form of Eqn. (17) for a 3D Rayleigh-Bénard

(RB) convection system, which is a fitting prototype for buoyancy-driven turbulence in

various natural and engineering flows. Using the Green’s function (GRF) method, we have

calculated the LRF, L, and EFM, E, at Ra = 106. The EFM, E, is basically a matrix that

parametrizes changes in the divergence of vertical eddy heat flux based on changes in the

temperature profile. In section V, using several tests at Ra = 106, we have shown that L

and E can accurately predict the time-mean responses of temperature and eddy heat flux

to external forcings, and that L can well predict the forcing needed to change the mean flow

in a specified way (inverse problem). Furthermore, we have shown in section VI that once

these L and E are simply scaled by
√

Ra/106, they work equally well for flows at other Ra,

at least in the investigated range of 5× 105 ≤ Ra ≤ 1.25× 106.

The GRF method can be readily extended to use forcings that vary in the horizontal

directions (e.g., applied at different Fourier modes one at a time) and time-dependent (e.g.,

applied at different frequencies one at a time). Such 3D ROMs, while computationally more

expensive to calculate, can provide further insight into the spatio-temporal characteristics

of buoyancy-driven turbulence.

The GRF method shows a promising performance for high-Ra turbulence, however, there

are two issues that should be highlighted. First, a key assumption in developing the 1D

ROM is linearity of the response. While it has been shown that at least for the large-scale

atmospheric turbulence, L and E work well for responses/forcings that are large enough to be

useful for various practical purposes [58, 61–63], the limitations of the linearity assumption

for the RB system and other problems should be explored in future studies. Second, the GRF

method is computationally demanding because of the need for many forced full-dimensional

simulations (although, these simulations are needed only once, e.g., for the purpose of online

flow control/optimization, the calculations can be done offline and the calculated LRF can

then be used online with negligible computational cost). While the simple scaling found here

suggests that the LRF and EFM do not have to be calculated for every Rayleigh number
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(at least for a range of Ra), the numerical cost can limit its use as a generally applicable

method (particularly to build 3D ROMs). Still, calculating the accurate 1D and 3D ROMs

using the GRF method for some turbulent systems has the following major advantages:

1. Knowing the accurate L can guide developing better data-driven techniques, as for

example, done in Hassanzadeh and Kuang [8]. In particular, comparing the flow’s

Koopman/DMD modes with the eigen/singular vectors of the L calculated here might

be informative. In another direction, while we have not attempted to optimize the

basis functions used in the GRF method in this work, the Koopman/DMD modes

might provide some insight into better/optimal basis functions for the GRF method,

which can reduce the computational cost and improve the accuracy.

2. Analyzing the spectral properties of E can help with better understanding the physics

of eddy fluxes and improving the turbulence closure schemes, which connects with the

ongoing efforts in developing better deterministic and stochastic parameterizations for

geophysical turbulence [4, 29, 83, 84].

The authors aim to follow these lines of research in their future work.
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[20] H. Arbabi and I. Mezić, “Ergodic theory, dynamic mode decomposition, and computation

of spectral properties of the Koopman operator,” SIAM J. Applied Dynamical Systems 16,

2096–2126 (2017).

[21] X. Ma and G. E. Karniadakis, “A low-dimensional model for simulating three-dimensional

cylinder flow,” J. Fluid Mech. 458, 181–190 (2002).
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