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Ferromagnetic micro-particles energized by an alternating magnetic field exhibit fascinating col-
lective behavior ranging from the emergent self-assembled spinners to a variety of self-organized
rolling states. Despite their simplicity, quantifying their essentially multi-body collective behavior
remains elusive due to a multitude of relevant interactions, from short-range collisions to long-range
magnetic and hydrodynamic forces. Here we develop a high-performance computational algorithm
based on smoothed particle hydrodynamics to quantify the role of individual interactions in the
emergent collective state. The computational model provides insight into the role of hydrodynamic
interaction on the onset of collective behavior, and allows characterization of dynamic regimes that
are hard to access experimentally. Comparison with high-resolution experimental data allows vali-
dation of the algorithm. Our work expands the scope of modern computational tools for predictive
modeling of microscopic active systems, and provides insight into the intricate role of hydrodynamic
interactions on the onset of collective behavior in living and synthetic active matter.
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I. INTRODUCTION

Suspensions of driven microscopic solid particles, or colloids, represent an important and technologically
relevant class of out-of-equilibrium systems. Their emergent behavior is governed by a multitude of forces,
from steric collisions, gravity, friction, van der Waals, to long-range magnetic and hydrodynamic interactions
[1, 12]. Due to the relative simplicity and ease of performing experiments, magnetic colloids energized by
alternating magnetic field constitute a unique experimental system that led to a discovery of fascinating
emergent collective behaviors, from self-assembled swimmers, microrobots, and spinners, to flocks, unstable
fronts, etc [6, 13, 15, 17, 33, 35, 36, 40].

Recent studies highlighted close relations between the colloids driven by external electric or magnetic
fields [3, 4, 13, 15, 17] and a broad class of non-equilibrium systems termed active matter: assemblies of self-
propelled particles transducing stored energy into mechanical motion, such as bacterial swarms, cytoskeletal
extracts, bird flocks, fish schools, etc [23, 31, 32, 38, 42]. The striking similarity between collective states
in biological and inanimate matter, such as vortices, densification fronts, etc, suggests that the studies of
driven colloidal systems may provide valuable insights into the behavior of their living counterparts.

Recently, we have observed the emergence of spinning [17] and rolling collective states [13, 18] of ferromag-
netic colloids energized by a uni-axial alternating magnetic field. The colloids were either suspended at the
air-water interface, or settled on the bottom of a container. Application of the magnetic field parallel to the
interface resulted in self-assembly of spinning magnetic chains, and the onset of active turbulence [15, 17].
In contrast, the magnetic field applied perpendicular to the interface forced spinning particles to roll and
form flocks and vortices [13]. In both cases, the steady spinning and rolling of particles emerge as a result
of spontaneous symmetry breaking of particle rotations in a uniaxial alternating (AC) field. The symmetry-
breaking takes place only in a certain range of the excitation field parameters. Since the uni-axial AC field
can be decomposed into clockwise (CW) and counterclockwise (CCW) rotating fields, particle inertia results
at the onset of rotation. Unlike in experiments reported in [6], the sense of rotation is not predetermined by
the field, and it depends on the initial state of the particle.

A variety of numerical methods were used to understand the behavior of driven colloidal systems, from
discrete particle dynamics [13, 17], to coarse-grained hydrodynamic methods [15] based on the multi-particle
collision dynamics (MPCD) approaches [9, 22], or lattice-Boltzmann methods (LBM) [16, 37]. While simula-
tions based on discrete particle dynamics are fast, they do not necessarily capture the relevant hydrodynamic
interaction between the colloids. In contrast, MPCD and LBM simulations resolve the hydrodynamic inter-
actions well, and lead to a much better agreement with experiment [15, 16]. Different numerical methods
have different advantages and disadvantages, and their optimal performance may depend on the problem
at hand. For example, the LBM are intrinsically stochastic and may require averaging over the noise. The
MPCD is a particle-based mesoscale simulation technique for complex fluids, which is based on solving for
the particle motion in one step, the streaming step, and then resolving particle collision in the collision
step. While the MPCD method preserves the conservation of linear momentum, the conservation of angular
momentum is not guaranteed due to its formulation. In scenarios when the hydrodynamics torque plays an
important role, it may be a source of the discrepancy. Furthermore, the Reynolds number (Re) associated
with the collective flocking state is of the order of 50 [13]. Thus, highly efficient hydrodynamic algorithms
based on the solution of linear Stokes equation are not applicable. An efficient three-dimensional approach
is needed to solve the finite Reynolds number Navier-Stokes equations with multiple solid inclusions.

For this purpose, we develop a high-performance computational algorithm based on a coarse-grained
hydrodynamics simulation technique termed Smoothed Particle Hydrodynamics (SPH). The SPH was first
proposed for solving astrophysics problems, and was later adapted for problems in fluid dynamics and solid
mechanics. Over the last two decades, further development and improvement of the SPH method has allowed
exploring a wider class of systems in incompressible flows, fluid-solid interaction, and solid mechanics [25–
28]. As a mesh-free weighted interpolation method, the SPH is especially effective for complex multi-physics
problems with large domain distortions [19]. In contrast with the mesh-based methods such as MPCD
and LBM, the SPH does not rely on any fixed computational grid. Thus, the SPH can easily handle
fluid mechanics problems involving free surface, wave breaking, and rapid geometry distortion. The SPH
dramatically streamlines the procedures of numerically solving Navier-Stokers equations. Firstly, the SPH
simplifies the nature of the Navier-Stokes equations since it is a Lagrangian method and non-linear convective
terms in the Navier-Stokes equations disappear. Secondly, the momentum and energy equations could be
solved explicitly in time, and there is no need to invert large linear systems. Finally, the pressure is directly
computed from the equation of state for both gas and liquid phases, as the pressure depends on density only
[20].

This is different from another popular grid-free coarse-grained simulation technique, the Dissipative Par-
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ticle Dynamic (DPD) [7, 10], which is based on integrating out the internal, microscopic degrees of freedom,
and relating them to simplified pairwise dissipative and random forces, providing local momentum conser-
vation.

The SPH approach, proposed here, however provided faster and more efficient simulations which ap-
proximated well the experimental results. In particular, we faithfully reproduced experimentally observed
frequency dependence of the roller speed, spatial structure of the vortex, and even 3D signature of the flow
above the vortex. Comparison of the simulation results with high-resolution experimental data provided
careful validation of the algorithm. It allowed elucidating a nontrivial role of the hydrodynamic interaction
on the onset of collective motion, and allowed characterization of dynamic regimes that are hard to access
experimentally. The validated algorithm can be readily applied to other colloidal systems, such as Quincke
rollers [4], driven filament systems [31, 38], and may become a valuable tool for characterization of living
and synthetic active matter.

II. DESCRIPTION OF THE COMPUTATIONAL MODEL

The computational approach is based on a coupled fluid-structure interaction algorithm implemented
within the SPH framework. The Navier-Stokes equations for an incompressible, viscous liquid are used
to model the fluid, while Newton equations for rigid particle motion are used to model the ferromagnetic
colloids. The forces in the particle equations of motion include dipole-dipole magnetic particle interaction,
and steric particle-particle repulsion. The impact of hydrodynamic forces is taken into account via explicit
two-way coupling between the fluid and ferromagnetic particles, modeling continuity of velocity between the
particles and fluid, and balance of contact linear and angular momenta.

A. The fluid equations

To model the fluid, we consider the Navier-Stokes equations for an incompressible, viscous Newtonian fluid
in the Lagrangian framework:

ρ
dv

dt
= −∇p+ µf∆v + ρg,

∇ · v = 0,

where the notation for the total (Lagrangian) derivative d/dt corresponds to d
dt = ∂

∂t +v ·∇. Here ρ denotes
the fluid density, v is the fluid velocity, p is the pressure, g is the gravity acceleration, and µf is the dynamic
viscosity. To simulate incompressible fluid using the SPH (water in our study), we use a weakly compressible
formulation, suggested in [26, 28]. The approach in [26, 28] is based on replacing the divergence free condition
with the full conservation of mass equation in Lagrangian formulation:

dρ

dt
= −ρ∇ · v,

and using the following equation of state:

p(ρ) = p0

[( ρ
ρ0

)γ − 1
]
, with p0 =

ρ0c
2

γ
. (1)

Here ρ0 is the reference density, parameter γ is set to be 7 for water, p0 is reference pressure, and c is artificial
sound speed [28]. This gives rise to the following system of fluid flow equations:

dρ

dt
= −ρ∇ · v, (2)

ρ
dv

dt
= −∇p+ µf∆v + ρg, (3)

supplemented with the equation of state (1). The incompressibility condition is well approximated as long
as the colloids’ speed is small relative to the artificial sound speed c [28].
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B. Colloidal particle dynamics

1. 2D colloidal system driven by uniaxial in-plane alternating magnetic field

To calibrate the model and compare it with other techniques [15], we first considered ferromagnetic colloids
dispersed in a thin layer of deionized water and suspended at air-liquid interface [17]. The particles were
energized by a uniform uniaxial in-plane alternating magnetic field H = H0 sin(ωt), as shown in Fig. 1(a).
As the energy injection rate varies, the ferromagnetic colloids self-assemble into a variety of 2D structures
that range from pulsating clusters and wires, to dynamic arrays of spinners, as we show below in Sec. III A.

The dynamics of ferromagnetic colloidal particles is governed by the following equations

m
d2ri
dt2

= F i, (4)

I
d2φi
dt2

= Ti + µH0 sin(ωt) sin(φi), (5)

where ri and φi stand for the particle position and orientation, respectively, m is the particle mass, µ is its
magnetic moment, I is the moment of inertia, and F i and Ti are the forces and torques arising from the
magnetic field and particle interactions, specified in (8)-(9) below, and from the hydrodynamic forces due to
fluid-structure interaction, described in Sec. II B 3. Since this problem is 2D, only the in-plane components
of the forces and the normal component of the torque specified in (8)-(9) are considered.

A version of this model was first considered in Ref. [17] to study the emergent behavior of ferromagnetic
colloids subject to an alternating magnetic field. However, in Ref. [17], the hydrodynamic forces due to fluid-

particle interaction were modeled through approximations of fluid drag via the extra terms αt

(
dri/dt−V i

)
in

equation (4), and αrdφi/dt in equation (5), where αt and αr are the translation and rotation drag coefficients,
and V i is the fluid advection velocity. In the present work, we take into account the hydrodynamic forces
through a two-way fluid-structure coupling, as described in Sec. II B 3.

2. 3D colloidal system driven by a vertical AC magnetic field

We consider a 3D problem consisting of ferromagnetic colloids settled at a slightly concave bottom of a
fluid container, subject to a vertical AC magnetic field H, as illustrated in Fig.1 (b). This is in contrast
with the previously considered 2D system, where the ferromagnetic colloids were energized by an in-plane
AC magnetic field, and suspended at the 2D air-water interface. This problem is three-dimensional, and the
application of AC magnetic field in vertical direction gives rise to new behaviors, including the emergence of
flocking and global rotation [13].

FIG. 1. Schematics of the experimental setups: (a) 2D scenario: Magnetic floaters suspended at water-air interface,
energized by an in-plane AC magnetic field [17], and (b) 3D scenario: Magnetic rollers at the bottom of a concave
container, energized by a vertical AC magnetic field [13].

To examine its behavior, we introduce a fluid-structure interaction model, which is based on a simplified
discrete particle model from [13]. Instead of modeling the hydrodynamic forces based on their leading order
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effective behavior, we model the fluid-structure interaction coupling explicitly. Notation Ωi is used to denote
the angular velocity w.r.t the x, y, and z axis. Vector ni denotes the unit normal to the bottom surface at
the position of particle i, i.e, a unit vector pointing from the colloid contact point with the surface to its
center of mass. As before, F i and T i are the forces and torques due to the magnetic dipole-dipole interaction
and hard-core repulsions, specified in (8)-(9). In contrast with Ref. [13], we also include the hydrodynamic
forces due to fluid-structure interaction, as specified in Sec. II B 3.

m
d2ri
dt2

= F i, (6)

I
dΩi

dt
= T i + µi ×H, (7)

where m is the particle mass, µi = µûi is its magnetic moment with ûi denoting the corresponding unit

vector, I is the moment of inertia. F i =
∑
jF

D
i,j +

∑
j F

H
i,j + FCi + F Fi is the total force on the i-th

particle given as a sum of forces due to dipole-dipole interaction FDi,j , hard-core repulsion (steric forces)

FHi,j , curvature of the bottom FCi , and fluid-particle interaction coupling F Fi . Similarly, T i =
∑
jT

D
i,j +T Fi

are the corresponding torques. They are given by the following:

• The dipole-dipole interaction gives the following force exerted by colloid i on colloid j [13]:

FDi,j(r, ûi, ûj) =
3µ

4π|r|4
(ûj(ûi · r) + ûi(ûj · r) + r(ûi · ûj)− 5r(ûi · r)(ûj · r)), (8)

where r is the unit vector pointing from colloid i to j. The force acting on colloid i is in the opposite
direction. Vector ûi is the unit vector in the direction of the magnetic moment of colloid i, with the
magnetic moment given by µi = µûi.

• Steric hard core repulsion force FHi,j(r) = −∇UHij is derived from stiff interaction potential UHij =
µ2

16πa3 ( a
rij

)24.

• Force FCi (r) = −∇UCi coming from the harmonic potential UCi = κr2i due to bottom curvature.

• The dipolar magnetic torque exerted by particle i on particle j is of the form:

TDi,j = ûi ×Bj = ûi ×
[ µ0

4π|r|2
(3r(ûj · r)

|r|2
− ûj

)]
. (9)

The hydrodynamnic force and torque due to fluid-particle interaction are specified below.

3. The fluid-particle interaction coupling

Two-way coupling between fluid and colloidal particles is described by the no-slip condition (kinematic
coupling) and by the balance of contact stresses/traction (dynamic coupling) on particle surface.

Kinematic coupling: The no-slip boundary condition enforces continuity of velocities between the fluid
and particle on the particle surface. For colloid i, the no-slip condition states

v|γi = V i, (10)

where γi denotes the boundary (surface) of particle i, v|γi is the trace of the fluid velocity on γi, and

V i = V t
i + V r

i = V t
i + Ωi × r,

is the velocity of the rigid particle i, which consists of two components: the translational velocity V t
i, and

the rotational velocity V r
i = Ωi × r, where r is the radius vector of the rigid particle, ‖r‖ = a. Through

this condition, the fluid ”feels” the motion of the particle. In the SPH framework, a colloidal particle of
radius a is represented by several SPH particles, which satisfy different equations of motion than the SPH
fluid particles away from the colloid. In particular, the SPH particles that belong to the interior and to the
surface of the colloid are updated according to rigid body rotation:

V i,j = V t
i + Ωi × (ri,c − ri,j), for ‖ri,c − ri,j‖ ≤ a,
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where ri,c − ri,j is the vector pointing from the center of the rigid particle i to a SPH particle ri,j located
within the radius a from the center of the rigid particle i. Note that the fluid SPH particles that lie on the
colloid surface within the radius a around the center of particle i obey the no-slip condition.

Dynamic coupling: The dynamic coupling states that the traction force that the particle “feels” on its
surface is the fluid normal stress (contact force): τ = σn|γi . Therefore, the equations of motion for particle

i will have contributions from the hydrodynamic force F Fi and torque T Fi , given by:

F Fi = −
∫
γi

τdγi = −
∫
γi

σndγi,

T Fi = −
∫
γi

(ri,c − ri,a)× τdγi = −
∫
γi

(ri,c − ri,a)× σndγi,

where ri,a denotes the fluid particles at distance a from the center of particle i, i.e., the fluid particles in
contact with the particle surface γi.

This is implemented in the SPH algorithm by approximating the surface integrals via summation over the
fluid particles at distance a from the center of the colloid i:

F Fi = −
∑

ri,a∈γi

σn, T Fi = −
∑

ri,a∈γi

(ri,c − ri,a)× σn. (11)

Additional details on the implementation of the SPH algorithm and on the validation of the model can be
found in Supplementary Material [2, 5, 8, 11, 14, 19–21, 24–30, 39, 41].

III. RESULTS

A. Two-dimensional simulations: self-assembled spinners and wires

The SPH approach, described above, was used to capture 2D dynamics of self-assembled wires and spinners
at the water-air interface. An alternating external magnetic field H = H0 sin(2πft) = H0 sin(ωt) with the
frequency f and amplitude H0 was applied parallel to the surface. The magnetic field energizes the system by
exerting torques on the particles. The torques are dissipated locally in the liquid as they generate fluid flow
around the particles [17]. Consequently, the particles interact by two major forces: magnetic (dipole-dipole
interactions) and hydrodynamic. Depending on the frequency and amplitude of the magnetic field, different
phases were observed in experiments [17], including spinners and wires, as shown in Fig. 2.

The model presented in Sec. II B 1 was used to simulate the colloids. A total of 6000 particles was used in
our simulation, with the ratio of colloids to fluid particles of 1 : 10. We note that this ratio is higher than
that used in [15]. The colloidal particles are initially distributed randomly. The values of the coefficients
used in the simulations are presented in Table I, Sec. IV: Methods. The simulation time step is dependent
on the frequency f of the magnetic field, and is equal to ∆t = 1

16×f .

Figure 2 shows a comparison between the experiment [17] and numerical simulations. The frequency and
amplitude of the magnetic field are f = 50 Hz and H0 = 25 Oe for the spinners, and f = 150 Hz and
H0 = 25 Oe for the wires. These values correspond to the parameter values for which spinners and wires
were obtained in the experiment [17]. The plots (a) and (b) in Fig. 2 show streamlines of fluid velocity
field at the air-liquid interface in experiment and numerical simulation, respectively, for the spinner phase.
Particle-image velocimetry was used to create the plot showing experimental result in (a). The SPH method
described above was used to create the plot showing computational results in (b). One can observe similarity
in vorticity fields, typically associated with the spinner phase, in which an assembly of two or more particle
spins and creates local vortices. The plots in (c) and (d) show the magnitude of fluid velocity generated
by the spinners. Again, qualitatively similar behavior between experiment (c) and simulation (d) can be
observed. The plots (e) and (f) illustrate the spinners and wires, respectively. The particles are shown in
red, superimposed over the velocity vector field, shown in grey. We observed that in the spinner phase, the
spinners rotate clock-wise or counter clockwise with equal probability. Therefore, we adopted the approach
from [17] to examine the order parameter for spinner imbalance. The spinner imbalance parameter is defined
as I = (N+ − N−)/(N+ + N−), where N+ and N− denote the number of clockwise and counterclockwise
spinners respectively. Figure 3 (a) shows the spinner imbalance over 2000 periods.
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FIG. 2. Comparison of experiment [15, 17] and numerical simulations of the SPH model for 2D spinners and wires.
Spinners: streamlines (experiment) (a); simulations (b); fluid velocity magnitude (experiment) (c) and simulations (d);
(e) Spinners with the fluid velocity vectorfield, simulations; (f) Wires with the fluid velocity vectorfield, simulations.

We observe that the SPH results agree well with experiment, producing the same type of collective behavior
for the same parameter values as in the experiment. Additionally, a comparison with the previous MPCD
studies based on a simplified, effective model reported in [15], shows good agreement as well.

B. Three-dimensional simulations: rolling colloids

To quantify the effect of hydrodynamic forces due to fluid-particle interaction on the colloid motion, we
first study the dynamics of an isolated colloid subjected to a vertical AC field. A single colloid is placed near
the center of a flat, rectangular surface. The particle is immersed in the fluid, and energized by a vertical AC
magnetic field. Neither dipole-dipole interaction nor gravitational potential force is present. The expected
particle trajectory is a straight line. Figure 4 (a) shows the trajectory obtained from simulation. Indeed, as
Figure 4 (a) shows, before the particle hits the wall, the particle path is close to a straight line. The wall
interactions and the hydrodynamic forces induced by the fluid-particle interaction drive the colloidal particle
away from the straight line. The plot in Figure 4 (b) shows a magnified view of the fluid velocity field near
the particle. It has the signature of a hydrodynamic monopole. Since the flow generated by a monopole has
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FIG. 3. Imbalance in the number of spinners with different sense of rotation as a function of time. Within
the reported 2000 periods, the spinner imbalance parameter fluctuates significantly (a); Histogram of the spinner
imbalance parameter values (b). Both plots indicate absence of directional synchronization between spinners.

a longer range of influence than that of a dipole, we anticipate that the hydrodynamic forces will dominate
the dynamics of many colloids as well, thereby emphasizing the need for careful resolution of fluid-particle
interactions.

FIG. 4. Single particle trajectory (a), and fluid velocity vector field generated by a single particle (b).

Next, we investigate the emergence of collective states in a system of rolling ferromagnetic micro-particles.
The particles are randomly distributed at the bottom of a slightly concave lens in a shallow layer of water
covering the particles, and energized by a vertical AC magnetic field. The experimental investigation of the
emergent behavior, presented in [13], showed that depending on the frequency and amplitude of the magnetic
field, various collective behaviors appear, including a gas-like phase, flocking, and global rotation around the
center of the lens, i.e., a 3D vortex.

The 3D computational model, presented in Secs. II B 2 and II B 3, was used to capture the phases ob-
served in the experiment. The values of the coefficients in the model are shown in Table II in Sec. IV.
Because full fluid-particle interaction was taken into account, our results provide detailed information about
colloids’ emergent behaviors, including spatial distribution of fluid flow. A total of 40,000 particles were
used, 220 represented the colloids. At t = 0, the colloids were randomly distributed at the bottom of the
surface. To simplify the calculations, we included the gravitational force rather than the SPH particles to
recreate the curvature of the lens. A vertical AC magnetic field H was applied to energize the particles.
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All the phases observed in experiments [13] were recovered computationally. Below we report the results
obtained for three different values of magnetic field with frequencies (Hz) and magnitudes (Oe) equal to
(f,H0) = (5, 20), (35, 50) and (40, 50). The three cases correspond to the gaseous phase, flocking, and
vortex, respectively.

a b

FIG. 5. Flocking behavior obtained in a system of magnetic rollers. The direction of particle motion was color-coded
in visualization using the following rule: [red, green, blue] = [(1 + sin(ϕ))/2, (1 + cos(ϕ))/2, 0], where ϕ is the angle of
the in-plane velocity vector with respect to the x-axis. Thus, a group of particle with the same color identifies one
flock. (a): computational results obtained for frequency f = 35 Hz and magnitude H0 = 50 Oe. (b): experimental
result for f = 50 Hz. One sees correlated motion of intermittent flocks of particles, illustrated by color patches.

Figure 5 shows the flocking phase. Panels (a) and (b) correspond to the computational and experimental
results, respectively. The direction of particle motion was color-coded, as explained in the caption of Figure
5, so that color patches illustrate (correlated) flocking motion. Thus, intermittent formation of flocks appears
both in experiments and in numerical simulation results.

Figure 6 shows the vortex phase, obtained with f = 40 Hz and magnitude H0 = 50. Panels (a) and (b)
depict the velocity field magnitude with the same color code to highlight the similarity between experimental
and simulation results. Panel (b) also shows the velocity vector field, superimposed over velocity magni-
tude. Excellent agreement can be observed between experiment and simulation. This can be contrasted
with the simulation results from [13], where hydrodynamic interactions were included only in the far-field
approximation, and not through full fluid-particle interaction modeling. This simplification resulted in a
large ”void” region in the center of the vortex, which we do not observe in our simulations incorporating full
hydrodynamic interactions.

FIG. 6. Vortex obtained with the vertical AC magnetic field with frequency f = 40 Hz and magnitude H0 = 50 Oe.
(a): fluid velocity magnitude (experiment). (b): fluid velocity magnitude superimposed over the fluid vector field
(computation).
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For the vortex phase, we also compared the vortex velocity profile as a function of the distance from the
center of rotation, see Fig.8 (a). Experimental and numerical results are shown in blue and gray dots and
diamonds, respectively. One can see that both the simulation and experimental data show similar trend: the
colloids’ velocity is small near the center, it then increases and reaches it maximum around 5 mm/s near
the effective vortex radius of around 0.7 mm, and then decreases with the increase in the distance from the
center.

To characterize the self-generated surface hydrodynamic flows, we calculated the flow velocity spatial
correlation function based on the fluid velocity data, as in Ref. [34]. Figure 7 (a) confirms long-range spatial
correlations of the flow. Moreover, the correlation function shows oscillations characteristic to a large-scale
vortex motion. This observation is in both qualitative and quantitative agreement with the experiment [13].
We also quantified the order parameter corresponding to in-plane rotational collective motion φR [13]. It is
obtained by taking the normalized tangential components of velocities for all particles, and then averaging
the tangential component of the velocity over the entire ensemble. The time evolution of the order parameters
for three different phases is shown in Fig. 7 (b). The order parameter for the rotational collective motion
of the gas state is around 0, indicating no collective motion. In the flocking state, the order parameter
fluctuates around 0.24, indicating that the flocks are persistently assembling and dissembling. In the vortex
state, the value is close to 1, which corresponds to pure rotation.

FIG. 7. (a) Velocity spatial correlation functions for different phases as obtained from simulations; a stands for the
particle radius. (b) Rotational order parameter φR for different phases (simulations).

It has been observed experimentally [13] that the speed of rolling colloidal particles does not match to
the expected speed calculated from the rollers diameter, and that there is a correction due to the slipping
of particle against the bottom surface. The slipping is a consequence of the lifting force due to fluid-particle
interaction. When the frequency of the external magnetic field exceeds a certain threshold, the lifting force
may dominate the gravitational force and cause the colloids to have an upward motion. In Ref. [13], the
slipping parameter αs was obtained experimentally to be between 0.25 and 0.3, and was used as an ad hoc
parameter in the simplified, effective equations of motion of colloids in [13] to simulate their dynamics. In
the present work, due to the inclusion of fluid-particle interaction in the model, we do not use the ad hoc
slipping term. Instead, our simulations produced the slipping of the colloids as a direct outcome of the model,
with the correct slipping factor αs ≈ 0.25 ∼ 0.3. Figure 8 (b) shows the values of the slipping parameter
αs calculated from the simulations at different frequencies, and compared with the values of αs obtained
from experiment. We see excellent agreement between the these two. To further investigate the upward
motion of colloids associated with the slipping, we recorded the vertical position of the center of mass of
a randomly chosen particle over 200 periods of the driving frequency. A typical trajectory of the center of
mass is shown in Fig. 9 (a). This figure explicitly shows significant lifting, which can be correlated with the
observed slipping.

To fully investigate the vortex emergent behavior, full 3D distribution of flow velocity is desirable, but
hard to obtain experimentally. For this purpose, we plot in Figure 9 (b) the streamlines of the fluid velocity
field, and in Figure 9 (c) we show the density plot of the vertical velocity component in a cross-section
through the vortex eye. Two interesting observations can be made: (1) the motion of the colloids causes the
fluid locally to move upward and downward in a somewhat random fashion; and (2) the fluid forms a large
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FIG. 8. (a) Comparison of the vortex velocity profiles versus distance from the center; solid line corresponds the
experimental data, squares correspond the simulations. (b) Ratio between the peak velocity Vp and normalized
particle velocity V0 = ωa, which is used to determine the slipping parameter αs: experimental data is shown in
diamonds, and simulation data in circles.

FIG. 9. (a) Vertical center of mass position of a colloidal roller vs time, Dc and R stand for the location and radius of
a colloid respectively. (b) In -plane streamlines and (c) vertical cross-section of the fluid velocity field in the vortex
phase. The cross-section is taken through the eye of the vortex.

vortex, which influences the colloids to move toward the vortex eye. This may explain the appearance of the
region devoid of particles near the vortex eye, which was reported in [13], and obtained using the simplified
mathematical model. The lack of detailed modeling of hydrodynamic interactions in Ref. [13] results in
particle rolling away from the vortex center.

In addition, Figure 10 shows the time evolution of the particles center of mass for the vortex. The blue
and red curves correspond to the x and y coordinate of the vortex center of mass versus time. Panel (a)
corresponds to the experiment, and panel (b) to the numerical simulations. Similar patterns are observed:
the vortex eye is oscillating with similar frequency in the experiment and simulations. Both, experiment and
simulations indicate oscillations of the vortex eye position around the center of the harmonic confinement.
Fourier analysis of the obtained simulation data reveals a pronounced peak in the spectra at about 0.22
Hz indicative of a characteristic oscillation frequency, see Fig. 10d. Similar analysis of the experimental
data (panel c in Fig. 10) recovers the similar behavior. The spectral peak there is much boarder due to non-
uniformity of the particles’ sizes and shapes involved in the vortex. However, the peak position is remarkably
close to the simulated value.
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FIG. 10. Time evolution of the roller vortex horizontal center of mass: (a) experiment (b)simulations. Blue and
red lines correspond to x and y components of vortex center of mass respectively. Fourier analysis of the vortex eye
oscillations for experiment (c) and simulations (d).

FIG. 11. The stroboscopic plots of the vertical components of colloids’ magnetic orientation cos(θ) in three different
dynamic phases: The angle θ is the angle between the particle magnetic moments and the vertical direction. Different
colors correspond to different (a) Gas; (b) Low-frequency flocking; (c) Vortex.

Onset of large-scale collective behavior. It was reported in [13] that the onset of large-scale collective
behavior (spatial coherence) is correlated with the synchronization of particle orientation with the direction
of the external AC magnetic field. To investigate the ability of our model in capturing the onset of large-
scale collective behavior and transition between different phases, we calculated and plotted the stroboscopic
particle orientation cos(θ) for all the phases, and compared those values with that of Ref. [13]. We were
able to recover the same behavior as in particle simulations [13]. In the gas-like phase, the magnetic moment
orientation of the colloids is uniformly distributed and uncorrelated, see Fig. 11 (a). With the increase
in frequency of the external magnetic field, the gas phase is transformed into the flocking phase. In the
flocking phase the magnetic moment orientation of the colloids groups into two bands, which corresponds to
two rotation directions: clockwise and counterclockwise rolling, see Fig. 11 (b). With a further increase in
frequency, the magnetic moment orientation of the colloids converges to a single band for the vortex phase,
as shown in Fig. 11 (c). This is exactly what is observed in Ref. [13]. We conclude that our model provides
a reliable tool to capture the collective behavior of colloidal suspensions, both in terms of their structure,
and in terms of correctly capturing the onset of different collective behaviors.
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IV. METHODS

A. Computational model parameters

colloid diameter a = 75 − 100µm magnetic moment µ = 2 × 200µemu

magnetic field amplitude H0 = 10 − 60 Oe frequency f = 5 − 300 Hz

moment of inertia I = 2
5
ma2

TABLE I. Parameter values for 2D simulations

colloid radius a = 60µm magnetic moment µ = 2 × 10−5emu

lens radius of curvature rc = 52 mm lens diameter r = 50 mm

magnetic field amplitude H0 = 0 − 75 Oe frequency f = 5 − 60 Hz

moment of inertia I = 2
5
ma2

TABLE II. Parameter values for 3D simulations

B. Experimental Settings

Experiments with magnetic rollers were performed in a cylindrical container with a concave bottom filled
with isopropanol. The bottom of the container was formed by a concave glass lens with a radius of curvature
of 52 mm and diameter of 50 mm. Nickel spherical particles with an average radius of 60µm and average
magnetic moment µ = 2 × 10−5emu (Alfa Aesar Company) were used for the experiments. The particles
sedimented at the bottom of the container and were energized by a uniform uni-axial alternating magnetic
field, H = H0 sin(2πft), created by a custom-built Helmoltz air-core solenoid and applied parallel to the
axis of the cylindrical container. The amplitude of the AC magnetic field, H0, was in the range of 0–75 Oe
and the frequency, f , was varied from 20 to 100 Hz. For the experiments on surface spinners we used nickel
spherical particles with an average size of 90 µm. About 103 particles were dispersed at the interface between
deionized water and air. The suspension was energized by a uniform uni-axial alternating magnetic field
applied parallel (in-plane) to the interface. The amplitude of the AC magnetic field was in the range of 10-60
Oe and the frequency, f , was in the range of 5-300 Hz.

The containers were mounted on a microscope stage. The trajectories of the particles were monitored by
a fast CCD camera (RedLake MotionPro). We recorded image sequences (1280 x 1024 pixels resolution) at
a frame-rate of 50 frames per second. Image and data analysis of the time sequences were performed by
ImageJ, MatPIV and custom scripts.

V. CONCLUSION

Here we developed a high-performance computational algorithm which allowed to elucidate intricate struc-
tures of microscopic hydrodynamic flows in active colloidal systems. Our simulations faithfully reproduced
experiments on colloidal rollers and spinners and provided valuable insights into the spatial organization
of self-organized hydrodynamic flows. Despite the fact that the SPH is a coarse-grained approach to hy-
drodynamics, it provided rather accurate characterization of multi-physics colloidal systems with short and
long-range interactions. With proper calibration, the approach presented here may become a predictive
computational tool for a large class of systems, including active matter systems, such as Quincke rollers
(colloids energized by the electric field) where the role of hydrodynamic interactions between the colloids
is not clear [3, 4], and systems of elongated self-propelled particles such as microtubules or actin filaments
[31, 32, 38].
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