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In flows where the relaxation rate of molecular vibrational energy to equilibrium is comparable
to the flow through time scales, the presence of turbulence can alter the mixing and equilibration
processes. To understand the coupling between mixing and vibrational relaxation, a novel state-
specific species model is solved in a background turbulent flow. The method is applied to mixing
of two nitrogen streams at different static temperatures. The relaxation rates for each state are
computed using quasi-classical trajectory analysis. The rates obtained from this study were used to
first study relaxation to equilibrium in a constant volume bath. Results indicate that the thermal
relaxation process is not linear over the range of conditions tested, and exhibits quasi-steady behavior
with the higher energy levels relaxing first, followed by a slower relaxation of the lower energy levels.
The state-specific model is then used to study the interaction of turbulent mixing and relaxation
process in a turbulent mixing layer of two nitrogen streams at different static temperatures. The
direct numerical simulation shows that gas compressibility effects impact the translational energy
through flow acceleration/deceleration while the vibrational energy remains constant, triggering
vibrational nonequilibrium. Also, the vibrational state populations are significantly affected by
turbulence. In certain locations in the jet, the population from the direct calculation is several
orders of magnitude different than that based on a Boltzmann distribution at the local vibrational
temperature. These results show that considering details of the molecular populations in different
vibrational states is important in a range of high enthalpy flows.

PACS numbers: 47.70.Nd
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I. INTRODUCTION

In high speed flows, the presence of shocks and ex-
pansion waves can alter the partition of internal ener-
gies of molecules [1, 2], leading to nonequilibrium flow
phenomena. While different types of nonequilibrium can
be induced due to changes in the different components
of thermodynamic internal energy (translational, rota-
tional, vibrational motions), the focus here is on vibra-
tional nonequilibrium. In both internal and external
flows of relevance to hypersonic vehicles, the translational
and rotational motions are equilibrated quickly as com-
pared to flow time-scales. Notably, the presence of slowly
equilibrating nitrogen molecules can lead to persistent vi-
brational nonequilibrium [3–5]. While nitrogen itself may
be chemically inert at these conditions, the repartition of
internal energy can alter turbulence [6, 7], shock struc-
tures [3, 8], or other chemical reactions by altering the
energy partition for the reacting molecules [9].

The impact of vibrational nonequilibrium on mixing
and chemical reaction rates has been extensively stud-
ied and modeled [5, 9–12]. While many different models
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are available [1], the multi-temperature approach is often
preferred due to its computational ease. This approach
assumes that the different molecular motions exhibit a
motion-specific equilibrium, leading to a Boltzmann dis-
tribution of energies that is characterized by a particular
temperature. For instance, when vibrational nonequilib-
rium is considered, a single translational/rotational tem-
perature and a vibrational temperature per polyatomic
species are used to describe the nonequilibrium evolution.
These models have been used to study configurations of
interest exhibiting strong levels of nonequilibrium, typi-
cally high-speed shock-containing flows, such as the su-
personic combustion ramjet (scramjet) [4, 7, 13, 14].
Fiévet et al. [4] showed that vibrational nonequilibrium
can drastically affect ignition time in a scramjet engine.
In particular, its effect is counter-intuitive. Chemical re-
action rates that account for nonequilibrium in external
flow often show a decrease in the rate with a reduction in
the vibrational component of internal energy. However,
for a constant total energy, this reduction is balanced by
increased translational energy. Fiévet et al. [4] used re-
action rates derived from first-principles to demonstrate
that the increase in translational energy more than off-
sets the reduction of vibrational energy, leading to faster
ignition times in nonequilibrium flows. While the impor-



2

tance of nonequilibrium is well-known in the context of
external hypersonic flows [8], these recent results indi-
cate that nonequilibrium physics could also have a first
order effect in high speed internal flows, particularly in
the context of hypersonic propulsion.

Given the importance of vibrational nonequilibrium ef-
fects on these flows, especially in external flows, other
higher-order models have been developed to better quan-
tify the energy relaxation process [15–19]. These ap-
proaches permit one to describe non-Boltzmann distribu-
tions by directly solving for the population in each energy
state using detailed rate expressions for the transfer of
molecules between the states through collisions. Previous
studies of post-shock nonequilibrium using state-specific
rates [15, 17, 18] showed that a Landau-Teller based
multi-temperature model was able to approximate the
bulk energy exchange process at lower translational tem-
peratures, but showed considerable differences at higher
temperatures. Further, the relaxation process is not uni-
formly linear (as assumed by the Landau-Teller models)
but can involve quasi-steady states [17, 18]. Addition-
ally, since chemical reactions have been shown to depend
on the vibrational quantum numbers of the reactants, a
state-specific approach proved to offer a better estimation
of reaction rates [16, 17, 19]. Multi-temperature models
were shown to under-estimate the dissociation rates as
the assumption of a Boltzmann distribution resulted in
an under-estimation of the high-lying vibrational states
populations. However, the main challenge in using such
state-specific models is the development of the appro-
priate state-specific transition rates. Recently, quasi-
classical trajectory (QCT) approaches have been used to
obtain these rates for select transitions [17, 18, 20–22].
The focus of all these studies have been on non-turbulent
flows.

The current study aims at investigating a nonequilib-
rium turbulent flow by means of a direct numerical sim-
ulation (DNS), where all turbulent scales are resolved,
coupled with a vibrational state distribution solver. The
solver carries a set of scalars corresponding to the number
fractions of vibrational states relevant to the temperature
range throughout the computational domain. The sim-
ulations will focus on a non-reacting single-species free
shear flow where translational and rotational modes are
assumed to be in thermodynamic equilibrium, i.e. their
state distributions follow a Boltzmann distribution com-
puted from the same temperature. This is a reasonable
assumption as these modes reach equilibrium within or-
ders of magnitude fewer collisions than the vibrational
mode [2]. Most studies previously cited [4, 5, 7, 10–14]
use a multi-temperature approach to describe vibrational
nonequilibrium: the vibrational state distribution is con-
sidered to remain Boltzmann at a different temperature
than the translational temperature. This relies on the as-
sumption that the relaxation timescales are identical for
all energy states. However, as the vibrational quantum
number increases, the state-to-state energy difference de-
creases, resulting in a much faster relaxation process at

higher energy levels, effectively distorting the distribu-
tion from its original Boltzmann shape. This error grows
as higher vibrational energy levels are populated for hot-
ter flows, and can lead to erroneous estimation of reaction
rates and translational temperature. This last point is
crucial in determining the local gas kinetic viscosity, and
therefore accurately resolving turbulence structures. In
an effort to capture the complexity of the vibrational re-
laxation process through molecular inelastic collisions, a
quasi-classical trajectory model is used to calculate state-
specific population rates. This allows the description of
non-Boltzmann distribution throughout the flow.

The paper is organized as follows: the first section
presents the conservation equations for the single-species
compressible flow solver with state-specific vibrational
relaxation rates. Then, the derivation of these rates
using the QCT approach is detailed for N2 molecules.
The third section presents the application of the QCT-
derived rates to resolve 0-D thermal baths. Finally, the
state-specific compressible flow solver is used to study a
N2 turbulent jet with vibrational nonequilibrium by the
mean of DNS. In the rest of the manuscript, “equilib-
rium/nonequilibrium” will simply refer to “vibrational
equilibrium/nonequilibrium”.

II. COMPRESSIBLE FLOW SOLVER WITH
VIBRATIONAL STATE-SPECIFIC RELAXATION

RATES

In this section, the details of the state-specific nonequi-
librium description are provided.

A. Conservation equations for thermally perfect
gas

In this work, all simulations are carried out using N2 as
the fluid. To begin with, the conservation equations that
describe thermally perfect equilibrium gas are written as

∂ρ

∂t
+
∂ρui
∂xi

= 0 (1)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂P
∂xi

+
∂τij
∂xj

(2)

∂ρE

∂t
+
∂ρuiE

∂xi
= −∂Pui

∂xi
+
∂τijuj
∂xi

− ∂q

∂xi
, (3)

where ρ is the mass density of the fluid, ui the ith veloc-
ity component, P is the static pressure, τij is the surface
shear stress tensor, E = e + 1

2uiui is the total energy,
e is the mass specific internal energy, and q is the heat
diffusion rate. Also, t and xi represent time spatial co-
ordinates, respectively. The specific heat capacity used
to compute the internal energy is based on a 9-th order
polynomial function [23]. The shear stress components
τij are defined assuming the flow is a Newtonian fluid so
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that

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
(4)

where the kinetic viscosity µ is evaluated using Suther-
land’s law and is a function of the flow translational tem-
perature T , and δ is the Kronecker operator. The heat
diffusion rate is defined assuming Fourier’s law, so that

q = −λ ∂T
∂xi

, (5)

where λ is the thermal conductivity calculated from the
Prandtl number Pr, which relates heat and momentum
diffusion. A constant Pr = 0.72 is used in this study.

B. Modifications to resolve vibrational
state-specific nonequilibrium

In order to resolve vibrational nonequilibrium, it is
necessary to split the total energy conservation equation
into its different modes. There are many levels of de-
scription possible. Two different approaches will be used
in this work. In both descriptions it is assumed that the
translational and rotational modes are in equilibrium and
only the vibrational mode is out of equilibrium. Given
a molecular population, the internal energy in the vi-
brational mode is the sum of the internal energies of the
individual molecules. From a energy balance perspective,
the internal energy is split into molecular vibrational en-
ergy, ev, translational energy et, and rotational energy
er. As a first approximation, the distribution of energies
in each mode is assumed to follow the Boltzmann func-
tion with a corresponding temperature. The vibrational
temperature is denoted by Tv, while a single tempera-
ture is used for the translational and rotational modes
(denoted simply by T from henceforth). For a diatomic
molecule such as N2, ev and Tv form a bijection, which
for this work is given by

ev(Tv) = e(Tv)− etr(Tv) (6)

=

∫ Tv

Tref

cv(T ′)dT ′ − 5

2
R(Tv − Tref), (7)

where etr = et + er is the ro-translational energy, Tref =
298.15 K is a reference temperature, R is the gas con-
stant, and cv is the gas specific heat at constant vol-
ume. Note that in this formulation, ev equals 0 at Tref

and therefore does not account for the ground state vi-
brational energy, which is naturally included in the cv
relation.

Decomposing the total energy relation defined in Eq. 3,
the transport relations for the kinetic-translational-
rotational energy, denoted etrk = et + er + 1

2uiui, and
the vibrational energy are given by

∂ρetrk

∂t
+
∂uj(ρetrk + P )

∂xj
=

∂

∂xj

(
λ
∂T

∂xj

)
− ∂

∂xj
(τijui) +QTR−V,

(8)

dρev

dt
+
∂ρujev

∂xj
=

∂

∂xj

(
λv
∂Tv

∂xj

)
−QTR−V, (9)

where QTR−V is the energy exchange rate between the
internal translational-rotational and vibrational energy
modes, and λv is the vibrational conductivity. To be
consistent with Eq. 3, the vibrational conductivity is de-
fined as

λv =
µcp,v
Pr

(10)

In this work, the Prandtl number is assumed to be iden-
tical for all internal energy modes. The QTR−V en-
ergy exchange rate can be evaluated using Landau-Teller
model with Millikan and White relaxation timescales
[2, 3, 7, 24].

By using a single temperature to describe the vibra-
tional energy, the multi-temperature model has made a
fundamental assumption: the distribution of vibrational
energy amongst the molecules is governed by a Boltz-
mann distribution, albeit with the vibrational tempera-
ture Tv that is different from the translational tempera-
ture. As previously explained, this assumption is unlikely
to be valid for high enthalpy flows, and could introduce
errors in the estimation of chemical reaction rates even
for lower enthalpy flows. A more detailed approach is to
directly solve for the population density in individual vi-
brational states. This is equivalent to solving the master
equation for spatially extended systems.

When using the state-specific approach, Eqs. 1, 2 ,
3 and 8 are still used. However, Eq. 9 is further de-
composed into a set of transport equations for the frac-
tional number densities that describe the populations of
molecules in individual vibrational energy levels, denoted
by φv for vibrational state v. That is, for a particular vi-
brational state v, the number density nv is the number
of particles per unit volume at that state (units of 1/m3),
and φv = nv/n, where n =

∑
v nv. Note that φv is di-

mensionless and
∑
v φv = 1. Furthermore, considering

that nmN2
= ρ, where mN2

is the mass of one molecule,
then ρφv represents the mass of all the particles with vi-
brational quantum number v per unit volume (units of
kg/m3). Next, note that the state-averaged vibrational
energy is defined as

ev =
∑
v

εv(v)− εv(0)

ρ
nv

=
∑
v

εv(v)− εv(0)

ρ
nφv

=
∑
v

εv(v)− εv(0)

mN2

φv

(11)

where εv(v) is the quantized vibrational energy of a
molecule in vibrational state v. Hence, transporting all
the states number fractions permits one to calculate the
gas vibrational energy and replace Eq. 9. The transport
equation for fractional density φv can be written as

∂ρφv
∂t

+
∂ρuiφv
∂xi

=
∂

∂xi
ρD

∂φv
∂xi

+ Ṡv, (12)
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where the mass diffusion rate ρD is evaluated using a
Schmidt number Sc equal to 0.72, such that ρD = µ

Sc . Ṡv
is the v-th number fraction source term. This source term
is calculated from the state-specific inelastic scattering
rates of the following collision process:

N2(v1) + N2(v2) −→ N2(v′1) + N2(v′2) (13)

The inelastic collisions, which result in a change of vi-
brational quantum numbers, evolve the states fraction
numbers through time. As such, every φv can be consid-
ered as a distinct species and the inelastic collisions as
reaction rates. This analogy permits us to evaluate Ṡv
using a law of mass action for every collision as

Ṡv =
∑
i

∑
j

∑
k

∑
l

gv,ijkl
ks(vi → vk, vj → vl, T )

MN2

(ρφi)(ρφj),

(14)

where MN2
is the molar mass (units of kg/mol), gv,ijkl

is a degeneracy factor which characterizes the impact a
particular reaction would have on the mth population
level. Here, gv,ijkl is defined as

gv,ijkl = −δi,v − δj,v + δk,v + δl,v. (15)

Here, these scattering rates ks are calculated using a
QCT approach which will be presented in detail in the
following section.

In the multi-temperature model, the coupling between
Eqs. 8 and 9 occurred through the energy exchange term
QTR−V. In the state-specific approach, QTR−V can be
calculated from all the scattering rates ks which natu-
rally account for the energy exchange between transla-
tional+rotational and vibrational modes. For instance,
the ks rate for reaction (v1 = 1,v2 = 1) to (v′1 = 1,v′2 = 2)
characterizes a transfer of energy from the translational
and rotational modes to the vibrational mode, hence a
negative QTR−V. Likewise, (v1 = 1,v2 = 2) to (v′1 =
1,v′2 = 1) corresponds to a positive QTR−V. Therefore,
QTR−V is calculated in the state-specific approach as

QTR−V = −
∑
v

εv(v)− εv(0)

mN2

Ṡv. (16)

III. DERIVATION OF STATE-SPECIFIC
VIBRATIONAL RELAXATION RATES

A. QCT formulation of inelastic rates

The vibrational inelastic rates ks for the reaction pre-
sented in Eq. 13 were calculated using QCT analysis
[9, 20, 21, 25, 26]. The potential energy surface (PES)
utilized for these calculations was developed by Bender et
al. [20], which was an extension of the surface developed
by Paukku et al. [27]. This analytic PES was accessed
via an online potential energy surface library, POTLIB

[28]. As detailed by the developers, the PES was fit us-
ing a set of approximately 17,000 ab initio data points
[20]. The reported root mean square error compared to
the quantum calculations is 1.3 kcal/mol for energies less
than 100 kcal/mol and 6.7 kcal/mol for all data points
on the surface.

We note here that this PES was not originally intended
for predicting modest temperature scattering processes
as those of interest in this work. Instead, the PES was
developed with the purpose of studying nitrogen disso-
ciation at earth re-entry conditions. At higher temper-
atures, direct molecular simulations (DMS) have shown
reasonable agreement compared to Millikan and White
[29]. However, no formal validation of the vibrational
exchange rates has been performed for this surface for
temperatures at and below 4,000 K.

Here, the rates were determined as a function of a
translational-rotational temperature T , an initial set of
vibrational quantum numbers v = (v1, v2), and a final
set of vibrational numbers v′ = (v′1, v

′
2). The scattering

rate is denoted as ks(v,v
′, T ). For each trajectory, v is

fixed, and the relative speed and initial rotational quan-
tum numbers, J = (J1, J2), are sampled from their re-
spective probability distribution functions (PDFs). Since
the rotational and translational motions are assumed to
be at equilibrium, these PDFs represent the Boltzmann
and Maxwell distributions, respectively. After the N2

molecules collide, the final state is marked (i.e., v′) based
on the closest state. The aggregation of the outcomes is
used to determine the inelastic scattering rates. The fol-
lowing section describes the process used in calculating
ks for the N2-N2 system.

Following conventional QCT averaging methods, which
utilize Monte-Carlo integration to approximate the inte-
grals associated with sampling the phase space of the sys-
tem [30], the scattering probability Ps is approximated
by

Ps(v → v′,J → J ′, g, b) ≈ Ns(v
′,J ′)

N(v,J , g, b)
. (17)

where g is the relative speed of the reactants, b is the
impact parameter, N is the number of trajectories sam-
pled at fixed (v,J , g, b) with all other initial conditions
sampled from there respective PDFs, and Ns denotes the
number of trajectories with a post-collision rovibrational
quantum numbers (v′,J ′). The relative uncertainty of
Ps, denoted by Us, is defined in this work as two stan-
dard deviations normalized by Ps (this corresponds to a
95 % confidence interval), which is given by [9, 20, 25, 26]

Us = 2

(
1

Ns
− 1

N

)1/2

≈ 2

(
1

Ns

)1/2

, (18)

where dependencies were dropped for brevity and the
approximation is valid when N � Ns. So, for a 95 %
confidence interval to be within 5 % of the mean (i.e.,
Us = 0.05), approximately 1600 trajectories in which
v → v′ need to be observed.
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If the rotational state, relative speed, and impact pa-
rameter are also sampled from their respective PDFs as
initial conditions, then the transition rate from one vi-
brational state to another for a fixed temperature is ap-
proximated by

ks(v → v′, T ) ≈ πb2max
(

8kBT

πmr

)1/2
Ns(v

′)

N(v)
, (19)

where Ps = 0 for all b > bmax, mr is the reduced mass
of the reactants, and kB is the Boltzmann constant. The
PDFs for b, g, and Ji are respectively defined as:

fb = 2πb (20)

fg(g;T ) =

(
mr

2πkBT

)3/2

4πg2e−mrg
2/2kBT (21)

fr,i(Ji; vi, T ) =
gs(Ji)(2Ji + 1)e

− εint(vi,Ji)−εint(vi,0)kBT

Qr,i(vi, T )
,(22)

where gs is the spin degeneracy of the rotational
state, εint is the internal energy, and Qr is the rota-
tional partition function, which normalizes fr,i. The
combined rotational PDF is denoted fr(J ;v, T ) =
fr,1(J1; v1, T )fr,2(J2; v2, T ).

The rates as defined in Eq. 19 are completely indepen-
dent of one another. Thus, the QCT-calculated rates are
not necessarily symmetric and detailed balance at ther-
mal equilibrium is not guaranteed. To ensure that the
rates are consistent (i.e., the rates are symmetric and
satisfy detailed balance), the rates are averaged accord-
ingly. First, for symmetry, the rates are modified so that

ks
(
(v1, v2)→ (v′1, v

′
2)
)

= ks
(
(v2, v1)→ (v′2, v

′
1)
)

(23)

This relation is imposed directly in Eq. 19 by setting

N(v) = N(v1, v2) +N(v2, v1) (24)

Ns(v → v′) = Ns(v1 → v′1, v2 → v′2)

+Ns(v2 → v′2, v1 → v′1).
(25)

Note that v is added as a dependency for Ns to clarify
how final states are counted. Next, for detailed balance,
the rates are modified so that

fv(v, T )ks(v → v′, T ) = fv(v′, T )ks(v
′ → v, T ) (26)

where fv(v, T ) is the Boltzmann PDF characterizing vi-
brational state v’s number fraction. The final rate used in
the CFD simulations, i.e., the rate inserted into Eq. (14),
was chosen as the average of the two rates defined in
Eqs. (19) and (26). That is, ks was is now defined as

ks(v → v′, T ) =
πb2max

2

(
8kBT

πmr

)1/2

×
(
Ns(v → v′)

N(v)
+
fv(v′, T )

fv(v, T )

Ns(v
′ → v)

N(v′)

)
,

(27)

where N and Ns are defined in Eqs. (24) and (25), re-
spectively.

B. State-specific relaxation rates

Inelastic scattering rates were directly calculated using
the QCT method as derived in Sec. III at 9 translational-
rotational temperatures T = [500, 1000, 1500, 2000, 2500,
3000, 4000, 5000, 6000] K.

The first 10 vibrational quantum numbers were sam-
pled, so for N2-N2 collisions, there exist 104 vibrational
state combinations (i.e., degrees of freedom). A total
of 2.8 × 109 trajectories were simulated using the QCT
program developed by Voelkel et al. [9, 21, 25] on the
Texas Advanced Computing Center (TACC) machine us-
ing 4104 cores for 30 hours. At the end of each trajectory,
the final vibrational quantum number was determined as
the closest lying state compared to the classical vibra-
tional energy resulting from the collision.

In total, 9×104 rates needed to be calculated based on
the sampled states (including both inelastic and elastic
collisions). However, many of the final states were never
observed, implying that the probability of the particular
transition was approximately zero. Table I summarizes
the number of trajectories and rates calculated per tem-
perature. Fewer transitions were observed at lower tem-

TABLE I: Number of trajectories and rates calculated
per sampled temperature.

Temperature (K) Trajectories Calculated Rates
500 2.3 × 108 438
1000 2.3 × 108 468
1500 2.3 × 108 480
2000 2.3 × 108 526
2500 1.6 × 107 512
3000 2.3 × 108 877
4000 6.3 × 108 2493
5000 5.0 × 108 4344
6000 5.0 × 108 6124

peratures (resulting in fewer calculated rates) because
the total energy of the colliding N2-N2 pair was not suffi-
cient to shift the vibrational state. At high temperatures
and vibrational quantum numbers, more energy is stored
in translational-rotational and vibrational energy modes
on average. This increases the total energy that can be
repartitioned during the collision event, which in turn
increases the likelihood of observing vibrational transi-
tions.

The sets of directly calculated inelastic rates at 2000 K
and 4000 K are plotted in Fig. 1, which are referred to
as the rate matrix for a particular translational temper-
ature. The x and y axes correspond to the initial/final
state of the first and second nitrogen molecule, respec-
tively. Because symmetry was enforced, the rate ma-
trix is symmetric across the x = y diagonal. Note that
if the rate is zero, this implies that the transition was
not recorded throughout the QCT simulation. Hence,
the rate matrix at 2000 K is sparse because most vibra-
tional state transitions were not observed, whereas the
rate matrix at 4000 K is less sparse. Note that the rates
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(a) T = 2000 K

(b) T = 4000 K
FIG. 1: Directly calculated inelastic scattering rates

(units for the rate are cm3/(mol s)).

at the other temperatures follow the general trends seen
for these two temperatures.

In Fig. 1a, the directly calculated rates for low-lying
vibrational states is observed to be zero, but the physical
rate is non-zero. This discrepancy is due to the statisti-
cal nature of the QCT method and the low probability
of observing such a transition. To reduce this statisti-
cal error, the scattering rates at low temperatures were
extrapolated from the rates at high temperatures. Fur-
thermore, from the set of directly calculated rates, as
modified to enforce the detailed balance (Eq. 26), the
scattering rates were also fit to an functional relation.
This fit was then tabulated and accessed during the CFD
simulations to determine the rate for intermediate tem-

peratures between 2000 K and 4000 K. For the interpola-
tion, it was assumed that log(ks) ∝ T−1, similar to the
conventional Arrhenius expression. The interpolated (or
extrapolated if necessary) rate matrices at 2000 K and
4000 K are plotted in Fig. 2. Comparing Fig. 2b with

(a) T = 2000 K

(b) T = 4000 K
FIG. 2: Interpolated and extrapolated inelastic

scattering rates (units for the rate are cm3/(mol s)).

Fig.1b, notice that the structure of the rate matrix for
4000 K is approximately unchanged. However, at 2000 K,
the interpolated rate matrix is significantly less sparse
than before. Specifically, the non-zero entries in the rate
matrix were increased from 526 to 2521. These interpo-
lated rate matrices are used in the simulations presented
in the Sec. IV and V.

The relative error of the Arrhenius fit (denoted kas ) is
shown in Fig. 3.
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FIG. 3: Relative error of Arrhenius fit rates compared to directly calculated rates.

The points only represent comparisons to those rates
which were directly calculated. In general, the high rates
have a lower error, which is good because those rates
were well resolved. At lower-valued rates, the difference
between the fit and the rate is more sporadic. However,
the lower rates generally had a higher corresponding un-
certainty, thus implying that the directly calculated rates
had a larger margin of error. Furthermore, the rates span
six orders of magnitude, implying that the relative effect
of the lower rates on the simulation will be less impactful.

C. Compact formulation of the state-specific rates

In an effort to reduce the cost of evaluating Ṡv (Eq. 12)
at each timestep, the source term is not directly evaluated
as a summation over all 104 states (Eq. 14). Instead, this
evaluation is reduced into a more compact form during
the initialization of the simulation. In Eq. 14, the sum-
mations on the index k and l corresponding to the prod-
uct of the scattering reaction rate can be pre-computed
into a three-dimensional matrixRvij of size N3

level, where
Nlevel is the number of levels. Rvij defined as

Rvij =
∑
k

∑
l

gv,ijkl ×
ks(vi → vk, vj → vl, T )

MN2

. (28)

Then, Eq. 14 simply becomes

Ṡv =
∑
i

∑
j

Rvij(ρφi)(ρφj). (29)

For each vibrational energy level v, Rvij provides infor-
mation on the addition/depletion of population due to

combination of states {i, j}. Figure 4 presents Rvij for
the first 9 levels (v = [0 8]) at a temperature of 4000
K. Note that the range for each level v is normalized by
its peak value max(|Rv|) = [0.6 48.5 470.6 1239.7 2401.1
3915.3 5262.4 6474.4 7467.3]×106 kg.m−3.s−1 to better
reveal the slow-reacting lower levels contours. Note that
the highest level rates are 4 orders of magnitude higher
than the ground state rates. As necessary, the table is
symmetric along the i = j diagonal. A first observation
is that almost all cells located on the i = v or j = v lines
are blue, i.e. collisions involving at least one molecule
of level v usually result in a depletion of φv. At higher
levels (v > 3), depletion is usually maximum when both
colliding molecules are initially at level v. On the other
hand, peak depletion tends to be shifted towards the right
or left of the (i, j) = (v, v) cell for lower levels as in-
elastic collisions with a molecule is more likely to occur
when involving a partner at a higher level. This trend
is clearly observed for the v = 2 table. At 4000 K, an
(i, j) = (2, 2) collision is less effective at depleting φ2 than
a (i, j) = (6, 2) collision. Interestingly, the ground state
rates table is characterized by a positive production (red
cell) for any neighbor of the (i, j) = (0, 0) cell. Similarly,
the highest replenishment rates are found for high levels
(v > 3) in vicinity of the (v, v) cell on its diagonals. For
the temperatures considered here, the fourth quadrant
(both i, j > v) always have higher rates than the second
quadrant (both i, j < v).

IV. THERMAL BATH SIMULATIONS

The state-specific rates are first used in a zero-
dimensional thermal bath in order to verify the equili-
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FIG. 4: Rvij for the first 9 levels (v = [0 8]) normalized by its peak values at a temperature of 4000 K. Dark blue
corresponds to a maximum depletion, and dark red to a maximum replenishment of φv.

bration process. The governing equations for the thermal
bath are based on those presented in Sec. II. Specifically,
spatial derivatives are neglected in a constant volume sys-
tem, which results in a set of algebraic relations for mass,
momentum, and energy. The vibrational population dis-
tribution is then expressed in terms of a set of ordinary
differential equations, leading to the following system of
equations:

ρ (etrk + ev) = ρ0

(
e0

tr + e0
v

)
(30)

d

dt
(ρφv) = Ṡv (31)

φ0
v = fv(v, Tv,0), (32)

where 0 subscript/superscript refers to the state at time
t = 0 (note that mass and momentum are assumed to
be automatically satisfied). The initial vibrational state
distribution is defined based on a Boltzmann distribution
at a chosen vibrational temperature. The translational
temperature is independently set, so that the system is
out of thermal equilibrium. At the system evolves, the

vibrational state distribution will move towards its equi-
librium distribution, and the translational temperature
as well as the pressure will shift due to the conservation
relations.

Two cases were tested: (1) Tv,0 < T0 (cold to hot),
and (2) Tv,0 > T0 (hot to cold). In both cases, the ini-
tial pressure was set to 1 atm. Figure 5 shows one set of
simulation results for each of the two cases. For the cold
to hot case, the vibrational states are initially defined by
a Boltzmann distribution at Tv,0 = 2000 K, whereas the
bath is at T0 = 4000 K. Each of the states relax over sim-
ilar timescales, with the v = 9 and v = 0 states taking
approximately 5×10−5 s and 2×10−4 s to relax, respec-
tively. In contrast, the relaxation from hot to cold differs
considerably. Here, the vibrational states are initially
defined by a Boltzmann distribution at Tv,0 = 4000 K,
whereas the bath is at T0 = 2000 K. In this system, the
high-lying vibrational states relax by 4× 10−5 s. At this
point, most of the exchanged energy is deposited into the
v = 1 state. Then, a quasi-steady-state is reached that
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is sustained until 4× 10−4 s, after which low lying states
relax.

The above cases present two different types of relax-
ation - the Landau-Teller type linear relaxation to the
end state and the second quasi-steady-state based ex-
change of energy. It is found that in most other cases,
both these types are present. However, when the trans-
lational temperature is lower than the initial vibrational
temperature, the quasi-steady-state is more pronounced.
This is further seen in the plot of vibrational energies
shown in Figs. 6a and 6b. For the cold-to-hot case where
T 0

v = 2000 K, the higher initial translational tempera-
tures relax uniformly. The lower translational tempera-
tures relax to a near quasi-steady-state. In contrast, for
the hot-to-cold case where T 0

v = 2000 K, all of the sim-
ulations relax at a similar rate up to 10−5 s. After this
point, the higher translational temperature simulations
continue to relax uniformly, whereas the lower transla-
tional temperature simulations reach a quasi-steady-state
before relaxing towards equilibrium. Such quasi-steady-
states have been observed previously in other studies as
well [17, 18].

Based on these simulations, a relaxation timescale can
be extracted assuming a linear process, and compared
with the empirical correlations of Millikan and White
[31]. The dependence of these timescales on the trans-
lational temperature is plotted in Figure 7. The trans-
lational temperature and pressure used is taken as the
average of the initial and equilibrium values. The relax-
ation time τv is defined as the time for the vibrational
energy to reach 63.2% of its equilibrium value. It is im-
portant to note that the empirical relation assumes that
the relaxation time scale is independent of the initial vi-
brational population distribution. However, simulations
performed here showed that the initial conditions have
an effect. For instance, when the initial vibrational pop-
ulation is at a higher than equilibrium total energy, the
relaxation time is comparable to the correlation value,
but the process is considerably slower than predicted by
the correlation when the initial vibrational temperature
is lower than the translational temperature. Regardless,
the dependence on temperature seems to closely follow
the T−1/3 correlation. These differences have been noted
at higher temperatures in other studies as well [18].

V. TURBULENT PLANAR JET SIMULATIONS

The effect of turbulence on nonequilibrium is stud-
ied next using a planar jet configuration. This case
involves a central jet issuing into a coflow, with both
streams composed only of N2. For this particular calcu-
lation, all streams are subsonic but in the compressible
regime. Turbulent mixing is expected to trigger vibra-
tional nonequilibrium as observed by Reising et al. [32].
For the discussion below, cold or hot nonequilibrium will
refer to a vibrationally under-excited or over-excited flow,
respectively.

TABLE II: Numerical inflow conditions.

Case Ujet [m/s] Ucoflow [m/s] Tjet [K] Tcoflow [K] Bulk ReH/2

1 400 80 2000 4000 3921
2 400 80 4000 2000 1364

A. Numerical details

Two direct numerical simulations of N2-N2 mixing are
conducted. The height of the planar jet is 8 mm, while
the spanwise width is 16 mm. The computational domain
is 160 mm long, and is discretized using (nx, ny, nz) =
(3072, 960, 196) control volumes in the three coordinate
directions. The domain is periodic in the spanwise di-
rection, and non-reflective characteristic boundary con-
ditions [33] are applied at all the non-streamwise bound-
aries of the domain. The inflow conditions for the central
jet are obtained from an auxiliary simulation of a periodic
turbulent channel flow. This fully developed solution is
sampled to generate an inflow file that is used to impose
a time-varying but correlated inflow condition. Both the
jet and the coflow are specified to be at a static pres-
sure of 2 atm, and are assumed to be in thermal equilib-
rium. The two cases use different static temperatures for
the two streams to reproduce hot-to-cold and cold-to-hot
mixing of the vibrational population. The other inflow
conditions for the two cases are provided in Table II.

The simulations were performed using the state-
specific nonequilibrium flow approach. The numerical
solver uses a finite difference fifth-order WENO LLF
scheme with characteristics reconstruction to compute
the convective fluxes [34], while a fourth-order central
scheme is used for the diffusion terms. Time-integration
is carried out using a fourth-order Runge-Kutta scheme.
Other details of the flow solver are provided in Koo [35].
The dynamic viscosity is determined using Sutherland’s
law, but was increased by a factor of 4 in order to pro-
vide DNS-like resolution. The simulations were initially
conducted until all initial condition related effects have
been convected out of the domain. Statistics were then
sampled over 0.25 ms, which corresponds to 0.5 flow-
through times, evaluated based on the integrated center-
line velocity. A Courant-Friedrichs-Lewy condition of 0.9
was used, leading to time-step of 80 ns. The code uses
domain-decomposition based parallelization, and each
simulation was run on 10000 cores for 16 hours. An in-
ert mixture fraction Zmix was transported along with the
populations for the 10 vibrational states. Mixture frac-
tion is widely used in combustion studies to quantify the
interplay between chemical reactions and turbulent mix-
ing [36]. In these simulations, mixture fraction is set to
1 for the jet inflow, and 0 for the coflow. The compu-
tational domain and a snapshot of the mixing layer are
shown in Fig. 8.

Figure 9 presents an instantaneous snapshot of the
density gradient magnitude, indicating a highly turbu-
lent mixing layer. It is seen that the potential core of
the jet extended until x/H ≈ 7.5. To ensure that the
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FIG. 7: Vibrational energy relaxation timescales
compared to Millikan and White’s empirical model [31].

turbulence length-scales are adequately captured, the lo-
cal grid size is compared to the Kolmogorov length scale
κ defined as κ = ν

3
4 ε−

1
4 where the turbulent dissipation

rate ε is defined as ε = 1
ρτij

∂u”
i

∂xj
. This comparison is pre-

sented in Fig. 10. The resolution conditions are shown
for both axial and stream-normal directions. As seen,
this ratio does not exceed 2 in the entire domain, which

is considered sufficient to resolve all dissipation scales of
the flow [37].

B. Bulk vibrational energy mixing

The amount of vibrational nonequilibrium triggered by
the turbulent mixing is first investigated. The flow bulk
vibrational energy ev is simply computed by adding the
vibrational energy across the 10 states populations. Its
local equilibrated value ev

∗ is computed from the conser-
vation of energy based on the equilibrated temperature
T ∗, such that

e∗v(T ∗) + cvT
∗ = ev + cvT. (33)

In the above relation, T ∗ is found using an iterative pro-
cedure such that the change in temperature between suc-
cessive iterations is less than 0.01%.

The normalized relative difference between ev and e∗v,

defined as
ev−e∗v
e∗v
− 1, quantifies nonequilibrium. It is

shown in Figure 11 as a percentage. The mixing layer
is overwhelmingly vibrationally under-excited, with peak
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departure from equilibrium around 5% from its equili-
brated state. Interestingly, some highly turbulent areas

exist where the flow is locally vibrationally over-excited.
Since the mass entrainment ratio (defined based on [38])
is equal to unity in the current configuration, both hot
and cold fluids mix equally. In such a case, Reising et.
al [32] predicted that ev should be symmetrically dis-
tributed across the mixing layer. In other words, the in-
ner side, closer to the cold flow, should be vibrationally
under-excited, while the outer layer should instead be
vibrationally over-excited.
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FIG. 11: Snapshots of departure between ev and ev
∗

[%]. Red/blue indicate a locally vibrationally
over/under-excited population.

This observation can be explained by considering the
source of nonequilibrium. It is seen that the flow is
mostly under-excited, implying that T is larger than the
implied Tv calculated from ev. Contrary to the vibra-
tional energy, which changes slowly and only through
state transitions, T is coupled to other flow-related vari-
ables. In particular, even at subsonic speeds, the ex-
change of energy between translational and bulk mechan-
ical energy modes is important. Hence, as the jet flow
slows down while it interacts with the slower coflow, the
local temperature increases very rapidly through com-
pression. This happens at constant Zmix as no mixing is
needed to decelerate a flow element emerging from the jet
potential core. This implies that compressibility triggers
nonequilibrium, in particular cold nonequilibrium, since
ev remains nearly constant because it relaxes slowly. By
the same argument, the acceleration of the outer shear
layer should trigger hot nonequilibrium, but is not ob-
served in this configuration. This is explained by con-
sidering the volume entrainment rather than the mass
entrainment ratio [38]. For the given inflow conditions,
this ratio is 2.1, which indicates that the lower-density
jet dominates the nonequilibrium generation process. As
a result, the mixing layer shows an overwhelmingly cold
nonequilibrium driven by compressibility of the fluid.

A compressibility factor C can be defined in order to lo-
cate the regions where such mechanical-translational en-
ergy exchange is present. This factor is extracted as the
ratio of the local ro-translational energy to the mixing-
based expected energy:

C =
cvT

cv[(ZmixTjet + (1− Zmix)Tcoflow)]
− 1, (34)
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where Zmix is the local mixture fraction. C is plotted
in Fig. 12 as a percentage. A positive value indicates
that the flow is locally compressed, which should result
in cold nonequilibrium. Interestingly, the compressibil-
ity plots reproduce the features found in the vibrational
energy relative different plots (see Fig. 11). Notably, the
rare vibrationally hot areas coincide with the rare ex-
panded areas. This is further quantified in Fig. 13, which
presents scatter plots of the relative error between ev and
e∗v against the mixture fraction and C. The color scheme
indicates the number of realizations in a bin (blue is low-
est, yellow is highest). The conditional plot against mix-
ture fraction shows that much of the nonequilibrium is
vibrationally under-excited, which is essentially the same
data represented as in Fig. 11 but represented differently.
The relative difference plot against C clearly shows that
much of the nonequilibrium is created when C > 0, which
is in regions where compressibility has raised the trans-
lational temperature of the fluid. On the other hand, the
relatively sparse hot equilibrium is created by the local
acceleration or expansion of the fluid, which reduces the
translational temperature. Such hot nonequilibrium tend
to occur in the close vicinity of the cold jet potential core,
where the local mixture fraction is closer to 1.
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FIG. 12: Snapshot of compressibility factor C [%].
Red/blue indicate a locally compressed/expanded flow.
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For the inverse simulations (case 2), the central jet
issues at a higher temperature than the coflow and a

higher velocity. As a result, the compressibility factor
behaves similar to case 1, but shows some differences as
well. Figure 14 shows the relative difference in the vibra-
tional energy, which indicates an under-excitation similar
to case 1. The compressibility factor also shows a similar
behavior (Fig. 15), with positive C in the mixing layer.
However, due to the differences in the density, the mass
and volume entrainment ratios are reversed in case 2. As
a result, the outer part of the mixing layer shows regions
of negative compressibility factor, akin to Reising’s the-
ory of symmetric behavior [32].
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This effect is further seen in the scatter plots shown
in Fig. 16. It is seen that the relative difference of vi-
brational energy as compared to the equilibrium energy
is negative, but is found in regions of negative compress-
ibility as well. Since such regions occur closer to the
coflow, which has a lower temperature, it can be inferred
that this part of the nonequilibrium is caused purely by
mixing between two streams with different temperatures.
However, to fully isolate the effect of compressibility, a
shearless mixing layer should be used. However, we found
that a turbulent mixing region could not be sustained at
these conditions without a velocity difference between the
streams.
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C. Turbulent mixing of vibrational energy states
populations

The analysis of the spatial distribution of vibrational
energy revealed that the mixing layer is dominated by
compressibility, leading to under-excitation of the vibra-
tional population distribution. To further understand the
impact of nonequilibrium on the different energy states,
instantaneous snapshots of the fractional populations in
selected vibrational states are shown for both cases in
Fig. 17. It is seen that the mixing patterns are different
for the various states. The lower vibrational level ex-
hibits spatial distribution that is consistent with passive
scalar mixing: it presents a gradual change from the lower
population core jet to the coflow. On the other hand, the
higher vibrational level exhibits abrupt changes from cold
to hot, similar to fast reacting scalars. For the hot jet
configuration (case 2), the patterns are simply reversed
with an inner jet exhibiting higher population in all the
states shown. Note that when the temperature increases,
the ground energy level (v = 0) loses molecules to higher
energy levels.

The differences in the behavior of the different energy
levels are more evident in scatter plots against mixture
fraction shown in Fig. 18. The data are bounded by
two curves: a) the linear mixing line that provides the
limit when state-to-state transitions are frozen, and b)
the equilibrium line that provides the limit when the time
to reach a Boltzmann distribution is much faster than any
of the time scales associated with the flow. The mixing
line is obtained as

φmixv = fv(v, Tjet)Zmix + fv(v, Tcoflow)(1− Zmix),(35)

while the equilibrium line is simply obtained from the
Boltzmann distribution at the equilibrium temperature
T ∗ (Eq. 33). The area between the bounding lines in-
creases with the energy level since higher energy level
distributions are more sensitive to temperature due to the
exponential term in the Boltzmann distribution function.
Further, the higher level populations equilibrate rapidly,
and all populations above v = 3 lie close to the equilib-

rium line. On the other hand, the lower levels relax more
slowly, with v = [0 1 2] populations showing significant
scatter away from both limits. Hence, these levels exhibit
the highest interaction between state-to-state transition
chemistry and turbulence. These plots clearly demon-
strate that turbulence can interfere with relaxation both
due to compressibility of the flow and the time-scales as-
sociated with the relaxation process itself.

In the discussions above, it was concluded that the vi-
brational population is under-excited based on compari-
son with equilibrium energy. To further understand the
distribution of population, the departure of each state
from the corresponding Boltzmann fraction can be ob-
tained. To this end, a departure function Ev is defined
as:

Ev =
φv − Bv(ev)

Bv(ev)
, (36)

where Bv(ev) is the number fraction of level v for a
Boltzmann distribution yielding the same bulk ev. Fig-
ure 19 shows instantaneous snapshots and conditional
plots against mixture fraction of this departure function
for select vibrational levels. For v = 1, the departure
function is always negative, indicating that the popula-
tion is lower than that observed at equilibrium. This
is consistent with the under-excitation of the vibrational
energy seen in the discussions above. Since the lower lev-
els contain most of the molecular population, this under-
excitation is reflected in the integrated vibrational en-
ergy. The higher levels show interesting trends: v = 3
and higher levels show significant over-excitation across
the mixing layer. Note that the departure function is de-
fined with respect to the local integrated vibrational en-
ergy and not the equilibrium energy. The over-excitation
of the higher levels indicates that a) the higher levels are
first over-populated compared to equilibrium, b) the ex-
change of population between the levels leads to equi-
librium. In other words, the translational energy is first
transferred into the higher vibrational levels, probably
due to the smaller gap in energy. This result has im-
portant implications. Since chemical reactions depend
preferentially on the higher vibrational levels [10, 21],
this relaxation route has the potential to alter chemical
reaction rates. The integrated vibrational energy itself is
dependent on the lower energy levels. As a result, the use
of multi-temperature models that rely on the local vibra-
tional energy may vastly under-predict the populations
in the higher levels.

VI. CONCLUSIONS

The conservation equations of a compressible flow
solver resolving vibrational nonequilibrium using a state-
specific approach were presented. The QCT method was
used to calculate a set of vibrational state-specific scat-
tering rates for the collision N2(v1) + N2(v2). For the
flow conditions considered, the maximum temperature
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was 6000 K. Hence, only the first ten vibrational states
were considered as the population density in higher states
is generally very small. During the QCT simulation, the
translational-rotational energy was sampled from one of
nine temperatures ranging from 500 K to 6000 K. In total,
2.8 billion trajectories were simulated to calculate the set
of rates.

An initial test using homogeneous mixing of streams
was used to evaluate the state-specific rates. Interest-
ingly, it was found that the mixing process is not lin-
ear as implied by the Landau-Teller description of vibra-
tional relaxation but follows a highly non-linear evolu-
tion. In particular, the high-lying states relax fast, with
the lower states relaxing at a much slower rate. This
leads to a pseudo-steady behavior, whereby the higher
states continuously adjust to the relaxation of the lower
states. A relaxation time-scale, obtained by tracking the
total vibrational energy relaxation towards its equilib-
rium value, showed trends that are consistent with the
Millikan-White correlation, but also showed differences,

In particular, the time-scale is quantitatively different
from that predicted by the experiments, and is depen-
dent on the nature of relaxation. If the initial vibrational
temperature is lower than the translational temperature,
the relaxation process was slower than in the inverse sce-
nario. These studies exhibit the complexities of vibra-
tional relaxation, and the need to consider details of the
state-specific cross-sections.

Direct numerical simulations of turbulent plane jet
coupled with a vibrational state populations solver were
then performed to investigate the coupling between tur-
bulence mixing and vibrational nonequilibrium for jet
and co-flow temperatures of 2000 and 4000 K. It was
found that the nonequilibrium generated at such flow en-
thalpies are dominated by compressibility effects, where
the local acceleration/deceleration of the flow leads to
a change in the translational temperature, which then
affects the vibrational temperature. This resulted in a
non-Boltzmann distribution throughout the mixing layer,
which would potentially affect chemical reactions. In par-
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FIG. 18: (Black dots) Distribution of state populations φv for v ∈ [0 1 2 3 4 5] with (dashed blue)
φv(T = 2000K)Zmix + φv(T = 4000K)(1− Zmix) and (dashed red) the Boltzmann number fractions fv(v, T ). Only

case 1 is shown.

ticular, a numerical description of nonequilibrium only
resolving the bulk vibrational energy, i.e. integrated over
the whole energy level distribution, would not be able to
resolve such details and would underestimate the reaction
rates.

In summary, the use of state-specific rates is important
even for internal flows and nominally low translational
and vibrational temperatures. Such flows already exhibit
significant deviations from Boltzmann distributions, es-
pecially for the high-lying states. Since chemical reac-
tions are affected more by the higher energies, any result-
ing chemical transformation will not follow Boltzmann-
based rate expressions. The impact of non-Boltzmann
distributions on the macroscopic observed rates needs to
be studied in more detail.
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FIG. 19: (Left) Instantaneous snapshots of Ev [%] for v ∈ [1 2 3 9] from top to bottom. (Right) Realizations of Ev
[%] for v ∈ [1 2 3 9] from top to bottom with Zmix.
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