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Laboratory experiments reveal that variations in bottom topography can qualitatively alter the
distribution of randomized surface waves. A normally-distributed, unidirectional wave field becomes
highly skewed and non-Gaussian upon encountering an abrupt depth change. A short distance
downstream, wave statistics conform closely to a gamma distribution, affording simple estimates for
skewness, kurtosis, and other statistical properties. Importantly, the exponential decay of the gamma
distribution is much slower than Gaussian, signifying that extreme events occur more frequently.
Under the conditions considered here, the probability of a rogue wave can increase by a factor of 50
or more. We also report on the spectral content of the waves produced in the experiments.

Though once regarded as mythical, rogue waves have now been recorded in oceans across the globe and are no longer
doubted as a real phenomenon [1, 10, 15, 19, 25, 46]. The existence of these abnormally large waves is fundamentally
tied to non-normal statistics; if governed by Gaussian statistics, their occurrence would be exceedingly rare and
the danger posed modest. From this perspective of anomalous behavior, rogue waves can be considered under the
more general framework of turbulent dynamical systems [8, 22–24, 33–35]. Several physical mechanisms have been
demonstrated to produce rogue waves, most notably the Benjamin-Feir (BF) instability that occurs in deep water
[1, 2, 6, 7, 9, 11, 12, 28, 44] as well as in optical systems [37]. Other proposed mechanisms include wind excitation
[3, 18, 39], opposing currents [12, 29, 40], and geometric ray focusing from 2D bathymetry [16, 45].

A few recent studies have suggested that anomalous behavior can arise in the much simpler setting of a unidirec-
tional wave-field propagating over a one-dimensional variable bottom [14, 30, 31, 36, 41–43]. Since these studies are
performed outside of the deep-water regime, the BF instability is absent, as are the other mechanisms listed above (no
wind or current and bathymetry is strictly 1D). Intriguingly, many of these studies identify certain locations at which
the deviation from Gaussianity is maximized and, thus, rogue waves are most likely. Such locations are analogous to
the ‘hot spots’ observed in microwave systems [17], but without the benefit of 2D geometric focusing.

Inspired by this line of thought, we perform laboratory experiments to examine the statistics of unidirectional
waves propagating over a 1D, variable bottom, in the shallow-to-moderate depth regime (outside the influence of
the BF instability). Unlike previous experiments that featured gradual slopes of 1:20 [42], we focus on abrupt
depth transitions. In particular, we consider waves propagating over a step in bottom topography—akin to the
step potentials considered early on in quantum mechanics that helped lay the foundation for scattering theory. In
accordance with previous results, we find the deviation from Gaussian behavior to be maximized at certain locations.
Whereas previous studies only quantified non-Gaussianity in terms of a few statistical moments, we find the complete
surface-displacement statistics in these anomalous regions to be accurately described by a gamma distribution. This
clean characterization offers a precise test for theories and may help differentiate the various rogue-wave producing
mechanisms.

Experiments.—As diagramed in Fig. 1(a), our experiments consists of a long, narrow wave tank (6 m long × 20
cm wide × 30 cm high) with waves generated by a plexiglass paddle that is hinged to the bottom and driven by a
5-phase stepper motor (0.72◦ precision). A horse-hair dampener located at the far end minimizes reflections back
into the tank (measured reflections are less than 10% [4, 20]). To create a depth transition, a plexiglass step (2 m
long) is inserted at the far end. Spacers allow us to vary the height of the step and thus the ratio of the two depths.
Reflections due to the step itself can be estimated from linear scattering theory, giving reflection coefficients of less
than 20% for the conditions considered here [4].

Our primary technique for measuring waves is optical, with video images taken by a Nikon D3300 from the sideview
at 60 fps. The free surface is illuminated by LED lights that run along the bottom of the tank and provide the
contrast necessary to extract surface displacements from images with sub-millimeter resolution [5]. The camera is
focused on a 60×34 cm window surrounding the depth change, which was determined to be the region of greatest
statistical interest. As complementary measurements, we deploy two AWP-24 depth gauges, which enable higher
temporal resolution (5 ms response time) at fixed locations. We use these gauges primarily for corroboration, as the
optical measurements provide the spatial information crucial for identifying anomalous regions.

Central to our study, we aim to create a randomized incoming wave field so that we can examine how its charac-
teristics are modified by the depth change. We therefore specify the paddle angle, θ(t), with a pseudo-random signal
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FIG. 1. (a) Experimental schematic. (b)–(c) Surface displacement measured at a representative upstream and downstream
location. (d)–(e) Corresponding histograms. (f) ηstd as it varies in space for six different driving amplitudes. (g)–(h) Similar
for skewness and kurtosis, showing an anomalous region at x = 15 cm where deviation from Gaussian is most pronounced.

TABLE I. Basic experimental parameters and scales.

Parameter Upstream value Downstream value
peak forcing frequency 2 Hz N/A
depth, h 12.5 cm 3 cm
peak wavelength, λ 38 cm 25 cm
peak wavenumber, k 0.17 rad/cm 0.25 rad/cm
dimensionless depth, kh 2.1 0.76
wave steepness, s ∼ kηstd 0.5–5×10−2 0.8–8×10−2

Ursell number, Ur N/A 0.03–0.3

that is precomputed to mimic a Gaussian random sea [10, 13, 43]

θ(t) = θ0 + ∆θ

N∑
n=1

an cos(ωnt+ δn) , (1)

an =

√
2∆ω

π1/2σω
exp

(
− (ωn − ω0)2

2σ2
ω

)
, (2)

Here, the angular frequencies are evenly spaced ωn = n∆ω with step size ∆ω = (ω0 + 4σω)/N , where ω0 and σω
represent the mean and the bandwidth of ω respectively. We set ω0 = σω = 12.5 rad/s, corresponding to a peak
forcing frequency of 2 Hz and bandwidth of 2 Hz. Importantly, the phases δn are uniformly distributed random
variables. We fix N = 3000, which sets a fundamental period of T = 300 seconds.

The driving amplitude is determined by ∆θ, which we vary in the range 0.125◦–2.0◦. This range was selected
to probe the various regimes of wave behavior—the low end produces linear waves, the middle produces weak to
moderate nonlinear effects, and the high end generates strongly nonlinear waves that occasionally break. We have
also varied the step height systematically and found results to be robust for depth ratios in the range 0.2–0.5 [4]. We
therefore fix the step height in all results reported here, so that the effects of driving amplitude can be explored in
detail. In these representative experiments, the upstream and downstream depths are 12.5 cm and 3 cm respectively,
creating a depth ratio of 0.24. Table I lists some important scales that result from our choices of depths and forcing
parameters, in particular, the peak upstream/downstream wavelengths λ and wavenumbers k = 2πλ−1, as determined
by the dispersion relation ω2 = gk tanh kh.

Results.—In the absence of depth variations, the randomized forcing from Eq. (1) produces normally-distributed
surface waves, as is consistent linear wave theory. With a depth transition, however, we find that wave statistics can
vary in space and deviate strongly from Gaussian. Figures 1(b)–(c) show measurements of the surface displacement
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η(t) taken at a representative upstream and downstream location. While both signals exhibit a random character, the
upstream measurements fluctuate symmetrically about the mean, whereas the downstream signal shows events biased
towards large, positive displacement. These observation are made more apparent by the corresponding histograms
in Figs. 1(d)–(e). Indeed, the upstream measurements are distributed symmetrically about the mean and, in fact,
follow a Gaussian distribution closely (green dotted curve). The downstream measurements, however, deviate from
Gaussian and skew heavily towards positive displacement.

These results indicate very different behaviors on either side of the depth change, but offer no detail on how
wave properties vary in space. Fortunately, the optical measurements allow us to extract statistics continuously in
space—a capability crucial for identifying potentially highly localized regions of anomalous behavior [43]. First, to
estimate the scale of wave amplitudes involved, Fig. 1(f) shows the standard deviation ηstd as it varies in space for six
different driving amplitudes ∆θ (see legend). Here, x is the distance from the step, with x < 0 upstream and x > 0
downstream. First, we observe that ηstd is nearly uniform in space for all driving amplitudes, suggesting that the
depth change does not significantly alter the basic scale of wave amplitude. This finding is consistent with previous
results [43]. Second, as evident by the even spacing between curves, ηstd grows linearly with the driving amplitude (we
find ηstd ≈ 0.15∆θ). The range of observed ηstd: 0.03–0.3 cm, combined with the values in Table I, permits estimates
for the characteristic wave steepness, s ∼ kηstd, which roughly indicates the strength of nonlinearity present. In Table
I, we show the steepness ranges upstream and downstream of the depth transition, along with the downstream Ursell
number Ur = 3kηstd/(2k

3h3) [38], which provides a more precise measure of nonlinearity in shallow water.
Next, to determine where and how wave statistics deviate from Gaussian we inspect some higher-order moments.

Figures 1(g)–(h) show the skewness and (excess) kurtosis as they vary in space for the same set of driving amplitudes.
Since both are zero for a normal distribution, these quantities indicate how wave statistics deviate from Gaussian.
Compared to ηstd, these higher moments exhibit more complex dependence on position and driving amplitude. For
small driving amplitudes, skewness and kurtosis remain relatively small throughout the domain. For larger ampli-
tudes, both grow substantially upon encountering the depth change and reach a maximum somewhere downstream.
Remarkably, the location of the maximum, x = 15 cm, is the same for both skewness and kurtosis and for all driving
amplitudes tested. This consistency indicates a small region of highly intensified wave activity, whose location is
independent of driving amplitude.

We remark that the location and size of the anomalous region are on the scale of the characteristic wavelengths
given in Table I. Farther downstream, skewness and kurtosis both decay to near zero, indicating a recovery of Gaussian
statistics. Dissipative effects, such as contact-line dynamics, viscous layers, and wave breaking may be responsible for
this relaxation to a Gaussian state.

The anomalous location, x = 15 cm, was in fact the position selected for the ‘representative’ downstream mea-
surements shown in Figs. 1(c) and (e). Closer inspection of the histogram (e) yields a few observations: (1) The
measurements skew heavily towards positive displacement; (2) Due to the log-scale, the apparent linear decrease to
the right indicates an exponential tail; (3) The decay is much more rapid on the left and is consistent with compact
support on that side; (4) the mean displacement always remains zero. Perhaps the simplest conceivable description
that accounts for observations (1)–(4) is a mean-zero gamma distribution

p(η) =
e−α

ηγΓ(α)

(
α+

η

ηγ

)α−1

exp (−η/ηγ) , (3)

valid for η ∈ [−αηγ ,∞). Here, ηγ and α are the scale and shape parameters respectively, which were fit to obtain
the blue dashed curve in Fig. 1(e). Remarkably, this fit accurately describes the measurements over two decades of
statistics (0.02 ≤ p(η) ≤ 2). Note that the relatively slow decay of Eq. (3) (compared to Gaussian) indicates an
increased frequency of extreme events.

We now aim to test the robustness of this statistical description to changes in driving amplitude. Accordingly,
Figs. 2(a)–(f) show histograms of η, all taken at the anomalous location x = 15 cm, with the driving amplitude ∆θ
systematically increased. The first two, (a)–(b), deviate only slightly from Gaussian (green dotted curves), with the
second showing hints of transitioning towards a skewed distribution. The next four, (c)–(f), all skew heavily towards
positive η. Indeed, each of these histograms conforms closely to a gamma distribution (blue dashed curves), with ηγ
and α fit for each. We therefore conclude that Eq. (3) robustly describes wave statistics within the anomalous region,
once a threshold amplitude is exceeded (θ > 0.5◦ or ηstd > 0.07 cm).

It is perhaps surprising that Eq. (3) appears to describe the complete distribution of measured wave statistics (over
two decades) with only two free parameters. What physical meaning do these parameters carry? The first, ηγ , sets a
length scale of the gamma distribution, and the second, α > 1, controls its shape: large α signifies a nearly symmetric
distribution and smaller α a highly skewed one. By analyzing how these parameters change with experimental
conditions, we can understand the corresponding changes in anomalous wave activity. Accordingly, Figs. 3(a)–(b)
show the values of these parameters extracted from 15 different experiments, in which the driving amplitude was
systematically increased. To present these results in a broader context, we convert the driving amplitude, ∆θ, to
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FIG. 2. Histograms of η sampled at the anomalous location (x = 15 cm) for 6 different driving amplitudes, ∆θ. For ∆θ > 0.5◦,
behavior is non-Gaussian and the gamma distribution (blue dashed curve) provides a robust statistical description.
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FIG. 3. (a)–(b) Variation of the parameters ηγ and α with driving amplitude. Small amplitudes generate Gaussian statistics
(green region), and larger amplitudes give rise to the gamma distribution (blue region), with ηγ and α estimated for each. Both
ηγ and α−2 increase nearly linearly with amplitude. (c) The linear fit of α−2 leads to a power-law prediction for skewness,
which compares well with direct measurements.

downstream dimensionless wave amplitude (or characteristic steepness) kηstd, where k = 0.25 rad/cm and ηstd is
taken directly from measurements. At small amplitudes, the statistics are nearly Gaussian as indicated by the green
region in Figs. 3(a)–(b). For larger amplitudes, kηstd > 0.02, the gamma-distribution fit becomes valid (blue region)
and the two parameters ηγ and α can be extracted. In this regime, ηγ increases and α decreases with amplitude,
meaning that, not only is the gamma distribution growing in length scale but it is also becoming increasingly skewed.
More precisely, we have found that ηγ and α−2 grow nearly linearly with kηstd (dashed lines). The linear growth of ηγ
has a simple interpretation—namely, the driving amplitude directly sets the length scale of the gamma distribution.
We have no such rationalization for the linear growth of α−2, however, and simply report it as an experimental finding.

The clean characterization of the near-complete surface-displacement statistics via only two parameters allows one
to immediately predict any statistical feature of η, for example its moments. In particular, Eq. (3) has a skewness of

2α−1/2. The observed linear growth of α−2 therefore implies the scaling law: skewness ∼ (kηstd)
1/4

. In Fig. 3(c) we
show, for each of the 15 experiments, the skewness taken directly from the measurements (circles), along with this
prediction (dashed curve). The scaling law accounts for the experimental trend remarkably well. We note that in
obtaining this prediction, the formula 2α−1/2 was applied directly to the linear estimate of α−2, with no additional
fitting parameters introduced.

Lastly, we briefly report on the spectral content of the waves generated in our experiments, in particular how the
spectrum is modified by the depth change. Figure 4 shows the power spectrum of the displacement, η, and slope,
ηx, taken at the same representative upstream and downstream locations (x = −10 cm and x = 15 cm respectively).
The slope is extracted via numerical differentiation (with noise mitigation techniques applied). In the upstream
measurements, the power spectra of both η and ηx peak near the dominant-forcing frequency of 2 Hz (faint vertical
line), then decay rapidly to a noise-level of about 10−5. The downstream measurements also peak around 2 Hz, but
decay more gradually at high frequencies. In particular, both spectra decay algebraically, with powers estimated
as -5 for displacement and -4 for slope (red dashed lines). These relatively slow decay rates are broadly consistent
with previous studies [26, 43], and indicate that waves within the anomalous region possess an elevated level of high
frequencies. Further, these measurements support the idea that non-Gaussian wave statistics are associated with an
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FIG. 4. Power spectra of displacement (top) and surface slope (bottom) taken at representative upstream and downstream
locations, along with estimated power laws.

out-of-equilibrium spectrum [30, 41, 43]. We also note the presence of higher harmonics (4, 6, 8 Hz) in the downstream
spectra, which are likely due to resonance with the upstream forcing.

Discussion.—These experiments reveal some basic, quantitative information on the emergence of anomalous waves
from abrupt changes in bottom topography. We find the deviation from Gaussian behavior to be maximized a short
distance downstream of a depth change, at which point wave statistics conform closely to a gamma distribution. Once
a critical depth ratio and driving amplitude are exceeded, the gamma distribution emerges robustly and, furthermore,
provides a near-complete description of surface displacements (over two decades of statistics) with only two parameters
that need to be estimated. Spectral analysis indicate that waves within the anomalous region possess an elevated level
of high frequencies and exhibit harmonics. These findings, taken together, offer a stringent test for anomalous-wave
theories, and may help guide their future development.

While limitations of these idealized experiments certainly should be recognized, many of the basic results may apply
more generally to naturally occurring waves. For narrow-band forcing, a normal distribution of surface displacement
produces a Rayleigh distribution of wave maxima [21], which has been found to agree generally with ocean observations
[10, 32]. But circumstances of enhanced nonlinearity, for example due to variable bathymetry or wind excitation, can
produce non-normal statistics with a greater number of extreme waves than expected from the Rayleigh distribution
[10, 13, 16, 46]. Interestingly, recent measurements from the Sea of Japan exhibit exponential tails [15], which are
comparable to those observed in our experiments and suggest that similar principles may be at work.

We close with a simple calculation for the probability of a ‘rogue wave’ implied by the distributions observed in our
experiments. Though conventions vary, let us define a rogue wave as one having a crest exceeding 4 standard deviations
of the surface displacement, i.e. P (η > 4ηstd | η > 0). For a normal distribution, this definition gives a rogue-wave
probability of 6.3×10−5, equivalent to most other definitions in the literature [27]. Non-normal distributions, however,
may yield different probabilities. For the gamma distribution Eq. (3), in particular, the probability P (η > 4ηstd | η > 0)
depends only on the shape parameter, α. The measurements in Fig. 3(b) indicate a typical value of α = 6.5 and, in
the most extreme case, α = 4.5. For these two values, the probability of a rogue wave increases by a factor of 47 and
65, respectively, over a Gaussian distribution, indicating a far greater prevalence of these extreme events.
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