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Vortex models have been used for decades as computationally-efficient tools to investigate un-
steady aerodynamics. However, their utility for separated flows—particularly, when such flows are
subjected to incident disturbances—has been hindered by the trade-off between the model’s physical
fidelity and its expectation for fast prediction (e.g. relative to computational fluid dynamics). In this
work, it is shown that physical fidelity and speed can be simultaneously achieved by assimilating
measurement data into the model to compensate for unrepresented physics. The underlying inviscid
vortex model captures the transport of vortex structures with a standard collection of regularized
vortex elements that interact mutually and with an infinitely-thin flat plate. In order to maintain
a low-dimensional representation, with fewer than O(100) degrees of freedom, a novel aggregation
procedure is developed and utilized in which vortex elements are coalesced at each time step. A
flow state vector, composed of vortex element properties as well as the critical leading-edge suction
parameter, is advanced within an ensemble Kalman filter (EnKF) framework. In this framework,
surface pressure is used to correct the states of an ensemble of randomly-initiated vortex models.
The overall algorithm is applied to several scenarios of an impulsively started flat plate, in which
data from a high-fidelity Navier–Stokes simulation at Reynolds number 500 are used as a surrogate
for the measurements. The assimilated vortex model efficiently and accurately predicts the evolving
flow as well as the normal force in both the undisturbed case (a separated flow) as well as in the
presence of one or more incident gusts, despite lack of a priori knowledge of the gust’s characteristics.
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I. INTRODUCTION

The closed-loop control of the separated flow over an airfoil is essential for the development of highly agile aircraft
whose flight is robust to disturbances. All control strategies rely fundamentally on an aerodynamics model that can
accurately predict the force (and flow) response of an airfoil to arbitrary disturbances and/or actuation and which can
be run in real time. Unfortunately, classical linearized quasi-steady and impulse response aerodynamic models have
difficulty capturing the intrinsically non-linear response that is observed when a separated flow is subjected to a broad
spectrum of disturbances or actuation [1]. Thus, it is natural to consider phenomenological models that can capture
this non-linearity in a direct—but inexpensive—manner. For this purpose, inviscid vortex models, in which advecting
vortex elements represent the time-varying flow field through their mutually induced velocities, are a candidate.

Inviscid vortex models have been in common use in recent years to predict the dynamic response of a flow that
tends to separate at the leading edge. One class of methods models the flux of vorticity into the wake by a continual
release of constant-strength vortex elements from one or both edges of the airfoil [3, 19, 25]. As the number of vortex
elements increases, their interactions with each other result in the emergence of large-scale structures. These methods
have been successful in modeling the detailed physics of the development of dynamic stall and the wake, but at the
cost of tracking hundreds to thousands of vortices and their interactions. The continual increase of computational
elements make this class of vortex models impractical as state estimators in closed-loop flow control.

Another class of inviscid vortex models handle vorticity flux through point vortices with time-varying strength
[4, 17, 21, 23]. In these models, the dominant leading and trailing edge vortices are each modeled with a single point
vortex. The roll-up of the shear layers into large scale structures is captured by increasing the magnitude of the point
vortices’ circulation. While the low number of computational elements make this class of methods more suitable for
real-time applications, the resulting model lacks crucial flow physics. Without an explicit representation for the shear
layers that emerge from the edges of the wing, these variable-strength vortex models cannot capture the transformation
of a shear-layer instability into a new coherent vortex. To ease the trade-off between flow physics and computational
cost, Darakananda and Eldredge [8, 9] developed a hybrid representation in which the evolution of a vortex sheet
rooted at each edge of a flat plate accounts for the natural roll-up of emerging vortex structures, and these structures
are represented by variable-strength point vortices that siphon their strength from the end of each corresponding
sheet. To ensure that this transfer does not spuriously affect the predicted aerodynamic force, an impulse matching
principle, developed by Wang and Eldredge [23], was used to adjust the velocity of each variable-strength vortex.

A key open problem in vortex modeling is determining how much vorticity to release from the leading edge. While
it is generally accepted that the Kutta condition is an acceptable vortex shedding criterion to use at the trailing
edge, its use at the leading edge in numerous vortex models [3, 4, 23] has not led to good results and this has driven
the exploration of empirically-determined leading-edge shedding criteria. In the discrete vortex model developed by
Katz [16], leading-edge shedding was tuned with a handful of parameters. Some parameters, such as the position of
the leading edge separation point, were chosen based on experimental data, while others were adjusted to bring the
predicted force closer to the measured force. In more recent work, Ramesh and Gopalarathnam [18, 19] introduced
a shedding criterion based on the observation that real airfoils can support a modest level of suction around the
leading edge before flow separation is triggered. Correspondingly, the authors suggested the use of the leading edge
suction parameter (LESP), a nondimensional measure of the integrated pressure at the nose of the airfoil, to govern
vortex shedding. In their model, when the LESP is below a critical value, which we will denote as LESPc, no
vorticity is released. However, when the instantaneous LESP exceeds LESPc, vortex elements will be released with
the appropriate amount of strength to bring the LESP down to LESPc. By tuning their discrete vortex model with
an empirically determined static value of LESPc, the authors were able to predict lift responses that were in good
agreement with experimental results for several (undisturbed) canonical motions of the wing.

This lack of an obvious theoretical closure in the low-order model at the leading edge has also motivated the
development of ‘data-assisted’ vortex models, which are guided in part by measurements from the real system (the
‘truth’). For example, Hemati et al. [14] posed the combination of vortex model and truth measurements as a
constrained optimization problem. In this perspective, the leading and trailing edge vorticity fluxes were interpreted
as inputs to a non-linear dynamical system. Variational methods were used to compute the time histories of these
fluxes that would minimize the squared error between the empirically measured and model-predicted forces over a time
horizon, subject to the constraint that the vortex elements move according to their usual dynamics. They applied this
principle to optimize the variable-strength vortex model of Wang and Eldredge [23] using empirical force data from a
high-fidelity simulation of the Navier–Stokes equations. While this optimization technique produced good results, it
requires the measurements to be available over the entire optimization window. So while it is a useful post-processing
tool, it is also not directly applicable for real-time estimation. In order to overcome this limitation, Darakananda
and Eldredge [10] developed a ‘bootstrapping’ procedure that applied the optimization over short time increments,
accelerated by an initial guess obtained by regressing over previous time increments. However, in either form, this
optimization framework relies on measurements of aerodynamic force from the truth case. These measurements are
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generally unavailable, and indeed, comprise part of the state that we seek to predict.
To address the shortcomings of previous approaches, in this paper, we address the problem from the perspective of

data assimilation, and investigate whether it is feasible to use real-time (and possibly noisy) sensor measurements to
improve the prediction of a vortex model. To facilitate a more practical estimation strategy, we will only rely on surface
pressure measurements, which will be folded into the predictive model through a Kalman filter (KF) framework. The
KF framework consists of a predictive step, in which the state of the system is evolved with a dynamical model,
followed by a measurement update step, in which the state is corrected based on new observations. Both the state’s
mean and its covariance matrix—essential for determining the degree to which measurements shall affect the state
estimate—are directly propagated in this framework. However, the requirements of tracking the covariance matrix
render the algorithm intractably expensive for the moderate to high dimensional systems in fluid flows. Thus, in
this work, we will utilize an Ensemble Kalman Filter (EnKF), which was originally conceived to handle the high-
dimensional non-linear dynamics found in meteorology [11]. The EnKF obtains the covariance, as well as the mean
state, from an ensemble of randomly-initiated instances of the state vector.

The EnKF has recently been investigated for its use in aerodynamics by da Silva and Colonius [7], in which the
state prediction was obtained from a finite-volume Navier–Stokes simulation. In the present work, state prediction
will be obtained from a discrete vortex element model. To enable the vortex element model to work for wide range of
angles of attack, we use the LESP criterion introduced by Ramesh and Gopalarathnam [18], where the leading edge
vorticity flux is determined by a critical LESP. The state vector for the EnKF will be composed of the positions and
strengths of all vortex elements, as well as—crucially—the current estimate of the value of LESPc. Thus, rather than
assuming some prior knowledge of LESPc, we will seek to estimate its value from the measured pressures. To ensure
that the length of the state vector remains modest, we will aggregate the vortex elements by a novel procedure that
we will describe in the Appendix. The performance of this flow estimation framework will be assessed on undisturbed
and disturbed separated flows past a flat plate, using high-fidelity numerical simulations as the truth from which
pressure measurements are sampled.

II. METHODOLOGY

In this section, we present our data-assimilated vortex model. The underlying vortex model we use is identical to
the method introduced by Ramesh et al. [19], aside from the aggregation procedure that we describe in the Appendix.
The dynamics of the flow are obtained by a standard collection of advecting regularized vortex elements (‘blobs’)
about an infinitely-thin flat plate. The Kutta condition is enforced at the trailing edge of the plate, while the leading
edge vorticity flux is governed by the LESP criterion. The critical LESP represents a measure of the tolerance for
leading-edge suction that does not lead to the flux of new vorticity into the fluid; a critical LESP equal to zero is
equivalent to enforcing a Kutta condition at the leading edge. If the instantaneous LESP exceeds the critical value,
then a vortex element is released from the edge, with strength proportional to the amount by which LESPc has been
exceeded. Ramesh et al. [19] chose a single value for LESPc from a priori comparisons between the vortex model
and high-fidelity Navier-Stokes simulations. In contrast, in this work we estimate the value of LESPc within the data
assimilation framework. It is important to note that, since LESPc determines the flux of vorticity from the leading
edge, and subsequently, the flow field dynamics and their effect on surface pressure, it is expected that measurements
of surface pressure should inform appropriate values of LESPc.

A. The critical leading-edge suction parameter

In order to provide some insight for the role of critical LESP, in Fig. 1 we depict a snapshot of the evolving vortex
element distribution and the history of the surface pressure distribution for three different constant values of LESPc
for a plate set into translation at 20◦ angle of attack; this configuration will be one of the target problems of our
studies in Section III. The surface pressure shown here, as well as in every other pressure plot in this paper, is the
difference in pressure coefficient, ∆Cp = 2(p+ − p−)/ρU2, between the upper (+) and lower (−) surface of the plate;
negative values of this coefficient represent suction.

It is important to stress that the choices for LESPc depicted here are made to explore the flow dynamics under
different static values; none is necessarily correct. In the top row, LESPc = 3.0. Recalling that there must be a
sufficiently large leading edge suction to exceed this critical value, an alternative interpretation of the value is as a
critical angle of attack below which the flow is deemed to be attached at the leading edge. Though the instantaneous
LESP depends on the full instantaneous flow state, in the absence of ambient vorticity it is solely determined by the
angle of incidence of the flow. The critical angle of attack corresponding to LESPc = 3.0 is larger than 20 degrees,
so no vorticity is ever released. In the surface pressure plot, in which the vertical axis corresponds to the streamwise
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FIG. 1. Comparison of vortex element distributions (left) and surface pressure coefficient distributions (right) predicted by
a vortex blob model with different LESPc values after one convective time. (a,b): LESPc = 3.0, (c,d): LESPc = 0.3, (e,f):
LESPc = 0.8. In each surface pressure coefficient distribution panel, the top of the panel represents the leading edge of the
plate, the bottom represents the trailing edge, and the horizontal axis the time (in convective units).

spatial direction (with flow from top to bottom) and the horizontal axis represents time, the lack of a leading-edge
vortex (LEV) is reflected by a persistent low (suction) pressure in the vicinity of the leading edge. In contrast, in the
middle row, where LESPc = 0.3, we see that the model predicts the formation of a coherent LEV. This strong LEV
exerts a low pressure on the plate immediately below it as the vortex convects toward the trailing edge and relieves
the low pressure near the leading edge.

These first two cases illustrate the ends of the spectrum of possibilities for critical LESP. In the lower row of Fig. 1,
we take LESPc = 0.8, and consequently observe the emergence of a weaker LEV. Because the vortex elements released
at the leading edge are relatively weak, they are advected closer to the plate surface. Without a viscous boundary
layer to absorb this vorticity, the vortex elements create unphysical, impulsive pressure disturbances along the surface.

From these plots of evolving surface pressure distribution, we can clearly see differences in the growth (or absence)
of the LEV for different values of LESPc. This suggests that it may be possible to estimate LESPc if we are given
the surface pressure information. It is important to note that, in this estimation process, we need not assume that
the LESPc remains constant. In this time-varying form, the underlying physical role of LESPc as a trigger for and
moderator of vorticity flux from the leading edge is generalized, so that it can respond to disturbances of various
sorts—incident gusts, wing maneuvers, or leading-edge actuators. The estimated value can then be used to close the
vortex model and thereby fill in the rest of the evolving flow state. In other words, we seek to assimilate surface
pressure measurements in order to estimate one or more missing parameters in our model. We might also be able
to use these measurements to improve the estimates of other state variables that are predicted by the vortex model,
such as the vortex element positions and strengths.

As with most other inviscid vortex models, the dimension of the system increases with every time step due to
the release of new vortex elements from the edge(s) of the body. The steady and unbounded increase of the state
dimension prevents such models from being used in any real-time applications. This is essentially the same problem
that the hybrid vortex sheet/point vortex model [9] was constructed to solve. Unfortunately, while the hybrid model
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performs well for high angle of attack and pitchup problems, its use of contiguous vortex sheets makes it less well
suited for flows at low angles of attack. In the context of the discrete vortex blob method used in the present work, we
will instead aggregate blobs at each step in order to maintain a modest population of vortex elements. The aggregated
vortex elements are farther from the plate, avoiding the nonphysical interactions observed above. We defer the details
of the aggregation method to Appendix A, and focus on the data assimilation component of the method.

B. Ensemble Kalman filter approach

We use a Kalman filter (KF) framework in order to algorithmically assimilate surface pressure measurements into
the vortex model, as we will describe below. The classical Kalman filter is derived for linear systems. For weakly
non-linear systems, it is popular to use the extended Kalman filter (EKF) [13], in which the non-linear operators are
linearized about the current state. However, the linearization can lead to unstable growth of the error covariance.
While this can be solved by using higher-order derivatives, the number of terms in the higher-order Taylor expansion
grows substantially, which can make the computation prohibitively expensive for real-time applications. For the
present work, we will use the Ensemble Kalman filter (EnKF). The EnKF was introduced by Evensen [11] to explicitly
address two key shortcomings in the EKF: the need for explicit Jacobians of the dynamical model and measurement
function and the large computational cost for high-dimensional systems.

1. Summary of the EnKF

In this section, we provide an overview of the Ensemble Kalman filter; further details, including several practical
aspects for computing the Kalman gain from the ensemble statistics, can be found in da Silva and Colonius [7]. The
EnKF is essentially a Monte Carlo version of the classical Kalman filter. Instead of describing the distribution of the
system state using a mean and a covariance, as in the classical and extended forms of the KF, we approximate the
distribution using an ensemble of size N of randomly-initiated members, where the state of the ith member at filter
step k is denoted by x̃i,k. Suppose we know the ensemble states at step k − 1. We can then propagate each member
of the ensemble forward in time with a dynamical update (e.g. in the present work, a time-discretized vortex model)

x̃−
i,k = f (x̃i,k−1) for i = 1, 2, · · · , N, (1)

where the superscript “−” indicates that no measurements have been incorporated yet. Note that there is no process
noise term in this update equation; this noise will be addressed in the next section when we discuss covariance inflation.
We now approximate the pre-measurement mean and covariance of the state with their sample values

x̂−
k :=

1

N

N∑
i=1

x̃−
i,k (2)

and

P−
k :=

1

N − 1

N∑
i=1

(
x̃−
i,k − x̂

−
k

)(
x̃−
i,k − x̂

−
k

)T
. (3)

In the standard forms of the Kalman filter, the ‘innovation’—the discrepancy between the predicted measurements
and those obtained from the true system, denoted by the vector zk—is defined as

yk := zk −Hkx̂
−
k . (4)

To adapt this definition to each ensemble member, we replace x̂−
k with the ensemble’s own dynamical estimate, x̃−

i,k.

However, we cannot use the same measurement zk for all ensemble members, as Burgers et al. [5] found that doing so
in an ensemble ignores the fact that zk is a random variable and thus introduces spurious correlations in the ensemble
covariance. Instead, we must artificially introduce noise into the innovation of each member of the ensemble

yi,k := zk + εi −Hkx̃
−
i,k for i = 1, 2, · · · , N, (5)

where the εi are vectors of random numbers drawn from a normal distribution with zero mean and covariance V k.
The Kalman update step is then applied to each member of the ensemble

x̃i,k := x̃−
i,k +Kk

(
zk + εi −Hkx̃

−
i,k

)
for i = 1, 2, · · · , N, (6)
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where the Kalman gain has its usual form,

Kk = P−
kH

T
k

(
V k +HkP

−
kH

T
k

)−1

. (7)

Thus, while all members of the ensemble share the same Kalman gain, they each have a unique innovation.

2. Covariance Inflation

The EnKF, like the original Kalman filter, is constructed to minimize the final covariance, P k, of the estimated
state distribution. In the Kalman filter, information about the process noise and measurement noise are accounted
for via their respective covariances, W k and V k, in the evolved state covariance matrix. In the EnKF, this process
noise is independently sampled from W k and explicitly added to the ensemble members in the EnKF, comprising
a Monte Carlo formulation of the Kalman filter. In the absence of such added noise, the system variance decreases
to a lower bound determined only by the measurement covariance, V k, so that the estimator cannot distinguish
measurement noise from state uncertainty. As a result, the Kalman gain of the ensemble becomes minimally small, so
that new measurements are effectively ignored by the filter. All members of the ensemble become essentially identical
to one another. This so-called ‘covariance collapse’ can be desirable in circumstances in which the dynamical model
is completely deterministic and the filter has gathered sufficient data to locate the system’s position in state space.
However, in the context of the EnKF, it generally leads to a significant underestimate of the state covariance and
suboptimal measurement corrections.

A class of methods for handling this covariance collapse is called ‘covariance inflation’. In general, covariance
inflation modifies the ensemble states before computing the sample mean and covariance. Each ensemble state is
updated by

x̃−
i,k ← x̂−

k + β
(
x̃−
i,k − x̂

−
k

)
+αi,k, (8)

where β is the multiplicative inflation factor shared among all ensemble members, and αi,k is the additive inflation
factor drawn from a random distribution at each filter step and independently for each ensemble member [2, 22, 24].
After this update, we recompute the ensemble mean and compute the ensemble covariance. Whitaker and Hammill
[24] found that multiplicative inflation tends to be better at countering the effects of sampling errors, while additive
inflation tends to be better at accounting for modeling errors. Multiplicative inflation tends to be easier to tune as
it only involves adjusting a single value. Adjusting additive inflation, in contrast, requires more understanding about
the actual dynamics of the underlying system.

3. Applying the EnKF to a vortex model

The state vector of our EnKF-assisted vortex model consists of the positions and strengths of the n vortex blobs,
as well as the current estimate of the LESPc

xk−1 :=
[
x1k−1 y1k−1 Γ1

k−1 · · · xnk−1 ynk−1 Γnk−1 LESPck−1

]T
. (9)

The nonlinear state transition function fk propagates the state from step k − 1 to step k by

1. computing the bound vortex sheet strength on the plate from the no-penetration condition, using the current
vortex blob positions and strengths;

2. computing the velocities of the vortex blobs;

3. advecting the plate and the vortex blobs;

4. applying the vortex aggregation algorithm, reducing the strength of any aggregated blobs to zero instead of
completely removing the blob;

5. releasing a new vortex blob from each edge of the plate with strengths based on the Kutta condition at the
trailing edge and the current estimate of the LESPc (similar to Ramesh et al. [19]) at the leading edge.
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Note that the dimension of the state vector increases by six (three per new vortex blob) after every state propagation
step. Once all members of the ensemble have been propagated, we look for any vortex blobs that have zero strength
across all members of the ensemble (in terms of its position/index in the state vector) and eliminate them from
the ensemble states. This element elimination process, in conjunction with the vortex aggregation algorithm, keeps
the dimension of the state vector in check. However, by requiring that all ensemble members unanimously agree on
an element’s irrelevance, we ensure that the state vector has uniform dimensionality across all members. We then
apply covariance inflation to the new ensemble states, before computing the pre-measurement ensemble mean x̂−

k and

ensemble covariance P−
k with Eqs. (2) and (3).

Our measurements consist of M pressure differences between the upper and lower surface of the plate at every filter
step k,

zk :=
[
∆p1k · · · ∆pMk

]T
. (10)

Let us denote the vector of pressure differences predicted by the ith ensemble member at filter step k by

mi,k := hk

(
x̃−
i,k

)
. (11)

Then the innovation for each member of the ensemble is given by

yi,k = zk + εi −mi,k. (12)

Since pressure is not a linear function of vortex element properties, we need to develop a linear form of the
measurement function hk in order to compute the ensemble Kalman gain. One simple way to achieve this is to define
an augmented state vector containing the measurements themselves

Xi,k :=

[
x̃−
i,k

mi,k

]
, (13)

which admits the linear measurement function

Hk :=
[
0(3n+1)×(3n+1) IM×M ] , (14)

where IM×M is the M -dimensional identity matrix. Then, denoting the mean of the predicted pressure distribution
by

m̄k :=
1

N

N∑
i=1

mi,k, (15)

the covariance of the predicted pressure distribution by

Mk :=
1

N − 1

N∑
i=1

(mi,k − m̄k) (mi,k − m̄k)
T
, (16)

and the cross-covariance between the state and pressure with

Ck :=
1

N − 1

N∑
i=1

(
x̃−
i,k − x̂k

)
(mi,k − m̄k)

T
, (17)

we find that the ensemble covariance of the augmented state can be written as

P a
k :=

1

N − 1

N∑
i=1

([(
x̃−
i,k − x̂k

)
(mi,k − m̄k)

] [(
x̃−
i,k − x̂k

)T
(mi,k − m̄k)

T

])

=

[
P−
k Ck

CT
k Mk

]
. (18)

The Kalman gain of the pressure-augmented system is then

Ka
k = P a

kH
T
k

(
V k +HkP

a
kH

T
k

)−1

=

[
Ck(V k +Mk)

−1

Mk(V k +Mk)
−1

]
. (19)

Since only the first block in the Kalman gain matrix above corresponds to the actual states we are interested in, we
can write the measurement update step for our system as

x̃i,k = x̃−
i,k +Ck(V k +Mk)

−1
(
zk + εi − hk(x̃−

i,k)
)
. (20)

This procedure, proposed by Evensen [12], can be interpreted as an implicit linearization about the ensemble mean.
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III. RESULTS

We will demonstrate the EnKF-assisted vortex method on three test problems, each involving a flat plate of chord
length c translating at velocity U . Time is measured in typical convective units, t∗ = Ut/c. In the first two cases,
we explore the impulsive translation of the plate at fixed angles of incidence 60◦ and 20◦, respectively. The third
case is initiated in the same manner as the 20◦ case, but two incident disturbances are applied near the leading edge
after three and four convective time units, respectively. The vortex model uses the same estimation framework for
this case, and is given no additional information about these disturbances other than what is measured in the surface
pressure. For all cases, the measurements consist of pressure differences across the plate at M = 50 points, distributed
symmetrically about the plate centroid at positions

c

2
cos

(
mπ

M + 1

)
for m = 1, 2, · · · ,M. (21)

The truth measurements in all cases are obtained from high-fidelity numerical simulation with the immersed-boundary
projection method [20] of an infinitely-thin flat plate at Reynolds number Re = 500.

Throughout, we use an ensemble size of N = 50. The results are not sensitive to this choice of size, but it represents
a compromise between statistical convergence (with increasing N) and speed. We initialize each ensemble member
with a starting value of LESPc drawn from a normal distribution N (0.5, 0.2) (i.e. mean 0.5, variance 0.2). (It should
be noted that the definition of LESP in the present work is a factor of four larger than the definition used by Ramesh
et al. [19].) The covariance inflation parameters are tuned on the 20◦ impulsive translation case, and take the following
values for all cases:

• multiplicative inflation is β = 1.01;

• additive perturbations to the vortex positions (normalized by c) are drawn from N
(
0, 10−5

)
;

• additive perturbations to the vortex strengths (normalized by Uc) are drawn from N
(
0, 10−3∆t∗

)
;

• additive perturbations to the LESPc are drawn from N
(
0, 5× 10−5

)
;

• artificial measurement noise drawn from N
(
0, 2.5× 10−4

)
is added to the truth pressure measurements (nondi-

mensionalized by ρU2).

These inflation parameters are tuned to coerce the EnKF into favoring the modification of the LESPc over the vortex
element positions and strengths. This stems from our underlying assumption that the key process is still governed by
inviscid vortex dynamics, and the assimilation of pressure data via the EnKF is a closure model to determine vorticity
flux. Interestingly, although these inflation parameters were tuned for one specific test case, we will see that that same
parameters work equally well with the other cases that we will present. For cases in which the vortex aggregation
procedure is applied, we set the error tolerance to εF /(ρUc

2) = 0.25∆t∗; the role of this tolerance is described in
Appendix A. The vortex model is advanced with a forward Euler scheme with a fixed time step size of ∆t∗ = 0.01.
The vortex elements are regularized with a blob radius of 0.005c. It should be noted that the blob radius does not
serve as significant a role in this aggregated model as it does in previous (non-aggregated) vortex models, in which
elements are in close proximity and interact strongly with one another. The aggregated vortices are, in contrast,
more isolated and their interactions require less regularization. The non-zero blob radius mostly serves to regularize
the interactions of elements soon after they are released from the edges; we have found that the results are relatively
insensitive to the choice.

A. Impulsive translation at 60 degrees

This high angle of incidence presents a relatively simpler estimation problem than the later case at low angle of
incidence because it is expected, from previous experience at high angles [3, 9, 15, 23, 25], that a vortex model with
the Kutta condition enforced at both edges can provide a reasonably good prediction of the flow behavior. In other
words, the data assimilation should have a relatively small role in ensuring an accurate estimate. This case allows us
to improve our understanding of the relationships between surface pressure, critical LESP, and the aggregating vortex
model, particularly when combined within the EnKF. We will compare the proposed EnKF-assisted vortex model
with the high-fidelity numerical simulation at Reynolds number 500 (the ‘truth’ data) and two ‘unfiltered’ versions
of the vortex element model with the Kutta condition applied at both edges: a straightforward model and a model
with the aggregation scheme applied.
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FIG. 2. Comparison of the surface pressure distribution over time along an impulsively translating plate at 60◦ between (a)
high-fidelity simulation, (b) a basic discrete vortex element model, (c) a vortex element model with aggregation, and (d) the
proposed EnKF-assisted model. Convective time is defined as t∗ = tU/c.

The top panel in Fig. 2 shows the pressure distribution from the high-fidelity truth simulation. From visual
inspection, we can easily observe the growth and evolution of the LEV, indicated by the expansion of a negative
pressure region moving towards the trailing edge. After the LEV stretches across the whole chord at around two
convective times, it starts to entrain opposite-signed vorticity and trigger the development of a trailing-edge vortex,
which shows up as a negative pressure region near that edge between three and five convective times. These events
are confirmed in the top left panel of Fig. 3, which depicts the vorticity field from this simulation at tU/c = 3. At
around tU/c = 4.5, a new negative pressure region at the leading edge indicates the emergence of a new LEV as
the trailing-edge vortex starts to entrain positively signed vorticity. This event is evident in the upper right panel in
Fig. 3, depicting vorticity after five convective time units.

The overall features of this process are also observable in the basic discrete vortex element simulation, shown in
the second row of Fig. 2 and Fig. 3. Indeed, these vortex element results look very similar to those of the truth,
except that the trailing edge suction region is stronger and larger, and there is little evidence in the pressure of the
new leading edge vortex at five convective times. The difference between this prediction and the truth results is more
apparent in the normal force coefficient, shown in Fig. 4. The vortex element model predicts a larger force on the
plate and exhibits a slight lag in the LEV shedding, indicated roughly by the instant at which the force reaches its
minimum. It is these differences that we seek to reduce with the assimilation of pressure data.

The use of the vortex element model to predict flow behavior comes at the expense of introducing two new vortex
elements per time step; thus, after five convective time units, there are 1000 vortex elements in the system. For a
n-body algorithm such as a vortex element method, this rate of growth in the population of computational elements
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FIG. 3. Comparison of vorticity distribution for the 60◦ impulsive translation case at t∗ = 3 (left column) and t∗ = 5 (right
column), predicted by: (a,b) high-fidelity simulation, (c,d) a basic discrete vortex element model, (e,f) a vortex element model
with aggregation, and (g,h) the proposed EnKF-assisted model (bottom row).

becomes impractically expensive without the use of a fast multipole method. To improve the efficiency, we apply
the aggregation scheme described in the Appendix to the vortex element method. In the third row of Fig. 2 and
Fig. 3, we show, respectively, the surface pressure and snapshots of the vortex element distribution predicted by this
aggregated vortex model. The pressure exhibits more oscillations than in the basic (unaggregated) vortex element
case, but the same general behavior; the aggregated vortex elements are stronger and appear to coincide with the
dominant vortex structures. As is clear from Fig. 3, the high error tolerance (set to the value reported above) has
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the high-fidelity truth simulation ( ), a basic discrete vortex element model ( ), a vortex element model with aggregation
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FIG. 5. Number of vortex elements used in vortex models of the impulsively translating plate at 60◦. Basic vortex element
model ( ); aggregated vortex element model ( ); EnKF-assisted vortex element model ( ).

allowed the model to aggressively merge the vortex elements and has thus reduced the element population by almost
two orders of magnitude, as seen in Fig. 5. However, as Fig. 4 shows, the aggressive aggregation has also introduced
spurious disturbances to the force response.

Finally, we apply the proposed EnKF-assisted aggregated vortex model, using an ensemble of 50 instances of
the model. Each member is initialized with no vortex elements—as with any vortex model of an impulsive start in
quiescent fluid—and critical LESP values drawn from N (0.3, 0.2). These choices for mean and variance do not require
much care, and are only made to ensure a high probability that all ensemble members release vortex elements from
the leading edge. The resulting surface pressure distribution history is depicted in the last row of Fig. 2. It is clear
that the predicted pressure distribution agrees visually well with the high-fidelity truth simulation. The resulting
force of the ensemble mean, plotted in Fig. 4, agrees significantly better than either of the unfiltered vortex models,
albeit with some small-amplitude noise due to the variance across the ensemble.

The vortex element distribution of the ensemble mean, shown at two instants in the last row of Fig. 3, is slightly
less aggregated than in the previous (unfiltered) case; though the error tolerance is the same, the requirement for
unanimous agreement across the entire ensemble restricts the aggregation somewhat. Furthermore, it is important to
note that each of the ensemble members has a slightly different version of this same distribution. Indeed, the additive
covariance inflation of vortex positions is equivalent to a random walk, used in some previous vortex methods for
approximating viscous diffusion [6]. The main differences in the present approach are that the random walk is applied
across an ensemble of models and that the vortex strengths are also randomly perturbed. It should be noted, however,
that we have not attempted in this work to tune the additive inflation to capture diffusion at this Reynolds number;
this relationship will be explored more thoroughly in future work.

The slightly higher population of the ensemble is more directly observable in the plot of element population in
Fig. 5. The element distribution predicted by the EnKF-assisted model is more representative of the true vorticity
distribution than the unfiltered aggregated vortex model. By assimilating surface pressure data, we obtain better
agreement in pressure and force than the basic vortex element model while still using two orders fewer vortex particles.

It is interesting to inspect the ensemble statistics to learn more about how the EnKF has helped achieve this



12

0 1 2 3 4 5
0.00

0.05

0.10

0.15

0.20

C
rit

ic
al

 L
ES

P
t*

FIG. 6. Time history of the ensemble mean value of LESPc for the impulsively translating plate at 60◦ case.
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FIG. 7. Ensemble variances for the 60◦ impulsive translation case. Variances for: (a) element x position, (b) element y position,
(c) element strength, and (d) critical LESP.

improved estimate. Fig. 6 shows the mean critical LESP predicted by the EnKF-assisted model. The critical LESP
is constrained to remain non-negative. The initial statistics of the ensemble are apparent in the early values of this
parameter. However, it is clear that the EnKF quickly brings LESPc down to almost zero, which essentially enforces
the Kutta condition at the leading edge. This is consistent with the successful use of a leading edge Kutta condition
in previous vortex modeling work at high angles of attack. (Had we applied the model to measurements obtained
from a rounded-nose airfoil instead of a flat plate, it is expected, based on the work of Ramesh et al. [19], that the
estimated value of critical LESP would be non-zero.)

Fig. 7 depicts the ensemble variances of the vortex positions, strengths, and critical LESP at the end of each
measurement update step. We can see that the variances of the vortex states stay relatively constant over time. As
we will see in the next case, the persistence of these values is due to the additive covariance inflation. However, it
should be noted that these values are lower than the variances of the normal distribution from which additive inflation
values are drawn from, because the Kalman gain in the measurement update step is constructed to minimize these
posterior covariances. Furthermore, it is notable that the variance of the estimated critical LESP of the ensemble
drops to zero at multiple times. This seems to indicate that, in order to achieve better agreement with the measured
pressure data, the EnKF calls for the release of stronger vorticity from the leading edge. Since the maximum flux of
vorticity that can be produced by an LESP-based vortex shedding criterion is that dictated by the Kutta condition
(where LESPc = 0), the EnKF drives all ensemble members to a critical LESP value of zero in order to release as much
vorticity as possible. Note that this does not mean that all ensemble members will release a new vortex particle with
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the same strength, since the strength also depends on the ambient vorticity, which varies among ensemble members.

B. Impulsive translation at 20 degrees

In the previous case, we compared the EnKF-assisted vortex model with unfiltered models. In this case, in which
the plate translates impulsively at 20◦, we will explore the effects of covariance inflation. Fig. 8 depicts snapshots of
the vorticity distribution for the high-fidelity truth simulation compared with ensemble averages of vortex elements in
two versions of the EnKF-assisted aggregated vortex model, without and with additive covariance inflation, respec-
tively. There are no obvious differences between the two vortex models, except that the version without covariance
inflation appears to have fewer elements. Both models’ element distributions are qualitatively similar to the vorticity
distribution in the high-fidelity truth simulation. However, the differences between the two approaches are much
more apparent in the plot of surface pressure history in Fig. 9. With no covariance inflation, the surface pressures
are stronger and more compact, with features that appear to propagate both upstream and downstream. In contrast,
the pressure obtained from the model with inflation is more diffuse and agrees well with the truth data.

The features exhibited in the surface pressure of the non-inflated model are typical of a small number of strong
vortex elements undergoing dynamics in the vicinity of the plate. The absence of these features in the inflated model
is due to the persistent variance among ensemble members: each member’s vortex elements are experiencing slightly
different dynamics, and the overall effect is a more diffuse pressure field exerted on the plate. This variance nearly
vanishes in the non-inflated model, as can be observed in Fig. 10. The variances of vortex parameters—positions and
strengths—are generally several orders smaller than in the inflated model, though their positional variances exhibit an
increase at the end of the interval. Most notably, the variance of LESPc has completely collapsed, so that all ensemble
members are generating nearly the same vorticity flux at the leading edge. As a result of this collapse, the pressure
measurements are having little effect on the ensemble. The covariance inflation prevents this collapse, maintaining a
truly random ensemble of vortex models of the flow that are actively corrected by the pressure measurements.
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FIG. 8. Vorticity distribution for the 20◦ impulsive translation case at t∗ = 3 (left column), t∗ = 4 (center column), and t∗ = 5
(right column), from (a,b,c) high-fidelity truth simulation at Reynolds number 500, (d,e,f) the EnKF-assisted model without
inflation, and (g,h,j) the EnKF-assisted model with inflation.
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FIG. 9. Histories of the surface pressure distribution along an impulsively translating plate at 20◦, from (a) high-fidelity truth
simulation at Reynolds number 500, (b) EnKF-assisted model without covariance inflation, and (c) EnKF-assisted model with
covariance inflation.

The resulting histories of force on the plate, from the truth simulation and from the non-inflated and inflated
EnKF-assisted vortex models, are depicted in Fig. 11. The force from the inflated model agrees better with the truth
data than the non-inflated model. Furthermore, the level of noise, due to the influence of dynamical interactions
between elements and the errors from continuous aggregation of vortex elements, is somewhat weaker in the inflated
model than the non-inflated model due to the effect of averaging over the random ensemble. The element populations
are only mildly different in the two approaches, as evident in Fig. 12, and both are on the order of tens of elements,
much lower than the 1000 elements expected of a basic vortex element model after the same number of time steps.
The element population of the inflated model increases at a faster rate than the non-inflated model due to greater
restriction on the aggregation: unanimous agreement between ensemble members to aggregate an element pair is
harder to achieve when the members maintain differences from one another.

Finally, Fig. 13 depicts the mean estimate of LESPc obtained from the EnKF-assisted vortex model. Not surpris-
ingly, the non-inflated model, with its collapse covariance, converges quickly to a value and remains nearly fixed.
Measurements no longer have an effect, and, in the absence of an underlying dynamical model for critical LESP,
there is no other guidance for changing its value. In contrast, the inflated model remains receptive to surface pressure
measurements, and these measurements continue to provide information for the instantaneous estimate of LESPc.
After the early transient, this value remains reasonably constant in a range between 0.4 and 0.6; this supports the
hypothesis of Ramesh et al. [19] that LESPc is constant for a given wing geometry and Reynolds number. However,
a gradual decay in the estimated value is apparent after 3 convective time units. This decay, which triggers stronger
vorticity flux from the leading edge, coincides with the shedding of the original LEV and the development of a new
vortex at the leading edge. In other words, for the model to provide accurate estimation over long times, LESPc must
adapt to changing flow conditions.
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FIG. 10. Ensemble variances for the 20◦ impulsively translating plate, with no covariance inflation ( ) and with covariance
inflation ( ). Variances for: (a) element x position, (b) element y position, (c) element strength, and (d) critical LESP.
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FIG. 11. Comparison of the histories of the normal force coefficient for an impulsively translating plate at 20◦ from high-fidelity
truth simulation ( ) and an EnKF-assisted vortex model without covariance inflation ( ) and with covariance inflation
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FIG. 13. Time history of the ensemble mean value of LESPc for the 20◦ impulsively translating plate, without covariance
inflation ( ) and with covariance inflation ( ).
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C. Response to incident disturbances

The previous case confirmed the need for covariance inflation to maintain variance among the vortex models in
the ensemble. It also demonstrated that LESPc may change with the flow conditions, even if the plate’s nominal
configuration has not changed. In this case, we will evaluate the estimation framework when the plate is subjected
to external disturbances, in the form of two ‘gusts’ incident upon the plate. Each gust is introduced to the high-
fidelity numerical simulation as a short-duration vertical body force of strength 0.01ρU2c, applied to the fluid in a
small region of the fluid just ahead of the plate, centered at (0.95c, 0.2

√
πc) in plate-centered coordinates. The gusts

are introduced, respectively, three and four convective time units after the plate’s motion is initiated, and the plate
interacts with each as it translates through the disturbance region. It is important to stress that these gusts are
only present in the truth simulation; the vortex models in the ensemble will have no explicit representation of the
gusts. Rather, the models will only “feel” the gust via the measured surface pressures, and then attempt to capture
the transient response of the flow to the gust through the resulting corrections to the state vector, which, as before,
consists of vortex parameters and LESPc.

The surface pressure distribution histories for both the truth simulation and the EnKF-assisted vortex model are
depicted in Fig. 14. As expected, the initial development of the LEV is identical to the disturbance-free case. At three
and four convective time units, we see the gust encounters as bands of negative pressure across the chord. Although
the encounters themselves are short-lived, we see that they each trigger the growth of a new LEV. The associated
vorticity distributions of the truth simulation are depicted at three instants in the top row of Fig. 15. The first
new LEV created around three convective times is advected along the plate and eventually entrained into the initial
LEV. At four convective times, the initial LEV has shed from the plate, so that the new LEV created by the second
gust remains distinct. The EnKF-assisted vortex model matches the surface pressures well. Furthermore, the vortex
elements, depicted at three instants in Fig. 15, accurately track the corresponding flow structures in the truth data.

This agreement in surface pressure and vorticity distribution is also manifested in the normal force exerted on the
plate, shown in Fig. 16. Each gust encounter is clearly evident in the peaks observed at three and four convective
times. The vortex model accurately estimates each of the peaks. It should be noted that the large spike in force soon
after the motion is initiated is likely due to a spurious encounter of a vortex element with the plate. It may be possible
to prevent such undesirable features by eliminating outliers in the ensemble statistics. The associated mean estimate
of critical LESP is depicted in Fig. 17. This plots shows that the EnKF responds to the measured disturbances in
pressure by temporarily increasing LESPc. Since the increase in critical LESP tends to reduce vorticity flux, this
small pulse in LESPc has the effect of severing the leading edge shear layer before developing a new LEV.

As with the previous cases, it is interesting to inspect the variances in the ensemble states. These are shown in
Fig. 18, where they are compared with a non-inflated version of the model. As expected, the ensemble variances
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FIG. 14. Histories of the surface pressure distribution along an impulsively translating plate at 20◦, subjected to incident gusts
at t∗ = 3 and t∗ = 4, from high-fidelity truth simulation at Reynolds number 500 (top) and the EnKF-assisted model with
covariance inflation (bottom).
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FIG. 15. Vorticity distribution for an impulsively translating plate at 20◦ subjected to incident gusts, at t∗ = 3 (left column),
t∗ = 4 (center column), and t∗ = 5 (right column), predicted by (a,b,c) high-fidelity truth simulation at Reynolds number 500,
and (d,e,f) the EnKF-assisted model with covariance inflation.
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FIG. 16. Comparison of the histories of the normal force coefficient for an impulsively translating plate at 20◦ subjected to
two incident gusts at t∗ = 3 and t∗ = 4, from high-fidelity truth simulation ( ) and an EnKF-assisted vortex model ( ).

of the inflated version of the model remain relatively constant. This enables the ensemble to remain responsive to
measurements. However, as in the previous undisturbed case, the ensemble variances of the non-inflated case quickly
drop to very small values, blinding the EnKF to new observations. By three convective times, the ensemble variance
in LESPc has dropped to essentially zero. When the EnKF detects the pressure signature of the disturbance, the only
state parameters it can adjust are the vortex states, so we see sharp increases in the variances in the vortex states
around three convective times. However, the vortex generated at the leading edge is stronger than that of the truth
case, and the resulting vortex element dynamics do not accurately track the flow. Covariance inflation is essential for
maintaining consistently open channels that transfer measurement discrepancies to updates in the vortex states and
critical LESP.

IV. CONCLUSIONS

In this work, we have developed a dynamic estimation framework for two-dimensional unsteady separated flows, in
which surface pressure measurements from the true system are used to augment a discrete vortex element model in
order to predict the full state of the flow. The vortex model utilizes advecting regularized vortex elements released from
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FIG. 17. Time history of the ensemble mean value of LESPc for 20◦ impulsively translating plate, subjected to incident gusts
at t∗ = 3 and t∗ = 4.
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FIG. 18. Ensemble variances for the 20◦ impulsively translating plate, subjected to incident gusts at t∗ = 3 and t∗ = 4, with
no covariance inflation ( ) and with covariance inflation ( ). Variances for: (a) element x position, (b) element y position,
(c) element strength, and (d) critical LESP.

the leading and trailing edges of a flat plate. At the leading edge, the strength of shed vorticity is determined by the
critical leading-edge suction parameter (LESP). The estimation framework uses an ensemble Kalman filter (EnKF),
in which a collection of randomly-initialized vortex models are used to predict the state of the flow, continuously
updated with the sampled surface pressures from the truth case. We showed that, with the appropriate tuning of the
covariance inflation parameters, the ensemble of vortex element models was able to predict a vorticity and pressure
distribution that closely resembles that from high-fidelity numerical simulation at Reynolds number 500. Furthermore,
once we tuned the model for a single case—that of the pulse-free 20◦ impulsive translation case—we saw that the same
covariance inflation parameters worked well for other cases, at different angle of attack or with incident disturbances.

The state vector in our implementation of the EnKF consists of the vortex positions and strengths as well as the
critical LESP. It should be noted that an ensemble of size N of vortex models consisting of nv elements each is
significantly faster than a single model of Nnv elements: only the nv elements in each model interact with each other,
so the overall ensemble scales linearly with N rather than quadratically. Thus, even a large ensemble of models of
around 30 elements each can run for five convective time units in around a minute on a laptop computer. It is also
important to stress that we have no dynamical model for the critical LESP; rather, we rely only on the measured
surface pressures along the plate to estimate this parameter via the Kalman gain. In so doing, we have implicitly
shown that the critical LESP—that is, the tolerance of the flow to sustain relative motion of the fluid about the
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edge without separating—changes dynamically in response to changing flow conditions, and particularly, in response
to a disturbance. This, in turn, triggers the appropriate release (and, at times, suppression) of new vorticity at the
leading edge in the presence of such an aerodynamic disturbance. This demonstrates the potential for using real-
time data as part of the closure model for a leading edge shedding criterion, even in the presence of disturbances of
unknown characteristics. We are currently investigating whether other forms of disturbance, such as surface actuator
pulses or rigid-body excursions, can be similarly represented and observed in the critical LESP. We are also exploring
the relationship between the additive covariance inflation of vortex parameters in the ensemble and the well-known
random walk approach for modeling viscous diffusion in vortex methods.

In our demonstration of the estimation framework in this paper, we have relied on truth measurements from a high-
fidelity numerical simulation of the flow past a flat plate. In ongoing work, we are exploring the number and location
of pressure sensors that can ensure a good estimate. Furthermore, it should be stressed that the framework is agnostic
to the source of the truth measurements. This aspect is especially important as the framework serves its intended
use in real-time flow control. Ultimately, we seek to replace these numerically-computed pressure measurements with
sampled experimental measurements.

Appendix A: Vortex aggregation procedure

The vortex aggregation procedure used in this work is a modified version of the hybrid vortex sheet/point vortex
model developed by Darakananda and Eldredge [8]. In the hybrid model, the leading and trailing edge shear layers
are each modeled as a vortex sheet rooted near the respective edge. At every time step, circulation from the free
end of a vortex sheet is siphoned into a variable-strength point vortex. To prevent this instantaneous transport of
circulation from adversely affecting the aerodynamic force response, the velocity of the variable-strength point vortex
is adjusted based on an impulse matching principle developed by Wang and Eldredge [23]. The adjustment comes in
the form of a velocity correction, added to the usual Kirchhoff velocity of a vortex element obtained through Biot–
Savart summations. For later description, let us label each of these consumed elements on the sheet as the ‘source’
(with subscript s) and the variable-strength element as the ‘target’ (with subscript t). The velocity correction of the
target element, ∆żt = ∆ẋt + i∆ẏt, written in complex notation for brevity, is

∆żt = ieiα
c

2

(
(p̃s − p̃t)(β? + 1) + (p̃?s − p̃?t )(β? − 1)

β + β?

)
Γ̇

Γt
(A1)

where Γ̇ is the rate of transfer of circulation from the source to the target, Γt the instantaneous target element
strength, ()? denotes complex conjugation, and, for i either s (source) or t (target), the unit impulse (accounting for
the influence of the plate) is

p̃i := Im {z̃i} − iRe
{√

z̃i − 1
√
z̃i + 1

}
and the gradient of the target’s impulse with respect to its position is

β :=
z̃t√

z̃t − 1
√
z̃t + 1

.

In each time step, the strengths of successive source elements are transferred into the target until a threshold on error
(the spurious change to the predicted aerodynamic force on the plate due to the transfer) is reached. When it becomes
impossible to transfer any circulation from the sheet without exceeding the threshold, the target element turns into
a classical constant-strength vortex and the tip of the vortex sheet is converted into a new variable-strength point
vortex, i.e. a new target. The connectivity maintained between elements in the sheet makes it always clear which
vortex element consumes circulation and which one supplies it.

By using unconnected discrete vortex elements instead of connected vortex sheets, we lose the natural ordering
of the vortex elements that was provided by the sheets, and thus, we lack an unambiguous relationship between
vortex elements that can be exploited for aggregating these elements. Instead, we will take the most straightforward
approach and simply test every possible combination of source–target pairs to determine which pairwise transfer will
incur the least error in predicted force. We then perform the transfer on as many pairs as possible while keeping the
accumulated error below a specified threshold, εF . Once we have set an appropriate value for εF , we do the following
at every time step:

1. For every possible source–target pair of vortex elements in the model, use equation (A1) to compute and store
the hypothetical velocity correction to the target required if all of the source’s circulation is transferred into the
target.
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2. Compute the (uncorrected) velocities of all vortex elements and evolve the system forward by one time step.

3. Compute the impulse for each vortex element at this end of this step.

4. For every possible source-target pair of vortex elements in the system, first determine, from the velocity correction
computed in step 1, the hypothetical impulse that the target element would have if it had absorbed all the
circulation from the source element. Subtract from this the actual impulse of the source and target elements,
computed in step 3. This difference, when divided by time step size, is defined as the transfer error, and is a
measure of the spurious force on the plate due to the aggregation.

5. Sort the source–target pairs based on the magnitude of their transfer error.

6. Starting from the pair with the lowest error, transfer circulation between as many pairs of vortex elements as
possible, stopping just before the accumulated error exceeds εF .

This aggregation procedure naturally favors merges between elements of similar significance to force generation. Many
such elements pairs are closely separated, but not all closely separated pairs are merged: for example, two nearby
elements of opposite-signed strength or widely-different velocities may not be merged by these criteria.

Although the procedure listed above contains multiple steps, with pairwise interactions that are usually undesirable,
it also serves to prune a significant number of vortex elements in the system. In practice, the computational savings
of keeping the state’s dimensionality small far outweighs the cost of executing this procedure at every time step. The
cost of a similar procedure was analyzed in detail in [8].
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