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We investigate the e↵ect of hydrodynamic dispersion on convection in porous media by performing
direct numerical simulations (DNS) in a two-dimensional Rayleigh-Darcy domain. Scaling analysis
of the governing equations shows that the dynamics of this system are not only controlled by
the classical Rayleigh-Darcy number based on molecular di↵usion, Ram, and the domain aspect
ratio, but also controlled by two other dimensionless parameters: the dispersive Rayleigh number
Rad = H/↵t and the dispersivity ratio r = ↵l/↵t, where H is the domain height, ↵t and ↵l are the
transverse and longitudinal dispersivities, respectively. For � = Rad/Ram > O(1), the influence
from the mechanical dispersion is minor; for � . 0.02, however, the flow pattern is determined by
Rad while the convective flux is F ⇠ c(Rad) ·Ram for large Ram. Our DNS results also show that
the increase of mechanical dispersion, i.e. decreasing Rad, will coarsen the convective pattern by
increasing the plume spacing. Moreover, the inherent anisotropy of mechanical dispersion breaks
the columnar structure of the mega-plumes at large Ram, if Rad < 5000. This results in a fan-flow
geometry that reduces the convective flux.
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I. INTRODUCTION

Convection in porous media controls mass and energy transfer in many natural and engineered applications [1–4].
This subject has received renewed interest due to its potential impact on geological carbon dioxide (CO2) storage,
which allows large reductions of CO2 emissions from fossil fuel-based electricity generation [5–7]. After the CO2 is
injected into the deep saline aquifers, it dissolves into the brine and increases the brine density. The dissolution of
CO2 eventually forms a stable stratification and ensures secure long-term storage [8, 9].

The rate of CO2 dissolution is limited by mass transfer of dissolved CO2 away from the CO2-brine interface. Di↵usive
mass transport may take millions of years to saturate the brine [10–12]. However, once the di↵usive boundary layer
of dissolved CO2 in brine has grown thick enough, it might become unstable and subsequently, convection sets in and
forms descending CO2-rich plumes. This process greatly increases the CO2 dissolution rate and significantly reduces
the leakage risk of buoyant CO2 into potable aquifers or into the atmosphere [13].

Dynamics of porous media convection can be studied in either a ‘one-sided’ system where convection is driven by a
source of buoyancy on only one boundary, e.g. the solutal convection system [14–20], or a ‘two-sided’ system where
both of top and bottom boundaries actively drive the convection, e.g. the thermal convection system [17, 21–25]. These
two systems share many common characteristics in convective pattern and transport properties, although dynamics in
the former generally evolve over time while there exists a statistically-steady state in the latter [12, 17, 19, 23, 26, 27].
In this study, we focus on the two-sided convective system (Rayleigh-Darcy convection) to perform long-time direct
numerical simulations (DNS) for reliable averaged results.

In the absence of mechanical dispersion, the flow pattern and transport flux of convection in porous media are
generally thought to be controlled by the molecular Rayleigh number,

Ram =
k4⇢gH

µ�Dm
, (1)

where k is the medium permeability, 4⇢ the density change between the fresh and the saturated water, g the
acceleration of gravity, H the domain height, µ the dynamic viscosity of the fluid, � the porosity, and Dm the
molecular di↵usion coe�cient. At large Ram, convection appears in the form of columnar plumes fed continually with
a series of proto-plumes generated from the di↵usive boundary layer [23, 25]. As Ram is increased, the inter-plume
spacing � and the flux F in the quasi-steady convective regime follow specific power-law scalings of Ram, i.e. � ⇠ Ra�↵

m
with the positive exponent ↵  0.5 [17, 23–26, 28, 29], and F ⇡ c · Ram [19, 22, 23, 25–27, 29–34], where c ⇡ 0.0068
for the two-sided system and c ⇡ 0.017 for the one-sided system with fixed CO2-water contact at the top boundary
[19, 23, 26, 29, 30, 35].

Nevertheless, recent bench-top experiments on solutal convection in porous media show that Ram does not control
the convective pattern in typical granular media, because mechanical dispersion is the dominant dissipative mech-
anism [36]. Mechanical dispersion in porous media is due to non-uniformities in the flow that cause mixing of the
solute [37–39]. The mathematical description of hydrodynamic dispersion on the Darcy-scale is a subject of active
investigation [40–42], however, here we consider the commonly used Fickian dispersion tensor [43–50]. In an isotropic
and homogeneous porous medium, this tensor is described by two parameters: the longitudinal and transverse disper-
sivities ↵l and ↵t, respectively. Therefore, the hydrodynamic dispersion tensor in the fixed Cartesian reference frame
can be expressed as

D⇤ = DmI + (↵l � ↵t)
u⇤u⇤

|u⇤| + ↵t|u⇤|I, (2)

where I denotes the identity tensor and the mechanical dispersion scales linearly with the interstitial fluid velocity
u⇤. As long as |u⇤| ⌧ Dm/↵l, D⇤ ⇡ DmI, so that molecular di↵usion dominates over hydrodynamic dispersion; when
|u⇤| � Dm/↵l, however, the mechanical dispersion starts to dominate.

Recent studies by [36, 46–54] indicate that hydrodynamic dispersion significantly a↵ects the flow pattern and mass
transport of convection in porous media under certain conditions. The numerical simulations by [47, 48] show that
hydrodynamic dispersion enhances the convective mixing and greatly reduces the onset time for convection; however,
recent laboratory experiments reveal that the mechanical dispersion coarsens the convective pattern and reduces the
increase of convective flux with increasing permeability k [36, 51]. Particularly, the systematic experiments by [36]
illustrate that adjusting Ram via changing the density di↵erence 4⇢ or the medium permeability k may result in
distinct convective characteristics due to hydrodynamic dispersion. For fixed 4⇢, increasing k (via choosing a larger
glass bead diameter d as k ⇠ d2) raises Ram but enlarges the inter-plume spacing �; for fixed k, however, � is nearly
fixed for increasing 4⇢. Secondly, for fixed 4⇢, the dissolution flux F does not increase linearly with k and is lower
than expected at high k; for fixed k, in contrast, F ⇠ c(k) ·Ram with decreasing prefactor c as k is increased. Despite
this decrease in flux, the vertical velocity, as measured by the speed of the fastest descending fingertip, increases
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approximately linearly with both 4⇢ and k. Some of the above findings contradict the classical predictions made in
the absence of mechanical dispersion.

To understand the e↵ect of dispersion on convection, we perform DNS in a two-dimensional (2D), rectangular,
homogeneous and isotropic Rayleigh-Darcy domain. We aim to identify the dimensionless parameters governing con-
vection in porous media with hydrodynamic dispersion, determine the scaling law for the quasi-steady convective flux,
and quantify the contribution of molecular di↵usion and mechanical dispersion to the hydrodynamic dissipation. As
mentioned earlier, we focus on a two-sided convective system for long-time averaged results of individual simulations,
but the results can be qualitatively applied to the one-sided case due to many common features in convection shared
by these two systems [12, 17, 23, 26, 27].

The remainder of this paper is organized as follows. In the next section, we non-dimensionalize the system in a
specific way so that the parameters controlling the pattern and the flux, respectively, are decoupled, and describe the
numerical method to solve the dimensionless equations. In Sec. III, we present the DNS results in terms of di↵erent
control parameters, including both the di↵usion-dominant and dispersion-dominant limits. In Sec. IV, we analyze how
hydrodynamic dispersion a↵ects the convective pattern and flux, apply our results to recent laboratory experiments
of solutal convection in bead packs, compare our results with previous numerical investigations in [47, 48], and discuss
the limitations of the Fickian dispersion model. Our conclusions are given in Sec. V.

II. PROBLEM FORMATION AND COMPUTATIONAL METHODOLOGY

In previous studies, the dispersivity, ↵l or ↵t, and the molecular di↵usivity Dm are combined to define the charac-
teristic length and time scales or the Rayleigh number [47, 48]. In this work, however, we rescale the system using
the domain height H, the buoyancy velocity U = k4⇢g/(µ�), and the convective timescale Tc = H/U . As will be
discussed in Sec. IV C, di↵erent scales for nondimensionalization may lead to ‘opposite’ conclusions. However, it will
be shown below that the scales chosen in this study allow us to decouple the parameters controlling the flow pattern
and the flux which simplifies the discussion. Based on these scales, we obtain the dimensionless equations

@C

@t
+ u · rC = r · (DrC), (3a)

u = �rp � Cez, (3b)

r · u = 0, (3c)

where C, u = (u, w), and p are the dimensionless forms of concentration, velocity, and pressure, respectively, and ez

is a unit vector in z (upward) direction. The dimensionless hydrodynamic dispersion tensor is then given by

D = Ra�1
m I + Ra�1

d


(r � 1)

uu

|u| + |u|I
�

, (4)

and characterized by the molecular Rayleigh number Ram = UH/Dm defined in Eq. (1) and two additional parameters,

Rad =
UH

Dt
=

UH

↵tU
=

H

↵t
and r =

↵l

↵t
, (5a,b)

which are referred to as dispersive Rayleigh number and dispersivity ratio, respectively. Here, Dt = ↵tU is the
transverse dispersion coe�cient, and the definition of the dispersive Rayleigh number is analogous to the definition
of Ram or the Peclét number based on the longitudinal/transverse dispersion coe�cient [55]. Moreover, from the
definition, the dissipation by mechanical dispersion increases with decreasing Rad. This allows us to easily recover
the case without mechanical dispersion and to study the limit of high-Ram convection.

It is worth noting that the dimensionless hydrodynamic dispersion tensor can also be written as

D =
1

Rah

⇢
I

1 + 1/�
+

1

1 + �


(r � 1)

uu

|u| + |u|I
��

(6)

or

D =
1

Ram

⇢
I +

1

�


(r � 1)

uu

|u| + |u|I
��

, (7)

where

Rah =
UH

Dm + Dt
=

1
1

Ram
+ 1

Rad

and � =
Dm

Dt
=

Rad

Ram
(8a,b)
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represent the e↵ective Rayleigh number based on hydrodynamic dispersion and the ratio of molecular di↵usion to
mechanical dispersion, respectively. In addition, 1/� = U↵t/Dm can also be interpreted as a micro-level Peclét
number based on a pore-scale length, i.e. the dispersivity ↵t ⇠ d/r. Therefore, di↵usion is the dominant dissipative
mechanism for � � 1, so that Rah ⇡ Ram; similarly, mechanical dispersion is the dominant dissipative mechanism
for � ⌧ 1 and Rah ⇡ Rad.

The flow is assumed to be periodic laterally with a impermeable top and bottom boundaries. Solute concentration
along the top and bottom boundaries is unity and null, respectively. Hence, the boundary conditions at the top and
the bottom are given by

C|z=1 = 1 and w|z=1 = 0; C|z=0 = w|z=0 = 0. (9)

Note that the problem posed by (3) and (9) is formally identical to the two-sided thermal convection problem in
which the domain is heated from below and cooled from above. Here, (3) and (9) are solved numerically using
a Fourier-Chebyshev-tau pseudospectral solver developed in [25, 29], the temporal discretization is achieved using
a three-step semi-implicit Runge-Kutta scheme [56], and the numerical scheme is parallelized using the Message
Passing Interface (MPI). In order to obtain reliable averaged results, the DNS are performed up to O(103) convective
time units. The dispersivity ratio r can vary from 1 to 30 in various field sites [57], and laboratory experiments and
numerical simulations reveal that the transverse dispersivity is usually an order of magnitude less than the longitudinal
dispersivity in advection dominated systems [58–62]. Thus, we set r = 10 in most simulations, but also explore how r
a↵ects both the convective pattern and the flux when mechanical dispersion dominates the hydrodynamic dispersion
at Rad = 1000.

To quantify the flow, we measure the convective flux F at the top wall,

F =

⌧
@C

@z
+

Ram

Rad
|u|@C

@z

�����
z=1

= Fm + Fd, (10)

where the angle bracket and the overbar denote the long-time and the horizontal averages, respectively, the first term
on the right side of (10) represents the flux at the boundary via pure molecular di↵usion Fm, and the second term
represents the flux via mechanical dispersion Fd. We also measure the inter-plume spacing � by time-averaging the
dominant Fourier mode number in the interior, the mean horizontal velocity at the top wall, ũ = h|u|i|z=1, the mean
vertical velocity in the interior, w̃ = h|w|i|z= 1

2
, and the magnitude of the time-averaged w extremum value in the

interior, wm = hmax(|w|z= 1
2
)i. In our study, these averaged results are all from individual simulations.

III. RESULTS

To explore the e↵ect of hydrodynamic dispersion on convection, numerical simulations and laboratory experiments
can be conducted in di↵erent combinations of parameters, e.g. Rah and �, or density di↵erence 4⇢ and grain size d.
In this study, we perform DNS in terms of fixed (Ram, r), (Rad, r), and (Ram, Rad), respectively. It will be shown
below for fixed r, the parameters Ram and Rad predominantly control the flux and the pattern, respectively, in the
dispersion dominated regime. However, in experiments it is di�cult to change Rad with fixed Ram by varying 4⇢
and d, since the variation of grain size changes both Ram and Rad simultaneously.

A. Fixed Ram and r

Figures 1 and 2 show the variation of the convective flow pattern and the corresponding averaged DNS results as
a function of Rad for Ram = 20000 and r = 10. When the smallest di↵usive length scale 1/Ram is much larger than
the pore scale of the medium d/H, i.e. Rad � rRam as ↵t ⇡ d/r [38, 63], the molecular di↵usion dominates the
hydrodynamics dispersion [19, 23, 36]. Our DNS results reveal that only for � ⌘ Rad/Ram & 105, the convection
with mechanical dispersion converges to the classical columnar flow (Figs. 1f and 2).

When O(1) < � < 105, the relatively weak mechanical dispersion slightly increases the plume width and enhances
the convective transport, but the flow still retains the columnar structure (Figs. 1e and 2a&b). For � < O(1), however,
the mechanical dispersion starts to apparently a↵ect the convective pattern and flux: the convection transitions to a
fan flow with laterally expanding mega-plumes along the vertical flow direction (Fig. 1b–d), and the convective flux
is reduced to approximately 50% of the high-Rad value at � = 0.05 (Fig. 2a).

Increasing dispersion thickens the di↵usive boundary layer (Fig. 1a), smooths the small-scale plumes near the walls,
and stabilizes the flow (Fig. 1b–f). Eventually, the convection becomes steady at Rad = 100 (Fig. 1b) and the flux is
again increased for �  0.05 due to the large magnitude of the e↵ective di↵usion coe�cient, (Ram/Rad)|u|, induced
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FIG. 1. Time-averaged horizontal-mean concentration profile hCi and snapshots of the concentration field C from DNS at
Ram = 20000 and r = 10 for di↵erent Rad. The domain aspect ratio is L = 5. In (a), only half of hCi is shown due to
its antisymmetry about the mid-plane, and the z values on the horizontal axis are non-uniformly spaced to clearly show the
structure near the wall. Increasing mechanical disperison (decreasing Rad) thickens the di↵usive boundary layer, coarsens the
flow pattern and stabilizes the flow. Moreover, the convection transitions to a fan-flow structure at Rad < 5000.

by the mechanical dispersion (Fig. 2a). Moreover, it is also seen from Fig. 2(b) and (c) that hydrodynamic dispersion
coarsens the flow pattern, given by �, and the mean buoyancy velocities at the top and in the interior, ũ, w̃ and wm,
roughly follow the same trend as the convective flux. It should be noted that the w extremum value, wm, becomes
nearly constant for 0.025  �  0.25 (Fig. 2c).

B. Fixed Rad and r

Figures 3 and 4 show the convective pattern and the corresponding averaged DNS results as a function of Ram

for Rad = 1000 and r = 10. The convection basically remains a fan-flow structure at Rad = 1000 as Ram ! 1
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FIG. 2. Averaged DNS results of convection at Ram = 20000 and r = 10 for di↵erent Rad. The domain aspect ratio is L = 5.
The dashed lines denote the results in the absence of mechanical dispersion and the dashed-dot line separates the fan-flow
and the columnar-flow regions. Relatively weak mechanical dispersion slightly enhances the convective transport. However, as
convection transitions to a fan-flow structure, the transport flux is significantly reduced. Nevertheless, in the strong-dispersion
limit, the flow is stabilized and the flux is increased again due to the large magnitude of the e↵ective di↵usion coe�cient.
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FIG. 3. Time-averaged horizontal-mean concentration profile hCi and snapshots of the concentration field C from DNS at
Rad = 1000 and r = 10 for di↵erent Ram. For Ram  20000, the domain aspect ratio is L = 5; while for Ram > 20000, DNS
are performed in a small unit L = 0.5 where there only exists a single rising and descending mega-plume but the turbulent
convection still sustains itself. In (a), only half of hCi is shown due to its antisymmetry about the mid-plane, and the z values
on the horizontal axis are non-uniformly spaced to clearly show the structure near the wall. For fixed Rad = 1000 and r = 10,
the averaged and instantaneous concentration fields become nearly invariant at Ram & 50000 (i.e. � . 0.02).
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FIG. 4. Averaged DNS results of convection at Rad = 1000 and r = 10 for di↵erent Ram. L is as in Fig. 3. For fixed Rad and
r, the concentration field C, the inter-plume spacing � and the buoyancy flow velocity u become invariant at su�ciently large
Ram. Hence, as Ram ! 1 the flux by molecular di↵usion, Fm = h@zCi|z=1, becomes constant, while the flux by mechanical
dispersion, Fd = hRam/Rad |u|@zCi|z=1, increases linearly with Ram.

(Fig. 3b–f). In particular, the inter-plume spacing � is nearly invariant when � . 0.2 (Fig. 4b); the mean velocities ũ
and w̃ are roughly unchanged after � . 0.05 (Fig. 4c); and the time-averaged horizontal-mean concentration profile
hCi becomes almost fixed for � . 0.02 (Fig. 3a), so that at the top and the bottom, the flux due to molecular di↵usion
(i.e. Fm) levels o↵ (Fig. 4a). In short, at su�ciently large Ram, the flow pattern and the averaged system quantities
(i.e. hCi, �, ũ, w̃ and wm) are independent of Ram.

Actually, as Ram ! 1, the hydrodynamic dispersion tensor (4) reduces to

D ! Ra�1
d


(r � 1)

uu

|u| + |u|I
�

, (11)

so that Rad becomes the only parameter controlling the dynamics of the system for fixed r. Thus, at large Ram the
concentration field C and the buoyancy velocity u are determined solely by the dispersive Rayleigh number Rad, as
confirmed by our DNS data. Once C and u become invariant in the limit of Ram ! 1, Fm ⇠ c1 and Fd ⇠ c2 · Ram

with the constants c1 and c2 determined by Rad, as shown in Fig. 4(a).

C. Fixed Ram and Rad

In this section we explore how the dispersivity ratio a↵ects the convective pattern and flux at Ram = 20000 and
Rad = 1000, corresponding to � ⇠ 0.05 where the reduction of the flux by dispersion is strongest (Fig. 2a) . In
the fixed domain, constant Rad implies invariant transverse dispersivity, so increasing the dispersivity ratio r only
strengthens the longitudinal dispersivity.

As in Fig. 3(a) where Rad is also fixed, when mechanical dispersion is the dominant dissipative mechanism varying
Ram or r only slightly changes the boundary-layer thickness (Fig. 5a), which is predominantly controlled by the
strength of transverse dispersivity (see detailed analysis in Sec. IV A). At r = 1, the hydrodynamic dispersion tensor
D is heterogeneous but isotropic, the high-Ram convection remains a columnar structure (Fig. 5b), and the convective
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FIG. 5. Time-averaged horizontal-mean concentration profile hCi and snapshots of the concentration field C from DNS at
Ram = 20000 and Rad = 1000 for di↵erent r. The domain aspect ratio is L = 5. In (a), only half of hCi is shown due to
its antisymmetry about the mid-plane, and the z values on the horizontal axis are non-uniformly spaced to clearly show the
structure near the wall. When mechanical dispersion is the dominant dissipative mechanism at Rad = 1000, i.e. � ⌧ 1, the
high-Ram convection in porous media remains a columnar structure at r = 1, but transitions to a fan-flow structure at r > 1.

flux is increased compared with that in the absence of mechanical dispersion (Fig. 6a). After adding isotropic velocity-
dependent mechanical dispersion, the di↵usion boundary layer is thickened so that more saturated water is advected
downward/upward by columnar flows from the upper/lower layer. For r > 1, however, D is both heterogeneous and
anisotropic, and the convection transitions to a fan-flow structure (Fig. 5c-e). Increasing r monotonically enlarges the
inter-plume spacing � (Fig. 6b) and decreases the convective flux and buoyancy velocity (Fig. 6a,c). Finally, for r � 10
the dynamics of the system become nearly invariant. Similar results have been observed in the one-sided convection
problem [36].

D. Pattern formation and transport flux in the (Ram, Rad) parameter space

In advection dominated systems, the dispersivity ratio, r ⇠ O(10), is generally fixed [58–62]. A natural question
concerns how the mechanical dispersion a↵ects convection in the (Ram, Rad) parameter space at r = 10. For � > O(1),
the influence from the mechanical dispersion is minor, so that both the convective pattern and flux are mostly
controlled by Ram; for 0.02 . � < O(1), both the molecular di↵usion and the mechanical dispersion are important
to convection, e.g. they equally a↵ect the flux at � ⇡ 0.05; and for � < 0.02, the mechanical dispersion dominates
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ũ

w̃
wm

0.2

0.8

0

200

 

 

F
Fm

Fd

F

�

ve
lo
ci
ty

(a)

(b)

(c)

r

FIG. 6. Averaged DNS results of convection at Ram = 20000 and Rad = 1000 for di↵erent r. The domain aspect ratio is L = 5.
In the absence of mechanical dispersion, the flux F ⇡ 138 at Ram = 20000, so the mass transport is enhanced after adding
isotropic, velocity-dependent dispersion (r = 1). Increasing r enlarges the inter-plume spacing and decreases the convective
flux and buoyancy velocity. For r � 10, the averaged results become nearly invariant.

the hydrodynamic dispersion: the flow pattern is determined by Rad, e.g. C = C(Rad), � = �(Rad) and u = u(Rad),
while the flux is predominantly controlled by Ram, i.e. F = Fm + Fd ⇠ c1(Rad) + c2(Rad) · Ram ⇠ c2(Rad) · Ram.
Since � represents the ratio of molecular di↵usion coe�cient to transverse dispersion coe�cient, in this study it is used
to characterize when the mechanical dispersion becomes the dominant dissipative mechanism at given Ram or Rad.
However, the parameter � couples both the media and fluid properties, and determines neither the flow pattern nor
the convective flux in the macro level. Our DNS results and analysis indicate that in dispersion-dominated regime (i.e.
� < 0.02), Rad and Ram are more e↵ective parameters controlling the pattern and the flux, respectively, throughout
the domain.

Determination of the functions c1(Rad) and c2(Rad) requires extensive numerical simulations at Ram > 100 · Rad,
where mechanical dispersion dominates the dissipation (� ⌧ 1). Here we only show the variations of c1 and c2 as
a function of Rad for Rad  1000 due to the expensive computations (Fig. 7). Our study above shows that the
pattern of convection is determined by Rad for � ⌧ 1. Increasing dispersion (i.e. decreasing Rad) thickens the
di↵usive boundary layer and decreases the concentration gradient at the wall, thereby monotonically decreasing c1,
i.e. c1 ⇠ Ra0.74

d , as shown in Fig. 7(a). Moreover, for Rad  1000 the prefactor c2 increases with decreasing Rad due
to the large magnitude of the e↵ective di↵usion coe�cient (Ram/Rad)|u|, i.e. c2 ⇠ Ra�0.51

d , as shown in Fig. 7(b).
We note that these scalings may not hold at large Rad, where the determination of c1(Rad) and c2(Rad) requires
more systematic numerical simulations at extremely high Ram (to ensure � ⌧ 1).

IV. DISCUSSION

A. E↵ects of dispersion on convective pattern and flux: mechanisms

Our DNS results and analysis above reveal that at su�ciently large Ram, the convective pattern is determined
by the dispersive Rayleigh number Rad: the convection appears in the form of columnar flow at Rad � 5000 and
then transitions to a fan flow at Rad < 5000. This fan-flow structure here is due to the inherent anisotropy of
mechanical dispersion. As shown in Fig. 8, near the top and the bottom walls the flow between the neighboring
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FIG. 8. Schematics showing the distribution of the hydrodynamic dispersion tensor in the form of ellipses. (a): columnar flow
in the absence of mechanical dispersion; (b): fan flow with mechanical dispersion. The arrows denote flow direction. In (a),
D⇤ = DmI is homogeneous and isotropic; in (b), the anisotropy of the hydrodynamic dispersion leads to an asymmetry between
the rising and the descending mega-plumes near the walls.

plumes is dominantly horizontal, so the inter-plume spacing is set by the lateral dispersion due to horizontal flow,
D⇤

xx,w ⇡ Dm+↵lu⇤
w, and the thickness of the di↵usive boundary layer is significantly a↵ected by the vertical dispersion

due to horizontal flow, D⇤
xz,w ⇡ Dm + ↵tu⇤

w, where u⇤
w is the horizontal velocity at the top/bottom wall and all the

variables with superscript ‘⇤’ are in dimensional form. At the roots of the plumes, however, the flow is dominantly
vertical, so the plume width is controlled by the lateral dispersion due to vertical flow, D⇤

zx,r ⇡ Dm +↵tw⇤
r , where w⇤

r
is the vertical velocity at the plume roots. The mass conservation of the incompressible flow requires u⇤

w ⇡ w⇤
r near

the wall. Hence, in advection dominated systems the inherent anisotropy of the mechanical dispersion, i.e. ↵l � ↵t

or r � 1, leads to D⇤
xx,w � D⇤

zx,r, and therefore the inter-plume spacing increases faster with dispersion than the
plume width. This asymmetry results in the fan-flow structure and reduces the transport e�ciency.

Below we show how the hydrodynamic dispersion a↵ects the boundary-layer thickness and the convective flux using
scaling analysis. In the absence of mechanical dispersion, the balance between advection and di↵usion across the
near-wall region yields the dimensional boundary-layer thickness

✏⇤ ⇡ Dm

w⇤ =
U

w⇤ · Dm

U
=

1

w
· H

Ram
⇠ H

Ram
, (12)

since the dimensionless vertical buoyancy velocity w converges to a constant value at su�ciently large Ram [23]. And
the dimensional convective flux transported through the upper and lower boundary layers is

F ⇤ ⇡ Dm
4C

✏⇤
⇡ w⇤4C, (13)

where 4C is the concentration di↵erence between the fresh water and the saturated water. As the flux by pure
molecular di↵usion is F ⇤

m ⇡ Dm4C/H, the dimensionless convective flux (i.e. the ratio of the transport in the
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FIG. 9. Variations of control parameters Ram and Rad as a function of (a) grain size d and (b) density di↵erence 4⇢ in
laboratory experiments. In (a), 4⇢ = 9.3 kg/m3; in (b), d = 3 mm. The dashed-dot lines separate di↵erent regimes and the
dots denote the experiments in [36] in terms of Ram and Rad. In regime I, � � 10, Rah ⇠ Ram, and molecular di↵usion
dominates the dissipation; in regime II, 0.02 < � < 10; and in regime III, �  0.02, Rah ⇠ Rad, and mechanical dispersion
dominates the dissipation. In experiments, varying d changes both Ram and Rad, while varying 4⇢ only changes Ram.
Moreover, most of the experiments in [36] are in the dispersion-dominant regime.

presence of convective motion to the di↵usive transport in the absence of fluid motion) can be written as

F =
F ⇤

F ⇤
m

⇡ w⇤H

Dm
=

w⇤

U
· UH

Dm
= wRam ⇠ Ram, (14)

which has been verified by many numerical studies mentioned in the introduction section.
After adding mechanical dispersion, we can replace the molecular di↵usivity Dm with the e↵ective hydrodynamic

dispersivity D⇤
xz,w ⇡ Dm + ↵tu⇤

w and rewrite Eq. (12) as

✏⇤ ⇡
D⇤

xz,w

w⇤ ⇡ 1

w
· H

Ram
+ ↵t =

1

w
· H

Ram
+

H

Rad
. (15)

Eq. (12) is recovered as long as the molecular di↵usion dominates the dissipation (e.g. Rad � Ram). Nevertheless,
when the dispersion becomes dominant, the dimensionless boundary-layer thickness

✏ =
✏⇤

H
⇡ 1

Rad
. (16)

Therefore, increasing dispersivity thickens the di↵usive boundary layer. However, the form of the convective flux in
Eq. (13) is not changed, because the reduction of flux due to the increment of boundary-layer thickness is made up by
the simultaneous increment of e↵ective di↵usion coe�cient. Since the buoyancy velocity is only determined by Rad

as Ram ! 1 (Figs. 2c and 4c), Eq. (14) becomes

F ⇡ wRam ⇠ c(Rad) · Ram. (17)

Namely, the convective flux is predominantly controlled by Ram, but the prefactor is determined by Rad.

B. Application for recent laboratory experiments of solutal convection in bead packs

As described in the introduction section, the laboratory experiments on (one-sided) solutal convection in porous
media by [36] indicate that adjusting Ram via changing the density di↵erence 4⇢ or the grain size d may result
in distinct convective characteristics due to hydrodynamic dispersion. In this section, we apply above DNS results
and analysis to those experiments. Although our DNS are performed in the two-sided system, they may provide
qualitative predictions for the one-sided case due to many common features in convection shared by these two systems
[12, 17, 23, 26, 27].

In granular media, the mechanical dispersion is proportional to grain size, ↵l ⇠ d, so that the appropriate dispersive
Rayleigh number is Rad ⇡ rH/d [38, 63]. In experiments of [36], increasing d from 0.8 mm to 4 mm simultaneously
increases Ram from 1.4 · 104 to 5.0 · 105 (4⇢ = 9.3 kg/m3) but decreases Rad from 3750 to 750 (H = 30 cm and
assuming r = 10), thereby reducing � from 0.3 to 1.5·10�3 (Fig. 9a). As shown in Fig. 9, most of the experiments
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in [36] lie in the dispersion-dominant regime, so that the convective pattern is determined by the dispersive Rayleigh
number, i.e. C = C(Rad), � = �(Rad) and u = u(Rad). Therefore, increasing the grain size d at fixed 4⇢ intensifies
the mechanical dispersion and monotonically coarsens the convective pattern, even if Ram increases as well. On the
other hand, varying 4⇢ at fixed d (or k) only changes Ram and does not a↵ect the flow pattern set by Rad (Fig. 9b).

Moreover, for fixed d, the prefactor c2(Rad) is constant so that the convective flux, F ⇠ c2 · Ram, increases linearly
with 4⇢; while for fixed 4⇢, F is lower than expected at higher d since the flow pattern transitions from columnar
flow to fan flow as Rad declines (Fig. 2a). However, this reduction in F is accompanied only by a slight reduction
in wm (Fig. 2c), which is consistent with the experimental observation that the speed of the fastest fingers increases
approximately linearly with both 4⇢ and k [36, 51].

C. Comparison with previous numerical simulations

As mentioned in the introduction section, previous investigations of [47, 48], utilizing the same Fickian dispersion
model, reveal that hydrodynamic dispersion greatly reduces the onset time for convection and enhances the convective
mixing. This seems to ‘contradict’ our numerical simulation results, which indicate that the hydrodynamic dispersion
may change the flow pattern and significantly reduce the convective flux (Figs. 1 & 2). Below we show that this
discrepancy is mainly due to di↵erent non-dimensionalizations and their interpretation. It should be noted that in
those studies the dispersivity and buoyancy velocity are defined di↵erently by scaling the porosity.

In [47], the longitudinal dispersivity ↵l is introduced to characterize the timescale T̃ = (Dm+↵lU)/U2. For stronger
dispersion, i.e. increasing ↵l, the timescale T̃ is simultaneously increased, thereby resulting in a smaller dimensionless
time t̃ = t⇤/T̃ (where t⇤ is the dimensional time). Thus, as the dispersion is increased, the onset time, evaluated using
t̃, can be significantly reduced at fixed molecular Rayleigh number Ram and dispersivity ratio r, due to the increase
of T̃ . How hydrodynamic dispersion a↵ects the onset of convection is beyond the scope of this contribution, but it is
necessary to use the same characterize scales for comparison.

In [48], the molecular di↵usivity Dm and the longitudinal dispersivity ↵l are combined to define the dimensionless
parameters, namely,

R̃a =
UH

Dm + ↵lU
, S̃ =

↵lU

Dm + ↵lU
, ↵̃ =

↵t

↵l
, (18)

where R̃a, S̃ and ↵̃ are, respectively, the e↵ective Rayleigh number, the dispersion strength and the dispersivity ratio.
Hence, these parameters are related to our work via

Ram =
R̃a

1 � S̃
, Rad =

R̃a

↵̃S̃
, r =

1

↵̃
. (19)

The range of parameters for numerical simulations in [48] is shown in table I. For most of those simulations, the
ratio of molecular di↵usion to mechanical dispersion � > 1, so that the mechanical dispersion is relatively weak. The
simulation results in [48] reveal that with increasing S̃ from 0 to 0.7 at R̃a = 500 and ↵̃ = 0.2, the dispersion enhances
the mixing and reduces the onset of convection (see in particular their Figs. 5–10).

Although we have shown that the relatively weak mechanical dispersion slightly enhances the convective transport
(Fig. 2a), in [48] the increment of flux and the reduction of onset time are because the corresponding molecular
Rayleigh number Ram, which controls the convective flux, increases simultaneously with S̃ from 500 to 1667 (table I).
Moreover, based on their simulation results at S̃ = 0.7 and R̃a = 500 for ↵̃ = 0.1, 0.2, 0.5 & 1, it is concluded in [48]
that the dispersivity ratio has a very weak impact on the convective pattern and flux (see in particular their Figs.
11–13), which ‘contradicts’ our DNS results in Sec. III C.

This discrepancy is actually due to di↵erent ranges of parameters: the numerical simulations in [48] generally focus
on the moderate-Ram and weak-dispersion regime, while our DNS results indicate that at high Ram and for strong
mechanical dispersion (e.g. Ram = 20000 and Rad = 1000), the dispersivity ratio significantly a↵ects both the flow
pattern and the convective flux.

D. Non-Fickian dispersion

The DNS and analysis presented here are performed in the framework of the classical Fickian dispersion model.
This relatively simple model can treat homogeneous porous media under certain conditions, and is therefore used in
many studies of porous media convection [46–49]. In this case, mechanical dispersion can be described by the standard
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R̃a S̃ ↵̃ Ram Rad r �
1000 0.5 0.5 2000 4000 2 2

500 0 0.2 500 1 5 1
0.35 769 7143 9.3
0.7 1667 3571 2.1

500 0.7 0.1 1667 7143 10 4.3
0.2 3571 5 2.1
0.5 1429 2 0.86
1 714 1 0.43

TABLE I. Range of parameters for numerical simulations in [48].

dispersion tensor, given by (4). This model ignores non-Fickian anomalous behavior, such as the scale dependence
and solute tailing, which is commonly observed in solute transport experiments and field observations [40].

However, mathematical formulations that capture such anomalous behavior are typically particle based and hence
not amendable to the DNS approach employed in most convection studies. We are not aware of any attempts to
model convection in porous media with anomalous dispersion, in fact to date most numerical studies ignore dispersion
entirely. Therefore, even the e↵ect of the Fickian model on the dynamics of convection in porous media are poorly
understood.

Hence, this study explores the first-order e↵ect of hydrodynamic dispersion on the convective transport in porous
media. Above we have argued that simulations based on the standard model of mechanical dispersion give results that
are consistent with experiments performed in homogeneous bead packs [15, 36]. It appears that the key characteristics
of mechanical dispersion required to explain these experimental data are its velocity and grain size dependence.
Anomalous behavior is not evident in these experimental observations, which may be due to the relative homogeneity
of the bead packs, the constant geometry of the experiments and the quasi-steady convective dynamics.

V. CONCLUSIONS

We study the e↵ect of dispersion on convective mixing in the 2D Rayleigh-Darcy scenario, where a statistical steady
state can be obtained. Our DNS results and analysis reveal that the dynamics of this system in a su�ciently wide
domain are controlled by three parameters: the molecular Rayleigh number, Ram, the dispersive Rayleigh number,
Rad, and the dispersivity ratio, r. If mechanical dispersion is the dominant dissipative mechanism, for fixed r the
dimensionless convective flux is predominantly controlled by Ram, while the convective pattern is determined by
Rad. This implies that convective flux and pattern are decoupled during porous media convection with dispersion.
Moreover, when mechanical dispersion dominates the hydrodynamic dispersion, for fixed (Ram, Rad) both the flow
pattern and the flux are significantly a↵ected by r: the high-Ram convection remains a columnar structure at r = 1,
but transitions to a fan-flow structure at r � 1 which reduces the convective flux.

Here we confirm that the linear flux scaling, F ⇠ Ram, also holds in the presence of hydrodynamic dispersion.
However, this is only true if Rad remains constant (e.g. same media property), since Rad determines the prefactor
of the scaling law. In practice, Ram and Rad commonly change together, because changes in grain size a↵ect both
permeability and dispersivity. This makes it di�cult to observe the linear flux scaling in bead packs, where the flux
does not increase linearly with permeability.

More specifically our simulations in advection dominated systems (r = 10) show the following:

• For � = Rad/Ram > O(1), molecular di↵usion dominates the hydrodynamic dispersion, although relatively
weak mechanical dispersion slightly enhances the convective transport.

• For 0.02 . � < O(1), both the molecular di↵usion and the mechanical dispersion significantly a↵ect the
convective pattern and flux.

• For � < 0.02, mechanical dispersion dominates the hydrodynamic dispersion: the flow pattern is determined
by Rad, e.g. C = C(Rad), � = �(Rad) and u = u(Rad), while the flux is predominantly controlled by Ram, e.g.
F ⇠ c(Rad) · Ram.

• In the limit of Ram ! 1, the flow still exhibits the columnar structure for Rad > 5000; however, for Rad < 5000
the convection transitions to the fan-flow structure, due to the inherent anisotropy of mechanical dispersion,
which reduces the convective flux.
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We note that the above criterions may vary quantitatively in other (e.g. the one-sided) convective systems, and many
characteristics shown here are unlikely to be observed in the Hele-Shaw experiments, due to the absence of transverse
mechanical dispersion [64].

ACKNOWLEDGMENTS

This work was supported as part of the Center for Frontiers in Subsurface Energy Security, an Energy Frontier
Research Center funded by the U.S. Department of Energy, O�ce of Science, Basic Energy Sciences under Award
# DE-SC0001114. B.W. acknowledges the Peter O’Donnell, Jr. Postdoctoral Fellowship through the Institute of
Computational and Engineering and Science at the University of Texas at Austin.

[1] C. W. Horton and F. T. Rogers, “Convection currents in a porous medium.” J. Appl. Phys. 16, 367–370 (1945).
[2] E. R. Lapwood, “Convection of a fluid in a porous medium.” Proc. Camb. Phil. Soc. 44, 508–521 (1948).
[3] O. M. Phillips, Geological Fluid Dynamics: Sub-surface Flow and Reactions (Cambridge University Press, 2009).
[4] D. A. Nield and A. Bejan, Convection in Porous Media, 3rd ed. (Springer, New York, 2006).
[5] F.M. Orr, “Onshore geologic storage of CO2,” Science 325, 1656–1658 (2009).
[6] K. Michael, A. Golab, V. Shulakova, J. Ennis-King, G. Allinson, S. Sharma, and T. Aiken, “Geological storage of CO2

in saline aquifers-A review of the experience from existing storage operations,” International Journal of Greenhouse Gas
Control 4, 659–667 (2010).

[7] M. L. Szulczewski, C. W. MacMinn, H. J. Herzog, and R. Juanes, “Lifetime of carbon capture and storage as a climate-
change mitigation technology,” PNAS 109, 5185–5189 (2012).

[8] G. J. Weir, S. P. White, and W. M. Kissling, “Reservoir storage and containment of greenhouse gases, II: Vapour-entry
pressures,” Transport in Porous Media 23, 61–82 (1996).

[9] J. P. Ennis-King and L. Paterson, “Role of convective mixing in the long-term storage of carbon dioxide in deep saline
formations.” SPE Journal 10, 349–356 (2005).

[10] K.J. Sathaye, M.A. Hesse, M. Cassidy, and D.F. Stockli, “Constraints on the magnitude and rate of CO2 dissolution at
bravo dome natural gas field.” PNAS 111, 15332–15337 (2014).

[11] D. Akhbari and M. A. Hesse, “Causes of underpressure in natural CO2 reservoirs and implications for geological storage.”
Geology 45, 47–50 (2017).

[12] B. Wen, D. Akhbari, L. Zhang, and M. A. Hesse, “Convective carbon dioxide dissolution in a closed porous medium at
low pressure,” J. Fluid Mech. 854, 56–87 (2018).

[13] J. J. Roberts, R. A. Wood, and R. S. Haszeldine, “Assessing the health risks of natural CO2 seeps in Italy,” PNAS 108,
16545–16548 (2011).

[14] A. Riaz, M. Hesse, H. A. Tchelepi, and F. M. Orr Jr, “Onset of convection in a gravitationally unstable di↵usive boundary
layer in porous media.” J. Fluid Mech. 548, 87–111 (2006).

[15] J. A. Neufeld, M. A. Hesse, A. Riaz, M. A. Hallworth, H. A. Tchelepi, and H. E. Huppert, “Convective dissolution of
carbon dioxide in saline aquifers.” Geophys. Res. Lett. 37, L22404 (2010).

[16] S. Backhaus, K. Turitsyn, and R. E. Ecke, “Convective instability and mass transport of di↵usion layers in a Hele-Shaw
geometry.” Phys. Rev. Lett. 106, 104501 (2011).

[17] D. R. Hewitt, J. A. Neufeld, and J. R. Lister, “Stability of columnar convection in a porous medium.” J. Fluid Mech.
737, 205–231 (2013).

[18] M.L. Szulczewski, M.A. Hesse, and R. Juanes, “Carbon dioxide dissolution in structural and stratigraphic traps,” J. Fluid
Mech. 736, 287–315 (2013).

[19] A. C. Slim, “Solutal-convection regimes in a two-dimensional porous medium.” J. Fluid Mech. 741, 461–491 (2014).
[20] Z. Shi, B. Wen, M.A. Hesse, T.T. Tsotsis, and K. Jessen, “Measurement and modeling of CO2 mass transfer in brine at

reservoir conditions,” Adv. Water Resour. 113, 100–111 (2018).
[21] M. D. Graham and P. H. Steen, “Strongly interacting traveling waves and quasiperiodic dynamics in porous medium

convection.” Physica D 54, 331–350 (1992).
[22] J. Otero, L. A. Dontcheva, H. Johnston, R. A. Worthing, A. Kurganov, G. Petrova, and C. R. Doering, “High-Rayleigh-

number convection in a fluid-saturated porous layer.” J. Fluid Mech. 500, 263–281 (2004).
[23] D. R. Hewitt, J. A. Neufeld, and J. R. Lister, “Ultimate regime of high Rayleigh number convection in a porous medium.”

Phys. Rev. Lett. 108, 224503 (2012).
[24] D. R. Hewitt, J. A. Neufeld, and J. R. Lister, “High Rayleigh number convection in a three-dimensional porous medium.”

J. Fluid Mech. 748, 879–895 (2014).
[25] B. Wen, L. T. Corson, and G. P. Chini, “Structure and stability of steady porous medium convection at large Rayleigh

number.” J. Fluid Mech. 772, 197–224 (2015).
[26] M. D. Paoli, F. Zonta, and A. Soldati, “Influence of anisotropic permeability on convection in porous media: Implications

for geological CO2 sequestration,” Phys. Fluids 28, 056601 (2016).



15

[27] M. D. Paoli, F. Zonta, and A. Soldati, “Dissolution in anisotropic porous media: Modelling convection regimes from onset
to shutdown,” Phys. Fluids 29, 026601 (2017).

[28] D. R. Hewitt and J. R. Lister, “Stability of three-dimensional columnar convection in a porous medium.” J. Fluid Mech.
829, 89–111 (2017).

[29] B. Wen and G. P. Chini, “Inclined porous medium convection at large Rayleigh number,” J. Fluid Mech. 837, 670–702
(2018).

[30] G. S.H. Pau, J. B. Bell, K. Pruess, A. S. Almgren, M. J. Lijewski, and K. Zhang, “High-resolution simulation and
characterization of density-driven flow in CO2 storage in saline aquifers.” Adv. Water Resour. 33, 443455 (2010).

[31] J.J. Hidalgo, J. Fe, L. Cueto-Felgueroso, and R. Juanes, “Scaling of Convective Mixing in Porous Media,” Phys. Rev.
Lett. 109, 264503 (2012).

[32] B. Wen, N. Dianati, E. Lunasin, G. P. Chini, and C. R. Doering, “New upper bounds and reduced dynamical modeling
for Rayleigh-Bénard convection in a fluid saturated porous layer,” Communications in Nonlinear Science and Numerical
Simulation 17, 2191–2199 (2012).

[33] B. Wen, G. P. Chini, N. Dianati, and C. R. Doering, “Computational approaches to aspect-ratio-dependent upper bounds
and heat flux in porous medium convection,” Phys. Lett. A 377, 2931–2938 (2013).

[34] P. Hassanzadeh, G. P. Chini, and C. R. Doering, “Wall to wall optimal transport,” J. Fluid Mech. 751, 627–662 (2014).
[35] M. A. Hesse, Mathematical modeling and multiscale simulation of carbon dioxide storage in saline aquifers, Ph.D. thesis,

Stanford University (2008).
[36] Y. Liang, B. Wen, M. Hesse, and D. DiCarlo, “E↵ect of dispersion on solutal convection in porous media,” Geophys. Res.

Lett. 45, 9690–9698 (2018).
[37] G. de Josselin de Jong, “Longitudinal and transverse di↵usion in granular deposits,” Transactions, American Geophysical

Union 39, 261–268 (1958).
[38] P G Sa↵man, “A theory of dispersion in a porous medium,” Journal of Fluid Mechanics 6, 321–349 (1959).
[39] Y. Bachmat and J Bear, “The general equations of hydrodynamic dispersion in homogeneous, isotropic, porous media,”

Journal of Geophysical Research 69, 2561–2567 (1964).
[40] B. Berkowitz, A. Cortis, M. Dentz, and H. Scher, “Modeling non-Fickian transport in geological formations as a continuous

time random walk,” Reviews of Geophysics 44 (2006).
[41] L. F. Konikow, “The secret to successful solute-transport modeling,” Groundwater 49, 144–159 (2011).
[42] M. Dentz, M. Icardi, and J. J. Hidalgo, “Mechanisms of dispersion in a porous medium,” J. Fluid Mech. 841, 851882

(2018).
[43] J. Bear, “On the tensor form of dispersion in porous media.” J. Geophys. Res. 66, 1185–1197 (1961).
[44] A. E. Scheidegger, “General theory of dispersion in porous media.” J. Geophys. Res. 66, 3273–3278 (1961).
[45] G. de Josselin de Jong and M. J. Bossen, “Discussion of paper by Jacob Bear, “On the tensor form of dispersion in porous

media”.” J. Geophys. Res. 66, 3623–3624 (1961).
[46] K. Ghesmat and J. Azaiez, “Viscous fingering instability in porous media: E↵ect of anisotropic velocity-dependent disper-

sion tensor.” Transp. Porous Med. 73, 4297–318 (2008).
[47] J. J. Hidalgo and J. Carrera, “E↵ect of dispersion on the onset of convection during CO2 sequestration,” J. Fluid Mech.

640, 441–452 (2009).
[48] K. Ghesmat, H. Hassanzadeh, and J. Abedi, “The e↵ect of anisotropic dispersion on the convective mixing in long-term

CO2 storage in saline aquifers.” AIChE J 57, 561–570 (2011).
[49] H. Emami-Meybodi, H. Hassanzadeh, and J. Ennis-King, “CO2 dissolution in the presence of background flow of deep

saline aquifers.” Water Resour. Res. 51, 2595–2615 (2015).
[50] H. Emami-Meybodi, “Stability analysis of dissolution-driven convection in porous media.” Phys. Fluids 29, 014102 (2017).
[51] L. Wang, Y. Nakanishi, A. Hyodo, and T. Suekane, “Three-dimensional structure of natural convection in a porous

medium: E↵ect of dispersion on finger structure,” Int. J. Greenh. Gas Control 53, 274–283 (2016).
[52] Yuji Nakanishi, Akimitsu Hyodo, Lei Wang, and Tetsuya Suekane, “Experimental study of 3D Rayleigh-Taylor convection

between miscible fluids in a porous medium,” Advances in Water Resources 97, 224–232 (2016).
[53] T. Suekane, J. Ono, A. Hyodo, and Y. Nagatsu, “Three-dimensional viscous fingering of miscible fluids in porous media,”

Phys. Rev. Fluids 2, 103902 (2017).
[54] Y. Liang, Scaling of Solutal Convection in Porous Media, Ph.D. thesis, The University of Texas at Austin (2017).
[55] Elena Abarca, Jess Carrera, Xavier Sánchez-Vila, and Marco Dentz, “Anisotropic dispersive Henry problem,” Advances

in Water Resources 30, 913–926 (2007).
[56] N. Nikitin, “Third-order-accurate semi-implicit Runge–Kutta scheme for incompressible Navier–Stokes equations.” Int. J.

Numer. Meth. Fluids 51, 221–233 (2006).
[57] L. W. Gelhar, C. Welty, and K. R. Rehfeldt, “A critical review of data on field-scale dispersion in aquifers,” Water

Resources Research 28, 1955–1974 (1992).
[58] T. K. Perkins and O. C. Johnston, “A review of di↵usion and dispersion in porous media,” Society of Petroleum Engineers

Journal 3, 70–84 (1963).
[59] J. D. Seymour and P. T. Callaghan, “Generalized approach to NMR analysis of flow and dispersion in porous media,”

AIChE Journal 43, 2096–2111 (1997).
[60] A. A. Khrapitchev and P. T. Callaghan, “Reversible and irreversible dispersion in a porous medium,” Phys. Fluids 15,

2649–2660 (2003).
[61] B. Bijeljic and M. J. Blunt, “Porescale modeling of transverse dispersion in porous media,” Water Resour. Res. 43, W12S11

(2007).



16

[62] M. Muniruzzaman and M. Rolle, “Experimental investigation of the impact of compound-specific dispersion and electro-
static interactions on transient transport and solute breakthrough,” Water Resources Research 53, 1189–1209 (2017).

[63] S.E Oswald and W Kinzelbach, “Three-dimensional physical benchmark experiments to test variable-density flow models,”
Journal of Hydrology 290, 22–42 (2004).

[64] R. Maes, G. Rousseaux, B. Scheid, M. Mishra, P. Colinet, and A. De Wit, “Experimental study of dispersion and miscible
viscous fingering of initially circular samples in Hele-Shaw cells,” Physics of Fluids 22, 123104 (2010).


