
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Bubble stabilization by the star-nosed mole
Alexander B. Lee and David L. Hu

Phys. Rev. Fluids 3, 123101 — Published  6 December 2018
DOI: 10.1103/PhysRevFluids.3.123101

http://dx.doi.org/10.1103/PhysRevFluids.3.123101


Bubble Stabilization by the Star-Nosed Mole

Alexander B. Lee1 and David L. Hu2,1∗

Schools of Biological Sciences1 and Mechanical Engineering2

Georgia Institute of Technology, Atlanta, GA 30332
(Dated: November 7, 2018)

Star-nosed moles sniff for prey underwater by rapidly exhaling and inhaling bubbles that in turn
capture odors on their surface. While the sniff lasts only a tenth of a second, speed alone cannot
explain how the star-nosed mole so reliably sucks the bubble back in before pinch-off occurs. In
this combined experimental and theoretical study, we elucidate how the unique shape of the nose
stabilizes underwater bubbles. The fleshy arms of the mole’s star are separated by an average of
16◦ ± 9 degree increments. We laser-cut plastic stars of various angles between the arms and tilt
them by hand to find the angle at which a trapped sessile bubble is released. A bubble trapped
beneath the star bulges through the gaps, enabling the plastic star to retain the bubble when tilted
up to 7 degrees, which is 40% greater than that of a flat plastic sheet. Using a semi-empirical
model, we show two regimes where a bubble escapes. If the gap width is wider than the capillary
length, buoyancy forces pull the bubble up through the gap. If the gap width is too small, the
bubble does not sufficiently anchor itself in place. We show order of magnitude agreement between
biological measurements, plastic star experiments, and theory, suggesting we correctly identified the
mechanism for the star retaining bubbles. This study may lead to new ways of stabilizing cm-scale
bubbles for underwater chemical sensing.
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I. INTRODUCTION

Chemical sensors are not amphibious: they are de-
ployed in either a liquid or gas phase, but not both [1].
The same limitation holds for our noses. We cannot smell
underwater, and it was once believed that aquatic mam-
mals also had a poor sense of smell underwater [2]. A
number of small semi-aquatic mammals, however, have
evolved ingenious ways to adapt their noses to locate food
underwater. In this study, we present design considera-
tions for these amphibious noses.

Smelling underwater begins with an exhale of a bubble.
When the bubbles contacts a food item, it gathers odor-
ant molecules, which otherwise would not make their way
past the air-water barrier in the animal’s nose. The bub-
ble is then inhaled before it has a chance to pinch off and
escape. Figure 1 shows the star-nosed mole (Condylura
cristata), the American water shrew (Sorex palustris) [3],
and the Russian desman (Desmata moschata) [4], all of
which sniff bubbles on a timescale of 0.07 - 0.1 seconds.
The inhalation flow rates of these semi-aquatic mammals
range from 0.7 - 2 mL/s, approximately twice as fast as
same-sized terrestrial counterparts [5].

From hereon, we will focus our attention on the star-
nosed mole, the most documented of these underwater
sniffers (See Figure 2a). The mole’s behavior allows
the odor receptors in it’s nose to stay dry, relying on the
bubble’s rapidly generated surface area as a medium to
transport odor. Imitating this underwater sniffing would
be an important first step towards employing gas sensors
in aquatic environments. However, little is known about
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how to stabilize underwater bubbles larger than the cap-
illary length, the length scale at which bubbles generally
pinch off. Below we review how bubbles pinch-off and
are stabilized by rough surfaces.

Bubble pinch-off has been studied in a number of con-
texts. As the neck of a bubble shrinks below some crit-
ical length scale [6][7], capillary forces irreversibly drive
pinch-off, often quite quickly. In bubble formation from
a downward nozzle, centimeter-scale bubbles, similar in
size to that generated by the star-nosed mole, can pinch
off in time-scales of 76 ms [8], three times as fast as the
blink of an eye.

One way to delay pinch-off is to use rough substrates
to stabilize the bubble. Microscopic surface roughness
known as asperities can grab hold of a bubble’s edge,
called its contact line, leading to the bubble exhibiting
a range of contact angles, a phenomenon called contact
angle hysteresis. This hysteresis can hold drops and bub-
bles in place, even on vertical surfaces [9–12]. This phe-
nomenon can only pin drops on the size of the capillary
length, an equivalent volume of a few microliters, orders
of magnitude smaller than the 0.1 mL volume of the star-
nosed mole bubble[2].

Larger bubbles can be trapped by increasing the sur-
face roughness to the extent that it obtains a Cassie-
Baxter state, which makes it energetically unfavorable
to displace the bubble and wet the surface [13]. Diving
beetles and spiders employ densely packed hydrophobic
hair to carry bubbles with them so they can breathe un-
derwater [14, 15]. Their rough, hydrophobic surfaces are
energetically costly to wet, allowing the maintenance of
an air bubble of up to 3 mL in volume [13, 15, 16]. While
it is possible that the microscopic surface features of the
star-nosed mole may help retain bubbles, we will focus
on its macroscopic features.
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In this study, we investigate the mechanism by which
the star-nosed mole stabilizes its exhaled bubbles. We
begin in §2 with our experimental methods for build-
ing and testing plastic stars that mimic that of the star-
nosed mole. In §3, we present a semi-empirical model
that elucidates the bubble-stabilizing abilities of these
stars. We proceed in §4 with our experimental results,
showing anatomical measurements and testing with our
plastic stars. We discuss the implications of our work in
§5 and conclude in §6.

II. EXPERIMENTAL METHODS

A. Measuring the star-nosed mole

We obtain three photographs of live star-nosed moles
from the author of a previous study [17] (See Supple-
mentary Materials Figure 1). The star-nosed mole has
22 conical fleshy appendages radiating from two nostrils,
as shown in Figure 2a. To characterize the spacing be-
tween these appendages, we measure the gap angle, or the
angle between the edges of two consecutive appendages,
as illustrated in Figure 2b. The outermost section is
chosen so that the gap angle accurately describes the
width of the gap where the spacing is widest. The wider
the gap, the more likely buoyancy can begin to dominate
over surface tension forces. In Figure 2b, appendages
9 and 10 are an example of overlapping appendages and
are not considered in our measurements.

B. Star fabrication

Plastic stars are designed in Solidworks. We begin with
a circular disc of radius 20 mm. We then cut a central
hole of radius Rnozzle = 0.75 mm, which corresponds to
the dimensions of the syringe’s nozzle. Around this hole,
a ring of solid plastic, of outer radius R = 3.5 mm forms
the center of the star. Triangular arms are cut extending
from this ring, by considering both the gap angles desired
and the strength of the material. Ultimately, we designed
5 arm designs, with gap angles θ of 0◦, 3◦, 8◦, 15◦, and
20◦, respectively, as shown in Figure 3b. Note that a
gap angle of 0◦ denotes a complete disc with no gaps.
Figure 3c shows the relationship between the number
of gaps n and the gap angle θ of the star. The stars we
designed are represented by the blue points. Our first
constraint is based on the strength of the material. Each
arm of the star must have a minimum width of L = 2
mm so that it is not melted off during the laser-cutting
process. This constraint may be written(

2π

n
− θ
)
R > L, (1)

and is shown by the red dashed line in Figure 3c. As
we found from experience, any stars that fall above this

dashed line will break, at least if they are constructed
from transparency sheet material.

The other constraint is on the ability of the stars to
contact the bubble. In our preliminary tests, we found
that we need as many gaps as possible to ensure that
the bubble is forced to interact with the gaps. Moreover,
we also desire an even number of gaps to maintain both
front-back and left-right symmetry of the star. To deter-
mine the number of gaps cut into the star, we start at
the fabrication limit and choose n to be the highest even
integer below that curve. This results in stars with 6-10
arms rather than 22 arms, as in the star-nosed mole. In
§3, we will use the following relationship between number
of gaps and the gap angle:

n = −1

3
θ + 11. (2)

This relationship is the best fit line considering the 3◦

and 15◦ stars, and is shown by the solid black line in
Figure 3c.

To fabricate the stars, we begin with overhead pro-
jector transparency sheets composed of cellulose acetate.
The material chosen is hydrophilic, as shown by the con-
tact angle of ξ = 54◦ in the inset of Figure 4a. We cut
the star patterning using a laser cutter (Trotec Speedy
3000) into the various shapes shown in Figure 3b. A
star is then super-glued onto a 3-mL syringe, which is in
turn tied to the arm of a protractor so that it can freely
swing in one plane. We orient the star so that the gaps
of the star maintain symmetry both in this plane (left-
right symmetry) and perpendicular to the plane (front-
back symmetry, or symmetry into and out of the page in
Figure 4a). Front-back symmetry is preferred because
it allows us to accurately characterize the bubble shape
from a single view, and to perform modeling with fewer
variables. Left-right symmetry is maintained because we
perform tilting experiments both to the left and to the
right in order to obtain more data from the same star.

To demonstrate the stabilizing physics of the stars in
an alternate way, we also fabricate a disc with no gaps
that deforms the bubbles in a two-dimensional manner,
as shown in Figure 7. A plastic disc is creased at a
distance 3.5 mm from the center of the nozzle. The crease
is made so that the disc exhibits a bend of angle ζ = 15◦.

C. Bubble stability experiments

With the star submerged z = 20 mm below the wa-
ter’s surface, we use syringe markings to control inflating
bubbles to volume Vt = 0.7 mL. As a test of the bub-
ble’s stability, we slowly tilt the syringe until we discover
the angle φ to the vertical at which the bubble pinches
off (See Figure 4a). To account for imperfections in
the star, tilting is performed in both the clockwise and
counter-clockwise directions, and the average tilt angle φ
value is reported.
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As the bubble is tilted, it begins to slide. On one edge
of the bubble, its contact line advances. This half of the
bubble is denoted the advancing side and is highlighted
in red in Figure 6b and Figure 7b. The opposite side
is denoted the receding side, and is highlighted in blue in
Figure 6b and Figure 7b. When the bubble escapes,
it escapes in the advancing direction.

The bent disc discussed in the previous section is tested
in a similar manner. In this case, the bubble is not stable
at φ = 0 degrees. Therefore, we carefully blow the bub-
ble while simultaneously tilting the system so that the
bubble is in contact with both the receding slope and the
advancing slope. The system is then further tilted to-
wards the advancing side to find the maximum tilt angle
where the bubble pinches off.

D. Measuring bubble deformation

Considering the advancing side first, the bubble radius
may be written as the central plastic disc radius R plus
some incremental distance, ∆Ra, as shown in Figure
5d. By etching 1 mm markings on the edges of the star,
we measure the motion of the bubble’s contact lines for
different tilt angles, φ, using a star with gap angles of
θ = 8◦ as that is the median gap angle. The red points
in Figure 5e show the change in radius of the advancing
side of the bubble, ∆Ra, as a function of tilt angle. The
associated changes, ∆Rr on the receding side of the bub-
ble are shown in blue triangles. The blue and red lines
show the linear least squares best fit, which are

∆Ra = α+ βφ (R2 = 0.5) (3)

for the advancing side, and

∆Rr = α− γφ (R2 = 0.3). (4)

for the receding side, where ∆Ra and ∆Rr are given in
mm, φ in degrees, and α = 4 mm, β = 0.7 mm

degree , and γ =

0.3 mm
degree . The non-equality of the slopes β and γ indicate

that the bubble is not just sliding but also deforming.
Specifically, the bubble is stretching as it rises. Visually,
the fits given in Equation (3) and Equation (4) follow the
data well, as shown in Figure 5e. The goodness of fit
R2 values are low, due to data standard deviation being
large relative to β and γ,as the R2 value is a metric of how
much better the linear regression is as a predictor than a
horizontal line at the data’s mean. More importantly, the
Root Mean Squared Error (RMSE) is 1 mm for both the
advancing and receding regressions. The trends from our
theory are not significantly changed by this magnitude
of error.

In our next section, we use our empirical measurements
of bubble deformation in a theoretical model for predict-
ing the tilt angle at which the bubble will escape the
star.

III. THEORY

Our theory predicts pinch-off to occur when one of two
conditions is broken. We consider each condition in turn.

A. Pinch-off for large gap angles

For large gap angles, pinch-off occurs when buoyancy
forces dominate capillary forces. This occurs when the
width of the gap is greater than the capillary length [18],

λc =
√

σ
∆ρg where σ is the surface tension between two

fluids, ∆ρ is the difference in density between the two
fluids, and g is the acceleration due to gravity. For air
bubbles in water, the capillary length is λc= 2.7 mm.
Thus, if a region of the bubble is exposed to a gap width
larger than λc, the bubble will escape.

Bubbles that are inflated below the star assume a plate
shape, similar to a puddle of water, due to the balance of
surface tension forces and buoyancy at a depth of z = 20
mm. Consider a plate-shaped bubble radiating from the
nozzle as shown in the oblique view of the bubble in Fig-
ure 5a, and from the top view in Figure 5b. Figure 5c
shows the syringe is tilted φ = 4◦, and as a consequence,
the bubble’s advancing edge slides a distance of 1 mm
from its original position shown by the dashed red lines.
The bubble’s advancing edge, however, travels a greater
distance, indicating that the bubble has deformed.

The deformation of the bubble is due to its rising, and
then resettling into a position where it has a lower gravi-
tational potential energy. Using theory to determine the
deformation of the bubble would require consideration of
its three-dimensional shape, which is beyond the scope
of this paper. We thus proceed by describing the bubble
deformation empirically, and using it as input parameters
to our model. Considering the advancing side first, the
bubble radius may be written as the central plastic disc
radius R plus some incremental distance, ∆R, as shown
in Figure 6a. We neglect consideration of the reced-
ing side of the bubble because bubbles generally escape
through the advancing side.

As the bubble is tilted further, it encounters an in-
creasingly wider gap at the advancing side, as shown in
Figure 6a. The blue hashed region indicates the bub-
ble, which intersects the two consecutive arms of the star
holding it in place. At this intersection, the arms are sep-
arated by a gap width 2(R + ∆Ra) tan θ

2 . The bubble is
stable as long as this gap width is less than the capillary
length:

2(R+ ∆Ra) tan
θ

2
≤ ελc (5)

where ε is a numerical prefactor, that accounts for the
bubbles pinching off at length scales directly correlated to
the capillary length, as is the case in a number of context
[19, 20]. Preliminary experiments, expanding bubbles
under horizontal stars, with gap angles of θ = 3◦, 8◦,
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15◦, and 20◦, indicate that the prefactor ε ≈ 1. Thus
from hereon ε will be omitted from equations. Applying
our empirical measurements of ∆Ra in Equation (3), we
rewrite Equation (5) relating φ to θ and solve for φ.

φ ≤ 1

β

(
λc

2 tan θ
2

−R− α

)
(6)

This equation can be used to predict the maximum φ
with respect to θ (dotted red curve, Figure 4b). This
shows agreement with our experimental data when the
gap angle θ is 15◦ and 20◦, shown on the right hand
side of Figure 4b. This concludes our analysis of stars
of large gap angles; we now turn to stars of small gap
angles.

B. Pinch-off for small gap angles

We begin with an an illustrative but more intuitive
problem. Consider a weight sliding down a ramp with
no friction. When the ramp is flat, no counterweight is
needed. However, with any level of inclination, a coun-
terweight is needed for equilibrium, as shown in Figure
6c. The same physics holds for the bubble trapped un-
derneath a tilted star. Instead of gravitational force, two
buoyancy forces act to pull the bubble in opposite direc-
tions. One force, ρgV sinφ, is oriented parallel to the
arms of the star, where V is the volume of the bubble
in the red hashed region on the right of Figure 5d and
Figure 6b. The other force, ρgv, arises due to the bub-
ble attempting to rise through the gaps on the receding
side of the star. The buoyancy force on a body is caused
by a difference in hydrostatic pressure above and below
the volume, as has been done with bubbles extruded from
a hole in [21]. Thus, we take v to be the entire section
of the bubble denoted by the blue hashed region on the
left of Figure 5d and Figure 6b. For these forces to
balance, we require

ρgV sinφ ≤ ρgv. (7)

We proceed by determining the volumes v and V . We
write the volume v = v1+v2 where the volumes v1 and v2

are labelled in Figure 6b. We approximate the region
v1 as a pyramid, requiring the area of the base and the
maximum height of the bubble to calculate its volume.
The base is written as

b =
θ

2π
[π(∆Rr +R)2 − πR2]. (8)

If there are no gaps, then θ = 0, and there is no counter-
weight bubble.

To find the height of v1, we first calculate the curvature
of the bubble rising through the gap according to the
Young-Laplace equation

C =
∆p

σ
(9)

where σ is the surface tension at an air-water interface
and ∆p is the difference in pressure between the sur-
rounding water and bubble, ∆p = ∆ρgz. From pho-
tographs, we measured the bubble angle at the plastic-
water-bubble interface to be ψ = 127◦. If we consider
the cross-section of this volume as a concatenated circle,
then we get the height

h =
1 + cosψ

C
. (10)

The height h, was also measured from photographs (see
Supplementary Materials Figure 2) and was found to be
similar to our theoretical calculation. With h, we calcu-
late the volume of the bubble peeking out through a gap
in the star

v1 =
1

3
bh. (11)

To calculate v2, we approximate the entire bubble below
the star to be the shape of a cylinder. In that case,

v2 = bd (12)

where d is the depth of the cylinder. This depth is given
by the contact angle ξ and the capillary length λc[22][23]

d =
√

2(1− cos(π − ξ))λ2
c . (13)

With values for v1 and v2, it is simple to calculate v,
keeping in mind that the volume of bubbles in the reced-
ing half of the gaps act as counterweights. The remaining
volume of the total is V , whose buoyant force is the cause
of pinch off

v =
n

2
(v1 + v2) (14)

V = Vt − v (15)

If we substitute equation 15 into equation 7 we have

ρg(Vt − v) sinφ ≤ ρgv. (16)

We can then substitute Equation (11) and Equation (12)
into Equation (14) to get an expression for v and then
substitute Equation (14) into Equation (16).

(
Vt −

n

2

(
1

3
bh+ bd

))
ρg sinφ ≤(

n

2

(
1

3
bh+ bd

))
ρg (17)

where b is a function of both the gap angle θ and tilt-
angle φ. Equation 17 gives this relationship between φ
and θ, shown by the dashed red curve in Figure 4b.
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IV. RESULTS

Videos of star-nosed moles sniffing[3] show that when
the star-nosed mole sniffs underwater, it often tilts its
head from side to side. The driving idea behind this
study is that the shape of the star helps stabilize the
bubble while it is tilted.

We first consider the dimensionless Bond number of
our system, which relates the buoyancy to surface tension
forces. The Bond number may be written

Bo =
∆ρgD2

eq

σ
(18)

where ∆ρ is the difference in density between the wa-
ter and air, g is the gravitational acceleration, σ is the
interfacial surface tension between water and air, and

Deq =
(

6Vt

π

)1/3
is the equivalent spherical diameter of a

bubble of volume Vt [24]. For bubbles of volume Vt = 0.7
mL, the Bond number is 16, suggesting that buoyancy
forces are dominant. This number also indicates that
the bubble is highly unstable. This is ultimately why
bubbles can only be tilted to less than φc = 10 degrees
before they escape. If we consider gravity in our tilting
system to be g sinφc, then the Bond number is 3, showing
that the tilt angle of φc = 10◦ marks the transition be-
tween surface tension-dominated to buoyancy-dominated
regimes. The Bond number is greater than 1, suggesting
that the bubbles should be released. However, this is be-
cause the dimensionless group does not take into account
the counterbalancing effect of the receding gaps.

To understand how the star shape holds onto bubbles,
we begin with a simple counterexample. Consider a bub-
ble held by a flat plastic disc as in Figure 8a. We tilt the
disc slowly and find that at a tilt angle of φ = 4.5◦±1.5◦

to the vertical, the bubble is released. For the bubble
to release, the buoyancy force on the bubble ρgVt sin θ
must exceed the surface tension force at the perimeter
of the nozzle, 2σπRnozzle, where Rnozzle is the radius of
the syringe nozzle [18][19] (See Figure 6d). This re-
lationship predicts that a flat plastic disc can be tilted
φ = 3◦, which is on the same order as our experimental
result. The problem with this flat disc is that there are
no gaps for the bubble to rise through. These gaps allow
for buoyancy forces similar to Figure 6c that provide
counterbalance.

To demonstrate the importance of counterbalance, we
perform a stability tilting experiment with a bent disc.
The bend at an angle of ζ = 15◦ allows part of the bub-
ble to peek over the receding slope as shown in Figure
7. As a result, the disc can be tilted up to φ = 10◦,
which is more than double the values found for the flat
disc. Moreover, both discs are made of the same mate-
rial, indicating that differences in geometry can make a
big difference in the stability of the bubble (Figure 8). If
we assume equal volume of bubble on both the receding
and advancing slopes of the plastic, then we maintain
equilibrium under the following condition (See Figure

7b)

sin(φ) = sin(ζ − φ). (19)

Solving for φ, we find that the system can tilt 8◦. This
is comparable to the maximum tilt angle of 10◦ found
in our experiment. We will apply similar principles to
understand how the star-shaped nose increases stability
of the bubble.

We proceed by looking to the star-nosed mole for in-
spiration, and examining the shape of the nose. When
the bubble is exhaled, it is temporarily entrapped by the
appendages and bulges through the gaps of the star (see
Figure 1a). Therefore, we focus on the angles θ of these
gaps, as defined in Figure 2b. Figure 2c shows a his-
togram of the gap angles from the three star-nosed mole
photos. The histogram does not show a normal distribu-
tion, but is instead bimodal due to the ventral parts of
the star having more closely spaced arms. This may have
to do with the mechano-sensing role that these lower ap-
pendages play [17]. The average gap angle is 16±9◦ (N
= 49 arms counted on 3 moles). Due to the large stan-
dard deviation, we conclude that the arms are of order
10◦ apart, a number which we try to rationalize using
experiments with our plastic stars.

We simulate the head-tilting behavior of the mole by
tilting homemade stars (See Figure 4a) from the verti-
cal, thus challenging their ability to hold onto the bub-
ble. Figure 4b shows the relationship between the gap
angle θ and the maximum tilt angle before pinch-off φ.
Among our five stars, the 8◦ and 15◦ stars exhibit the
highest stability, holding the bubble until they are tilted
to nearly 8◦. This is about 150 percent higher than the
lowest performing star, the 20◦ star. Moreover, the arms
are clearly useful in holding onto the bubble. The best
performing stars can hold onto bubbles at angles that are
almost twice as large as a flat plate. Moreover, they are
more robust than the bent plate we initially discussed.
The bent plate can only hold onto bubbles when tilted
in a single direction. On the other hand, the stars with
multiple arms have more degrees of symmetry and thus
more directions that they can be tilted before the bubble
is released.

We laser-cut plastic stars of varying gap angles and
performed experiments to determine their maximum de-
gree of tilting before releasing the bubble. In §3, we gave
theoretical predictions of conditions for pinch off, shown
by equations 6 and 17. We have shown that larger gaps
exceed the capillary length very quickly, allowing the
buoyant forces to dominate over surface tension forces
keeping the bubble in place (Equation 6). Small gaps
fall out of equilibrium as the portion of bubble rising
through the gaps is insufficient to act as counterbalance
(Equation 17). According to our theory, the optimal gap
angle would be 11◦ ± 3◦.
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V. DISCUSSION

In static tilting experiments, we showed how a star-
geometry surface can add stability to a sessile bubble
and that there is an optimal gap size, represented by the
gap angle θ, that allows the sessile bubble to be stable at
a higher tilting angle φ. Bubbles can slip through large
gaps when the gap width is greater than the capillary
length. Bubbles also fall out of static equilibrium when
the gap is too small, due to the smaller counterweight
effect from the bubble in receding side gaps.

The size of the gaps between the appendages in the
mole’s star-nose vary greatly with an average gap angle
of 16◦. However, the distribution of gap angles show that
most of the gap angles from the photos were either much
lower or much higher than this value. When comparing
the optimal physics to that of the biological system, it
is important to keep in mind that these appendages also
have a role in tactile sensing. The roles of tactile sens-
ing and bubble stability encompassed in the same organ
can lead to evolutionary trade-off and it would be a mis-
take to assume that a given organ would necessarily be
optimized to any one role [25].

While this study set out to show the role of the mole’s
star-nose, our experiments cannot confirm if the mole
necessarily uses the physics we have described to stabilize
bubbles during underwater sniffing. Even so, we believe
the results of this study will be important in designing
an end-effector for a mole-inspired underwater sniffing
electronic nose.

Future experimental changes could allow closer com-
parison to the star-nosed mole’s sniffing. The star mim-
ics in our study were flat, with fin-like arms, but one
could investigate the effect of changing the angle at which
the arms deviate from this plane to form a concatenated
cone and mimic the way the star-nosed mole cages the
bubbles during sniffing, using rods instead of fins. It is
also important to consider the wettability of the mole’s
appendages, as hydrophobic surfaces are very effective at
stabilizing large bubbles [15]. Lastly, the star-nosed mole
appendages are flexible and clearly bend when in contact
with the bubble. Such effects may increase the stability
of the bubble, as the bending of the arms would increase
the contact with the bubble and the required force to
cause the bubble to escape.

The experiments and theory presented consider only
a static case, but the sniffing performed by star-nosed

moles is a dynamic event. Future work should consider
the effect that the star geometry has on bubble forma-
tion and retraction. Specifically, it would be interesting
to quantify the delay to pinch-off caused by the star and
how the bubble surface is altered during that time-scale,
as the sniff duration and bubble surface area are criti-
cal in understanding the star-nosed mole’s capabilities in
capturing odors.

The star geometry is unique to the star-nosed mole,
yet the American water shrew and Russian desman have
shown similar underwater sniffing capabilities. It is pos-
sible that the whiskers of these animals could serve an
analogous role to the star-nose in stabilizing the bubble.
Moreover, it is likely that a number of other mammals
may use this ability to smell underwater. A greater un-
derstanding of the mechanisms that stabilize the bub-
ble in underwater sniffing may help in identifying other
mammals capable of this intriguing behavior.

VI. CONCLUSION

This study was inspired by the ability of the star-nosed
mole to hold onto bubbles much larger than the capillary
length. We quantified the stability of the bubble as the
angle at which the bubble could be tilted until it was re-
leased. Flat discs are poor at stabilizing bubbles. How-
ever, bends in the disc or triangular gaps are able to allow
bubbles to peek through. These bulges create counter-
balance, allowing the disc to be tilted to nearly double
the angles of flat discs. We showed that certain gap sizes
are optimal, both providing sufficient counterbalance for
the bubble, but also preventing the bubble from escaping
the gap. This idea of the bubble counter-balancing itself
is a novel and simple way to increase a bubble’s stabil-
ity, even if the bubble is of a length-scale much larger
than the capillary length. Our study provides one step
towards building an underwater sensor based on the use
of bubbles to capture odors.
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FIG. 1. Three semi-aquatic mammals exhibit underwater sniffing: (a) the star-nosed mole blows a bubble of 0.1 mL on a
timescale of 0.1 seconds, (b) the American water shrew blows a bubble of 0.06 mL on a timescale of 0.08 seconds, and (c)
the Russian desman blows a bubble of 0.3 mL on a timescale of 0.07 seconds. Photographs (a,b) courtesy of K. Catania.
Photograph (c) courtesy of I. Shpilenok.
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FIG. 2. Geometry of the nose of the star-nosed mole. (a)
The star-nosed mole, whose fleshy, star-shaped nose measures
approximately 10 mm across. (b) Close up photograph of the
nose, with red lines showing how the gap angle θ is measured.
The red line is drawn between the center of the nostril and
the inside tip of the appendages. (c) Histogram showing the
distribution of the gap angles θ for three star-nosed moles.
Photograph (a) and (b) courtesy of K. Catania.
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FIG. 3. Design of plastic stars mimicking the star-nosed
mole’s nose. (a) Plastic stars laser-cut to mimic the star-
nose. Like in the photos of star-nosed moles, the gap angle
was measured along the inner edges of the arms with the ver-
tex at the center of the nozzle. (b) Schematics of the five
plastic stars used in this study. Angles indicate the gap an-
gles for each of the stars. (c) Relationship between the gap
angle θ and the number of gaps for each star. The dashed red
curve represents the fabrication limitation that the minimum
width of each fin is greater than 2 mm. The blue dots are the
actual number of gaps used in the experimental stars. The
solid black line is a linear approximation used to represent the
relationship between the number of gaps and the gap angle
for smaller gap angle stars from 3◦ − 15◦.



11

FIG. 4. (a) Schematic of the experimental setup in which a
syringe with a plastic star is affixed to a protractor. As a
measure of bubble stability, the syringe is tilted at an angle φ
before the bubble pinches off. Inset shows the contact angle,
ξ = 54◦, of the bubble below the star and the angle, ψ =
127◦, of the bubble pushing up through the gap. (b)The
relationship between the maximum tilt angle φ and the gap
angle θ of the star. Experimental data (black) suggests an
optimal gap angle around 8◦ − 15◦, and the theory predicts
an optimum at 11◦±3◦. The theory described in §3 describes
a large gap condition leading to pinch-off (red dotted line)
and a small gap condition leading to pinch-off (red dashed
line).
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FIG. 5. Position of the bubble with varying tilt angle φ. (a)
Photograph shows portions of a bubble rising through the
gaps between the arms of the star, forming ribs similar to a
pumpkin. (bc) Two photographs showing the position of the
bubble before and after the star is tilted by an angle of 4◦.
The red dotted line shows the original position of the bub-
ble. As the system is tilted, one side of the bubble advances,
and the other recedes. (d) The shift in bubble position cre-
ates two lengths from the start of the gap to the edge of the
bubble, ∆Ra and ∆Rr for the advancing and receding sides
respectively. (e) The relationship between the the tilt angle
φ and the position ∆R of the bubbles edge for a star of gap
angle θ = 8◦. The advancing edge is shown as red dots, the
receding edge as blue triangles. The solid lines are linear best
fits. The bubble pinches off when the tilt angle φ = 8◦.
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FIG. 6. Illustrations of conditions preventing pinch-off. (a)
Schematic of the gap and geometric pinch-off condition for
large gap angles. (b) Side view schematics of the bubble in-
teracting with the star shape above it. The buoyancy forces
acting on the red region denoted by V are balanced by the
buoyancy forces of the blue region of the bubble-star system
for small gap angles. The portion of the bubble V (dashed
red hashed region) slides off the star while the small portion
in the gap, v (solid blue hashed region), acts as a counterbal-
ance, similar to an analogous mass-on-a-ramp system shown
in (c). Inset in (b) shows how v is split up into two regions v1
and v2 for volume calculations. (d) The parallel buoyant force
must overcome the resistive surface tension force between the
main bubble and air remaining in the syringe nozzle. Here,
the radius Rnozzle is labeled.
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FIG. 7. Schematic diagrams of the geometry of a bent plastic
disc. (a) Photograph of the bubble held by the bent star and
(b) schematic of the portions of the bubble showing counter-
balance. The buoyancy force on the red hashed region causes
the bubble to slide to the right. The bubble is held in place
by the opposing buoyancy force on the blue hashed region.

FIG. 8. Experiments demonstrating the ability of a bubble to
maintain counterbalance to remain stable. (a) A flat disc can
only be tilted to φ = 4.5◦ ± 1.5◦ before the bubble escapes.
(b) A disc with a ζ = 15◦ bend at a position off-center can
hold onto a bubble up to φ = 10◦ of tilt, demonstrating the
importance of geometry in maintaining bubbles.


