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Longitudinal velocity-derivative skewness 𝑆  is directly proportional to the rate of enstrophy 
generation, and hence is a key parameter for characterizing small-scale turbulence. Obtaining 𝑆  
requires accurate measurements of the finest scales in the dissipation subrange. In this paper we 
define a derivative skewness of the inertial range scales that is readily accessible experimentally, 
and derive its value analytically. The results depend on the filtering procedure of small scales. 
Analytically derived inertial range skewness is compared with those computed by high resolution 
numerical simulations and obtained in laboratory and field experiments.  An alternative definition 
of the derivative skewness in the full and the inertial range scales is examined to identify the 
effects of intermittency.  

1. Introduction 

Turbulence is a multi-scale phenomenon (Frisch, 1995). While an accurate description of the 
largest fluctuating scales is needed for evaluation of transport of momentum and scalars, 
characterization of small scale properties is important for understanding turbulence dynamics and 
developing accurate subgrid-scale (SGS) parametrizations. Difficulties in understanding dynamics 
at different scales stem from the strong nonlinearity of dynamic equations and intrinsic 
instabilities and stochastic behavior of their solutions. Thus, for progress in turbulence modeling, 
simplifying assumptions are made, perhaps the most prominent being the notion of universal self-
similar or quasi self-similar behavior at small scales. This concept allows to analytically derive 
scaling laws and characteristic scale-dependent parameters of turbulence.  

Skewness of the longitudinal velocity derivative, defined as 
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is an important parameter pertinent to small scales of turbulence. The symbol .  henceforth 

denotes ensemble averaging, and the subscript “0” indicates that all scales are accounted for in 
computation of skewness. For random noise, S0 = 0, while for locally homogeneous and isotropic 
turbulence, the values of -S0 are in the range 0.3 – 0.5, rising to about 0.7 for high Reynolds 
number data (e.g. (Frisch, 1995)). This property of skewness is used as a "quality control” criterion 
in turbulent velocity measurements. Turbulence measurements are usually embedded with a 
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relatively high level of noise due to the use of intricate instrumentation, such as hot wires/films 
thermo-anemometers. In Acoustic Doppler Current Profilers, where the signal-to-noise-ratio is 
relatively low, the skewness can be used to separate the measured signal to “good” and “bad” 
events. In particular, Kit et al. (1995) used skewness of the longitudinal velocity derivative to select 
appropriate events in an ensemble chosen for averaging. 

The relation between the skewness and enstrophy production, and hence energy transfer 
down the spectrum, makes the former even more useful in turbulence studies. In homogeneous 
isotropic turbulence, the skewness represents the rate of enstrophy generation due to vortex 
stretching (Monin & Yaglom, 2013; Davidson P. , 2004). More precisely, in three-dimensional 
isotropic turbulence, S0 is a nondimensional measure of the rate of enstrophy production 
(Batchelor & Townsend, 1947): 
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Here  is the vorticity, <>/2 is the enstrophy,  and  are the mean turbulent kinetic energy 
(TKE) dissipation rate and the kinematic molecular viscosity, respectively. This equation follows 
directly from the relation 
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which is valid for isotropic turbulence (Champagne, 1978). Non-linearity of the Navier-Stokes 
equation is necessary but not sufficient for S0 to be non-zero, as it vanishes in the inverse cascade 
range of two-dimensional turbulence. 

Measurement of S0 in high Reynolds number flows is difficult, because in order to conduct 
this measurement, a viscous subrange must be fully and accurately resolved. In addition, while 
small scales are the largest contributors to S0, the share of the larger scales is also consequential. 
As such, S0 depends on the Reynolds number Re (Sreenivasan & Antonia, 1997). Numerical 
simulations and laboratory measurements at low Re do not give an accurate depiction of 
skewness for a very large Reynolds number fully developed turbulence because of the limited 
range of scales obtainable. Experimental S0 varies over a wide range, both due to the dependence 
on Re and the experimental noise, and reliable measurements are not available hitherto (Tsinober 
et al. 1992; Kit et al. 2017; Kit & Liberzon 2016 and references therein). Moreover, the noise 
contribution increases at high Re due to the difficulty of resolving finer scales. 

Alternatively, a more easily measurable, yet versatile parameter, is the skewness of velocity 
derivatives within the inertial range of scales, which is defined and addressed in the following 
sections. Since the scaling subrange is selected, this parameter can be computed in the Fourier 
space. For simplicity, we start this analyses assuming the known Kolmogorov constant, CK. More 
accurate derivations that do not rely on adjustable parameters will be given in Sections 6 and 7 
using the Quasi-Normal Scale Elimination Theory (QNSE). Intermittency effects are considered in 
Section 8. 
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2. Fourier space representation of S0 

For isotropic homogeneous turbulence, equation (1.1) can be rewritten in the Fourier space. 
In a statistically steady state where enstrophy production and dissipation are in balance,  
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where E(k) is the three-dimensional energy spectrum. Recalling that in isotropic turbulence is 
related to the spectrum E(k) and the one-dimensional longitudinal spectrum E1(k1) as 

 2 2
0 0 1 1 1 10 02 ( ) 15 ( ) ,k E k dk k E k dk        (2.2) 

and substituting (2.1) and (2.2) into (1.2), one gets the following spectral representations: 
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The analytical computation based on equation (2.3) or a similar expression depends strongly on 
the form of energy spectrum in the dissipation subrange, which remains uncertain.  

3. Inertial range skewness 

 Let ( , )tu x  be the homogeneous isotropic velocity field. For any cut-off wave number ck  

we define the filtered velocity field ( , )ct ku x as the physical space velocity with all Fourier modes 

ckk  set to 0: 

 1( , ) ( ( , ) ( ))c ct k t k u x u k kF   (3.1) 

Here   is the Heaviside step function and 1F is the inverse Fourier transform operator. 

Skewness Skc is defined according to (1.1) with the original velocity replaced by the filtered 

velocity ( , ).ct ku x  If ck belongs to the inertial range, then both 3
1 1( / )u x  and 2

1 1( / )u x   

should be independent of ν0 and forcing details, and should only depend on the energy injection 

rate  and ck . Then, from dimensional analysis, the dimensionless parameter Skc is a constant 

independent of ck . 

 The dynamical effect of filtered small scales can be represented by an eddy viscosity, 
which is introduced in such a way that the energy exchange between the eliminated and the 
remaining “resolvable” scales remains unchanged. The energy transfer from resolvable scales to 
the eliminated ones can be viewed as an energy loss due to eddy viscosity, and will be kept equal 
to the energy dissipation rate of original turbulence by the molecular viscosity  Kraichnan (1976) 

has shown that an effective eddy viscosity acting on resolvable modes ck k  must depend on 

two parameters, k  and .ck  Computation of Skc using Kraichnan’s two-parametric eddy viscosity 

 ck k will be given in Section 7. A simpler derivation presented in this section is based on the 

Kolmogorov spectrum and eddy viscosity that accounts for the dissipative action of eliminated 
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scales on all remaining scales k < kc, yet depends only on kc. The eddy viscosity  ck k  has a 

cusp-like form as k → kc (Kraichnan, 1976). Ignoring the cusp, the approximate k-independent 

value ( )ck  can be found from the energy balance equation 

 2
02 ( ) ( )ck

ck k E k dk    (3.2) 

Substituting the inertial range Kolmogorov spectrum 2/3 5/3( ) KE k C k  one finds 

 1/3 4/32
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   . (3.3) 

For the filtered velocity ( , )ct ku x , the enstrophy production relation (2.1) holds with the upper 

limit of integration replaced by kc and the molecular viscosity 0 replaced by ( )ck : 
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Let us now derive the filtered field equivalence of the denominator in equation (1.1). The spectral 
tensor of the solenoidal isotropic field is (Monin & Yaglom, 2013) 
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Integrating 2
1 11( )k F k  over the sphere of radius kc obtains the required relation: 
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The inertial range skewness Skc can now be computed using equations (1.3), (3.4) and (3.6) with 
the result  
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The same result can be obtained using the modified equation (2.3), with the upper limit of 
integration replaced by kc and the molecular viscosity 0 replaced by ( )ck . For the Kolmogorov 

constant CK value belonging to the interval between 1.5 and 1.7, the value of Skc is between -
0.393 and -0.326. This result will be verified in Section 5 using direct numerical simulations. 

4. Inertial range skewness in one-directional filtering 

 The inertial range skewness defined above can be assessed using laboratory data if the 
total turbulent field is measured. However, usually this is not obtained in field experiments where 
only longitudinal spectral components are collected by a hot-wire probe. In this case, a different 
derivation of inertial range skewness is needed. 

We start from the derivation of the equation for 0S utilizing the Von Karman-Howarth-

Kolmogorov equation (VKHK) written in physical space (De Karman & Howarth, 1938; Nelkin, 
1994). The VKHK equation is an exact dynamical relation which can be derived from the Navier-
Stokes equations for isotropic turbulence (Monin & Yaglom, 2013), 
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  0( ) 6 ( ) / 4 / 5LLL LLD r dD r dr r     . (4.1) 

Here ( )LLD r and ( )LLLD r  are the second and the third order velocity structure functions 

respectively: 

  2
1 1 1 1( ) ( ) ( )LLD r u x r u x     (4.2) 

  31 1 1( ) ( ) ( )LLLD r u x r u x     (4.3) 

Nelkin (1994) derived an equation for 0S using the Taylor expansion of equation (4.1), which, in 

terms of order r, gives the energy dissipation 

  20 1 115 u x     , (4.4) 

while the terms of order r3 express the balance between enstrophy production and dissipation: 

    23 2 2
1 1 0 1 12 .u x u x        (4.5) 

The last relation allows one to rewrite the skewness 0S in spectral form: 
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Let 1 1 2 3 1 1 2 3 1 1 1( , , , ) ( , , , )exp( )u k x x t u x x x t ik x dx    be the one-dimensional Fourier 

transform of the velocity component u1. For a cut-off wave number 1ck , we now define the 

filtered velocity component 1 1( , )cu t kx as the physical space velocity with all Fourier modes 

1 1ck k  set to 0. The skewness 1cS  is defined according to (1.1) with the original velocity replaced 

by the filtered velocity 1 1( , ).cu t kx  

 The one-directional filtering destroys the isotropy of the remaining resolvable modes 
which significantly complicates the derivations. Still, derivations similar to those that resulted in 
(4.6) and based on structure functions (4.2), (4.3) can be employed in order to compute inertial 

range skewness 1cS . Modification is needed since filtering out of modes 1 1ck k  generates the 

eddy viscosity 1 1( )ck that replaces the bare viscosity ν0. Note, that the “eddy viscosity” ν1(k1c) 

results from the elimination of modes with only the first component of the vector k larger than 
k1c. It is different from the isotropic eddy viscosity (3.3) obtained by scale-elimination of all modes 
with |k| > kc. We also ignore a possible cusp-like behavior of the corresponding two-parametric 
viscosity.  

An expression for 1 1( )ck can be derived using the energy balance equation that accounts 

for the fact that the energy ‘loss’ based on the eddy viscosity is equal to the energy dissipation 
rate of the original turbulence at  molecular scales: 
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where the longitudinal energy spectrum 1 1( )E k is 
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Substituting (4.8) into (4.7), we obtain 
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We now define the second and the third order longitudinal velocity structure functions of the 
filtered velocity component 1 1( , )cu t kx : 

   21 1 1 1 1 1( ) ( ) ( )LL c cD r u x r k u x k     (4.10) 

   31 1 1 1 1 1( ) ( ) ( )LLL c cD r u x r k u x k     (4.11) 

After filtering, the LHS of equation (4.1) becomes  
1 1( ) 6 ( ) ( ) / .LLL LLcD r k d D r dr      At large 

separation distances 11 cr k , the viscous term in this expression is negligibly small and the 

remaining 3rd order structure function approaches the Kolmogorov limit   ( ) 4 5 .LLLD r r  

Assuming that the separation distance r is infinitesimally small, it is possible to compute the Taylor 
series decomposition: 
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In this derivation, we routinely imposed the condition of flow homogeneity. The final result is 
identical to the Taylor series decomposition of equation (4.1) with the exception that 0 in this 

decomposition is replaced by 1 1( )ck , given by (4.9). The same is true also for the next 3( )O r

term which has the form    23 2 2 3
1 1 1 1 1 1 1 1 1 1( ) 2 ( ) ( ) .c c cu x k x k u x k x r      

 
Note that 

the filtered field remains homogeneous and isotropic on scales 1ckk , and that equation (4.12) 

has the same asymptotic value 4 5 r at large and small r as the original VKHK equation. We 

therefore infer that the VKHK equation remains intact also for the filtered velocity if the molecular 

viscosity is replaced by 1 1( ).ck  Thus, the coefficient in the 3r term of (4.12) is equal to zero, which 

leads to the filtered field analog of equation (4.5): 

    23 2 2
1 1 1 1 1 1 1 1 1 1( ) 2 ( ) ( ) ,c c cu x k x k u x k x        (4.13) 

Equation (4.13) yields the inertial range skewness S1c in the form 
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Finally, substituting (4.8) and (4.9) into (4.14), we get 
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As expected, the inertial range skewness is independent of the cut-off wavenumber 1 .ck  For 

the Kolmogorov constant CK value between 1.5 and 1.7, 1cS  is between -0.239 and -0.198. These 

values are smaller than the values of kcS  (equation (3.7)) by the factor 1.648. In the next section, 

we use large Reynolds, high resolution atmospheric and laboratory measurements, in order to 
verify this analytical prediction. 

5. Computation of skewness from atmospheric measurements, laboratory 
experiments and numerical simulations  

Atmospheric measurements conducted during the MATERHORN campaign were used to 
compute the inertial range skewness 1cS . The campaign was conducted at the Granite Mountain 

Atmospheric Sciences Test Bed (GMAST) of the US Army Dugway Proving Ground (DPG), Utah (for 
details, see Fernando & Pardyjak 2013; Fernando et al. 2015).  In one of the 32 m high flux towers 
of MATERHORN, a double-combo system was mounted at a height of 6 m, and this tower was a 
part of the densely instrumented flux tower array, designed to study stable stratified downslope 
(katabatic) flows at night on the Eastern Slope of the Granite Mountain. The combo systems and 
associated turbulence measurements are described in Kit et al. (2017). In this system, multi-hot-
wire probes were embedded into the measured volume of a collocated sonic anemometer. Such 
a dyad (“combo”) enables in-situ calibration of a hot-film probe, as was discussed in Kit et al. 
(2010) and Kit et al. (2017). 

As explained in Kit et al. (2017), some data periods include burst events that may affect 
the skewness. Therefore, the data intervals that do not contain bursts were chosen first. The data 
contains 9 minutes of velocity measurements with a sampling rate of 2000 Hz. This allowed 
dealing with velocity fluctuations for frequencies up to 1000 Hz (Nyquist frequency). The total 
length included 1,080,000 data points for every velocity component. Each array was partitioned 
on 9 pieces, with each piece containing 1 min of measurements. The partition was used for 
ensemble averaging.   

The kinetic energy spectra of all 3 velocity components (u, v, w) are shown in Figure 1. 
Components u and v are horizontal and w is vertical, u is in the mean wind direction. The Taylor 
frozen turbulence hypothesis was employed in spectral computations, and the frequency-
dependent spectra are shown. It is possible to transform the frequency to the wavenumber kx 
using the longitudinal average wind speed U as 

 2 /xk f U . (5.1) 

A well defined inertial range is evident over almost two-decades of frequences 1<f<100 Hz. The 
dissipation range at f >100 Hz is also well resolved. Note that the Taylor microscale is  λ=0.1 m, 
which corresponds to the frequency 40 Hz. The Taylor microscale Reynolds number is 𝑅 ≈ 1250. 
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Figure 1. One-dimensional spectra of 3 velocity components, u (blue), v (green) and w (red); the 

dashed line corresponds to the Kolmogorov -5/3 spectrum. 

For every cut-off frequency cf , the cf -dependent skewness was computed using the 

following steps: in the Fourier transformed longitudinal velocity ( )u f ,  all the frequency modes 

outside of the interval c cf f f   are set to 0; then, the inverse Fourier transform of the 

filtered  velocity ( )cu f f  is taken and the filtered velocity ( )cu t f is obtained in the physical 

space; the time derivative ( )cu t f t   is calculated and substututed in the following formula, 

which leads to the final result: 
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Use of the Taylor hypothesis allows the time derivative of a single point measurement to be 
related to the spatial derivative as  

 
u u

U
t x

 
 

 
 . (5.3) 

Substitution of (5.3) into (5.2) confirms that (5.2) is identical to the k1c-dependent skewness 1cS

defined in the previous section. 
The scale-dependent skewness is shown in Fig. 2. In the inertial range 10< fc <100 Hz, the 

measured skewness is almost identical to the theoretical prediction. The gradual decrease of the 
skewness at fc <10 Hz is due to the effect of large scales that do not belong to the inertial range.  
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Figure 2. Scale-dependent skewness 1cS  as a function of the cut-off frequency fc. The analytical 

value 0.24 is shown by a dashed line. 

In order to clarify the large-scale influence, we computed skewness at the cut-off frequency fc =85 

Hz from the filtered data in which, in addition to high frequency modes cf f , low frequency 

modes lf f  were also removed. The result is shown in Figure 3 as a function of .lf  If all low 

frequency modes are kept ( 0lf  ), the skewness is very close to the theoretical value -0.24. With 

increasing low-frequency cut-off, the skewness remains almost constant up to 2.lf   Above this 

value, the skewness decreases with increasing lf  until it approaches 0 at .l cf f  

 
Figure 3. Scale-dependent skewness at fc=85 Hz as a function of the low-frequency cut-off fl.  

Analytical value (0.24) is shown as a dashed line. 

Thus, we conclude that the skewness is not a local parameter - almost two decades of inertial 
range modes below the given frequency fc contribute to 1cS .  

Laboratory measurements: turbulent jet  

The results from the jet facility (Kit et al., 2010) were employed for computations of 
skewness in the inertial range. The jet facility used was a multi-purpose calibration rig. It was used 
to obtain a canonical turbulent (jet) flow in the laboratory and also as a calibrator in the field. The 
laboratory measurements may have some advantages in comparison with field experiments. The 
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mean jet direction and velocity are known and temperature variations are minimal in the 
laboratory. In the field, however, the wind velocity and direction are variable depending on the 
larger scale forcing conditions. 

The custom-made calibration unit consisted of a computer controlled blower, connected 
to a settling chamber followed by a contraction with a cross-section ratio approximately 11 and 
exit nozzle diameter De = 38.1 mm. The same facility was used to measure all 3 components of 
turbulent velocity at various downstream cross-sections.  For more details, see Kit et al. (2010). 

 
Figure 4. One-dimensional spectrum of horizontal velocity component in the jet experiment; the 

dashed line corresponds to the Kolmogorov -5/3 spectrum. 

Spectra in this case are not isotropic (not shown) and have only a very short inertial range (Figure 
4). Skewness, accordingly, is close to the theoretical value of 0.24 only in a very short frequency 
interval (Figure 5). 

 

 
Figure 5. Scale-dependent skewness 1cS  in the jet experiment as a function of the cut-off 

frequency fc. Analytical value (0.24) is shown as a dashed line. 
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Numerical simulations 

Skewness of the longitudinal velocity derivative from inertial to dissipation ranges of 
three-dimensional homogeneous steady turbulent flow was studied using a high-resolution Direct 
Numerical Simulations (DNS) with 10243 grid points. A pseudo-spectral code with large-scale 
random forcing and triply periodic boundary conditions was used. The white in time Gaussian 

forcing was placed in the range of scales 1 6k  . Details of the numerical scheme can be 
found in Gotoh et al. (2002). The Taylor microscale Reynolds number 𝑅  was 380. 
 The 3D energy spectrum is presented in Figure 6. The spectrum has a well-developed 
inertial range  of 3 80k   with a Kolmogorov constant of CK = 1.64. Skewness parameters kcS

and 1cS , shown on Figure 7, are very close to theoretical values in the inertial range, except at 

scales near the forcing scale. In the dissipation range when all scales are resolved, the absolute 
value of skewness is larger, close to 0.6, which indicates that energy dissipation decreases here 
more rapidly than enstrophy production.  

 
Figure 6. Three-dimensional energy spectrum computed in DNS. 

 

 
Figure 7. Scale-dependent skewness kcS  (blue) and 1cS  (red) obtained in the DNS as a function of 

the cut-off wavenumber. Analytical values corresponding to eqs. (3.7) and (4.15) are shown as 
dashed lines. 
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6.  QNSE as an efficient tool to compute inertial range properties. Short 
description of the QNSE methodology 

Inertial range skewness (3.7) derived in Section 3 relies on the assumption of the one-
parametric eddy viscosity ( )ck and strongly depends on the empirical Kolmogorov constant CK. 

In this section we use the Quasi-Normal Scale Elimination (QNSE) theory (Sukoriansky et al., 2003, 
Sukoriansky et al., 2005) in order to remove these restrictions.  The QNSE method utilizes the 
Fourier transformed equations of motion and is well suited for calculating inertial range 
parameters. The major difficulty, however, is the fact that the momentum equation becomes 
strongly nonlinear as the Reynolds number increases with increase of scale. The situation is 
different near the dissipation scales where the linear and nonlinear effects are comparable. In 
other words, the scale-dependent Re is O(1) on these scales. The smallness of Re allows one to 
apply a renormalized perturbation method operating with a “dressed” or “effective” eddy 
viscosity, rather than with the “bare” molecular value. The QNSE method employs gradual 
coarsening of the turbulent field by successive averaging over small shells ∆𝑘 of Fourier modes 

adjacent to moving dissipation cut-off ck (shell elimination procedure). The averaging generates 

small 𝑂(∆𝑘) correction to the viscosity that accounts for the transport processes that take place 
on the eliminated scales. With the increase of effective viscosity, the effective dissipation wave 

number ck  also decreases. The effective Re built upon the scales pertinent to the new value of 

ck is again O(1), thus making it possible to repeat the procedure. Taking the limit ∆𝑘 → 0, one 

obtains a differential equation relating the effective viscosity to the current value of ck . The 

effective ck -dependent (eddy) viscosity resulting from this procedure can be used as a 

subgridscale (SGS) viscosity in large eddy simulations (LES), where ck  is determined by the grid 

resolution (Yakhot et al. 1989; Sullivan et al. 2003; Chow et al. 2005). The algorithm of successive 
small scale elimination was initially developed within the renormalization group theory of 
turbulence, RNG (Forster, Nelson, & Stephen, 1977; Yakhot & Orszag, 1986; Smith & Woodruff, 
1998; Zhou, 2010; Sukoriansky et al., 2003) but it differs from the RNG because it uses neither the 
𝜀-expansion nor the fixed-point arguments. Instead, the QNSE relies upon the assumption of 
quasi-normality within the shell ∆𝑘. The QNSE method has been applied to various turbulent flows 
such as isotropic homogeneous turbulence with no extra strains (Sukoriansky et al. 2003), stably 
stratified flow (Sukoriansky et al. 2005), turbulent magneto-hydrodynamic flow (Sukoriansky & 
Zemach, 2016), and turbulent flow in a rotating frame (Sukoriansky & Galperin, 2016). In the case 
of neutral flow, the QNSE recovers the RNG results, yielding the classical Kolmogorov and Corrsin-
Obukhov spectra of the kinetic energy and temperature fluctuations and their respective universal 
constants. According to this theory, the wavenumber-dependent eddy viscosity ( )ck is  

 1/3 4/3( ) 0.46 .c ck k     (6.1) 

The eddy viscosity (6.1) is calculated using the “distant interaction” or “spectral gap” 
approximation (Sukoriansky & Galperin, 2016). In this computation only the terms up to 

 2cO k k 
  

 are retained. This is equivalent to introducing a virtual spectral gap between 
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resolvable and eliminated scales and taking the renormalized viscosity acting on the scales 

(0, )ck k  constant, and equal to their values at ck .  The three-dimensional energy spectrum 

( )E k  in a neutral flow derived within the QNSE framework (Sukoriansky et al. 2005) is 

 2/3 5/3( ) ,KE k C k    (6.2) 

with CK 1.5.  

In the next section we introduce a correction to this value and derive the actual two-

parametric eddy viscosity  ck k  accounting for the eliminated scales on different resolvable 

scales k. 

 

7.  Computation of inertial range skewness using QNSE results and two-parametric 
eddy viscosity 

Kraichnan (1976) has shown that an effective eddy viscosity acting on resolvable modes 

ck k  must depend on two parameters, k  and ,ck  and may be defined as 

    
2

, ,
2 ( )

c
c c

T k k
k k k k

k E k
      (7.1) 

where  cT k k  is the energy transfer rate from mode k to all eliminated modes .ck k The 

transfer function  cT k k  obeys the detailed conservation condition, wherein any triad satisfying 

0  k p q  exchanges energy among their members conservatively. In a wide class of Quasi-

Normal spectral closures, (Orszag, 1974; Kraichnan, 1976) the triad-interaction is given by the 
integral 

   2 2( ) ( ) ( ) .c kpq kpq
k

T k k b k E p p E k E q dpdq
p q

      (7.2) 

Here the integration   signifies p and/or q > kc, 3( ),kpq
p

b x y z
q

  ,x ,y z  are cosines of 

interior angles opposite k, p, q, respectively, and kpq is the triad relaxation time. Different 

spectral closure models provide different expressions for kpq  . We compute kpq using the QNSE 

theory: 

 
2 2 2

1
,

( ) ( ) ( )kpq k k p p q q


  


 
  (7.3) 

where ( )k is given by (6.1). 

 The normalized two-parametric viscosity   / ( )c ck k k   is presented in Figure 8 as a 

function of / ck k . One can see that this function has a cusp at k approaching kc. 
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Figure 8. Normalized two-parametric viscosity 

The two-parametric viscosity  ck k  was tested in Direct Numerical Simulations of 

homogeneous isotropic 3D turbulence in a triply periodic box with 5123 nodes. The molecular 

viscosity was replaced by  ck k  with 240.ck  The energy spectrum ( )E k of the simulated 

velocity field is shown in Figure 9.  The -5/3 scaling is clearly seen in the whole range of resolvable 
scales. 

 
Figure 9. 3-D spectrum obtained using DNS with the two-parametric viscosity. Note the -5/3 

shape in the entire spectral range. 

The inertial range skewness Skc can be computed using the modified equation (2.3) with molecular 

viscosity 0 replaced by  ck k : 

 

 
4

0
3/2

2
0

( | ) ( )4
0.46

35 2 15 ( )

c

c

k
c
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k

k k k E k dk
S

k E k dk


   


  (7.4) 

The absolute value of this parameter is larger than 0.39 derived in Section 3 using the one-
parametric viscosity (equation (3.7) with CK = 1.5). This is because the cusp in the two-parametric 
viscosity increases contribution of the third moment of 1 1/u x   relative to its second moment. 

The DNS results shown in Section 5 support a smaller value 0.39kcS  . However, the DNS results 

are pertinent to a relatively small Re number. A higher resolution DNS with high Re numbers are 



 

15 
 

needed to verify which of these results is more reliable. Note that Skc  in (7.4) is close to -0.49 
derived using the Renormalization Group (RNG) method (Yakhot & Orszag, 1986). Recall, that 
while being conceptually close to the RNG theory, the QNSE derivations of skewness do not 
employ the ε-expansion and distant interaction approximation, according to which the 
“renormalized” parameters are computed at 0.k   

8. Intermittency effects 

Data obtained in the atmosphere, laboratory and in numerical simulations show that the 
skewness  𝑆   depends on the Reynolds number (Sreenivasan & Antonia, 1997). Measurements 
over a wide range of 𝑅  (Tabeling et al., 1996) indicate that 𝑆  first increases with 𝑅  up to 𝑅 =700 
and then plateaus. Such behavior can be explained by the influence of fluctuations of the rate of 
local turbulent energy dissipation on higher-order structure functions at small separation 
distances r (Van Atta & Antonia, 1980). However, in more recent experiments in wind tunnels, 
(Gylfason et al. 2004) the transition at 𝑅 =700 has not been observed, wherein 𝑆  continued to 
increase slowly with 𝑅 , although a good agreement was noted with previous experiments for R 
< 400. 

Owing to intermittency effects, as the Reynolds number increases, the distribution of velocity 
derivatives tends to become increasingly flatter with rising “tails” (Belin et al., 1997). Skewness, 
defined as the third order moment of velocity derivative normalized by the second order moment, 
mixes moments of different orders, and thus may increase with 𝑅 . A reviewer suggested a 
different form of skewness, 

 33
1 1 1 1( / ) /S u x u x     ,  (8.1) 

which is worthy of examination. 

For brevity, let us denote the velocity increment ( ) ( )ru u x r u x    by 𝑋 (we will use the 

same notation also for the longitudinal derivative assuming infinitesimal r ). Consider the 

normalized thp order moment of X  

 
 

*
/ 2

2

p

p p

X
H

X
 . (8.2) 

The conventional thp order moment of X can be written in the form   

 
 

*
/ 2

2

p p

p pp p

X X
H H

XX
  .  (8.3)  

pH  depends on R due to the intermittency effect. For even p , the factor 1
ppX X  and 

the intermittency effect is imbedded in *
pH . It is reasonable to assume that for any real p , *

pH

alone carries the effects of intermittency. This conjecture is supported by the fact that the factor
ppX X in (8.3) weights both pX and

p
X  for the same values of X  within its probability 
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distribution function 𝑃(𝑋), thus presumably eliminating the intermittency effect.  It is also 

supported by the results presented in Belin et al. (1996), which indicate that 3H and *
3H   behave 

similarly with respect to dependence on R.  

The ratio *
0 3S S H  represents the normalized third order moment of 1 1/u x   . As follows 

from the above, *
3H  can be considered as an appropriate “intermittency descriptor (sifter)” and 

therefore the new skewness S  is expected to be less affected by intermittency. We computed the 
scale-dependent values kcS  and 1cS of the redefined skewness using small-scales filtering 

procedures described in Sections 3 and 4. Comparison of 1cS and 1cS  computed from the 

atmospheric data collected during the MATERHORN campaign are shown in Figure 10. Figure 11 
compares 1cS with 1cS and kcS with kcS , based on 10243 resolution DNS at 𝑅  =380. 

 
 

Figure 10 Comparison of old (red) and new (blue) scale-dependent skewness 1 1c cS and S  
calculated using MATERHORN data as a function of the cut-off frequency fc. The inertial sub-

range values are shown by dashed lines. 

 
Figure 11 Comparison of old (red) and new (blue) DNS-derived scale-dependent skewness 

1 1, ,c c kcS S S and kcS  as  functions of the cut-off wavenumber kc. The inertial sub-range values 
of each parameter are shown by dashed lines. 
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In all cases in the inertial subrange, the newly defined values are smaller than the conventional 
ones approximately by a factor of 2. When all modes are taken into account, including the 
dissipation range scales, the ratio grows to approximately 2.5. As explained above, this ratio is 

determined by the intermittency descriptor
3/23* 2

3 1 1 1 1/ ( / )H u x u x     . The value of this 

factor for a Gaussian random variable is about 1.6, lower than the values of *
3H  computed both 

from the filtered (~2) and original flow fields (~2.5). Further high quality experiments in the ABL 
and high resolution DNS are necessary to establish the dependence of the skewness factor on R 

and to investigate whether *
3H  enables to completely separate the effects of intermittency.   

 
9. Concluding remarks 

The skewness of the longitudinal velocity derivative is directly related to the enstrophy 
production, and therefore is an important parameter for describing turbulence. In addition, the 
skewness is used for qualitative assurance of turbulence measurements, for example, level of 
noise and unsteadiness.  Measurement of skewness requires accurate measurements at the finest 
scales in the dissipation subrange, which is an onerous task. In this paper, a derivative skewness 
of the inertial range scales that is conducive for measurements was introduced and its value was 
derived analytically using one-parametric and more accurate two-parametric eddy viscosities. The 
assumption of local isotropy enabled obtaining exact relations for the case where all modes with 

their wave number amplitude greater than a cut-off ck were set to zero. In the case of one-

dimensional filtering, which is more appropriate when field measurements are considered, the 
filtered form of the VKHK equation was employed. The experimentally determined values of the 
inertial range skewness were in very good agreement with the theoretical prediction based on 
the assumption of isotropy.  

When fine scales of the order of the Kolmogorov scale are accurately resolved, the 
skewness can be computed straightforwardly. In the current study we used high quality data 
collected during the MATERHORN field campaign, laboratory experiments and DNS. The 
MATERHORN data were obtained under nocturnal conditions in a mountain terrain, but 
stratification therein was weak. An obvious advantage is that these data belong to high Reynolds 
numbers typical of environmental turbulence, and the Taylor microscale 𝑅  of the field data used 
was of the order of 1300.  On the other hand, the necessity of using robust high resolution probes 
in this natural environment required the use of relatively large-sized, multi-sensor-hot-film probes 
(few millimeters) that limit the measurement resolution at fine scales. To circumvent this 
limitation, the derivative skewness determined for the inertial range was used. There are notable 
advantages of using this special skewness: i) no necessity to resolve fine scales; ii) can be 
estimated analytically by employing very general assumptions; iii) in the inertial subrange, this 
newly defined skewness is not dependent on the cut-off frequency.  

Additionally, isotropic turbulence was simulated numerically at relatively high resolution 
(10243) in a triply periodic box using DNS. A fairly well developed inertial range with a Kolmogorov 

constant 1.64KC   was obtained. The skewness was computed using 3D- and 1D-filtering of the 
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velocity fields. The values computed for the inertial range were close to the theoretical prediction 

corresponding to 1.64KC  ,  but slightly lower than the value derived from the MATERHORN 

data. The difference may indicate that the computational resolution of DNS is not sufficient. 
The two-parametric eddy viscosity was derived using QNSE modeling. To check the 

validity, it was implemented in DNS computations. The resulting spectra were of Kolmogorov type 

in the whole range of wave numbers smaller than the cut-off ck  and sharply dropped to 0 at values 

higher than the cut-off. The skewness in the inertial range obtained using the two-parametric 

viscosity was 0.46kcS   . This is higher than the DNS-derived value. The reason for this 

difference is unclear, and future studies should examine whether it is due to insufficient DNS 
resolution or the deficiencies of the two-parametric viscosity used. The accurate value of the 
inertial subrange skewness can be used for quality assurance of DNS data, to determine how close 
the simulations represent the correct turbulent velocity field. 

In numerical simulations with 𝑅  up to 380, the dependence of inertial range skewness 
on 𝑅  was not observed. It is known that intermittency is stronger on dissipative scales than in 
the inertial range. Also, the effect of intermittency is strong for high order moments, and relatively 
mild for 3rd order moments. Therefore, the inertial range skewness is expected to weakly depend 
on 𝑅 . This conjecture needs to be examined in future studies. 

The inertial range skewness is different from the normalized third order structure 

function  3/2
( ) / ( )LLL LLD r D r computed at a large separation r (Garg & Warhaft, 1998; Shen & 

Warhaft, 2000; Davidson & Pearson, 2005). At large r the viscous term in the VKHK equation (4.1) 

can be neglected, the 3rd order structure function ( )LLLD r approaches the Kolmogorov -4/5 limit 

and  3/2
( ) / ( ) 0.28LLL LLD r D r   . The inertial range skewness 1cS , on the other hand, is 

computed at infinitesimally small r using the filtered VKHK equation (4.12), where the 
“renormalized” eddy viscosity plays the dominant role. 

Real turbulent flows are often affected by external body forces such as buoyancy and 
Coriolis forces that act differently on different scales. The derivative skewness of the filtered 

velocity field with moving filtration cut-off ck may shed light on modification of spectral energy 

transport and vorticity dynamics by external forces. 
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