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Abstract9

Approximate Bayesian computation (ABC) is a data-driven technique that uses many low-cost numerical10

simulations to estimate unknown physical or model parameters (e.g., boundary conditions and material11

properties), as well as their uncertainties, given reference data from real-world experiments or higher-fidelity12

numerical simulations. In this study, ABC is used to estimate unknown parameters in complex thermal-fluid13

flows, and the technique is demonstrated on a periodically forced high-temperature jet and a steadily forced14

helium-air plume. In the first case, computational reference data are used to assess the accuracy of ABC15

when estimating the frequency, amplitude, and mean of the periodic velocity forcing at the jet inlet. These16

tests show that ABC provides accurate and reasonably certain estimates of inflow parameters even when17

the model simulations imperfectly represent the physics underlying the reference data. These tests also18

show that measurements far from the inlet can be used to perform the estimation, and that temperature19

measurements can be used to infer velocity inflow parameters. For the second case, ABC is used to estimate20

the inlet Richardson number and its uncertainty given experimental measurements of the Strouhal number21

within the plume. Once again, the approach is able to accurately estimate unknown parameters with22

relatively low uncertainty. As a result, ABC is shown to be a versatile technique for estimating unknown23

physical parameters when knowledge of a real-world system is limited or incomplete.24
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I. INTRODUCTION25

Computational simulations are widely used to design and analyze systems involving complex26

thermal-fluid flows, from microscale heat transfer in thermal management devices to liquid propul-27

sion in heavy-lift rockets. Nearly all such simulations are intended to provide three-dimensional28

(3D) spatially and temporally resolved numerical solutions of physics-based governing equations29

for realistic geometries, boundary conditions, and material properties. Prior to making simulation-30

based design and operational decisions, however, computational accuracy must be demonstrated31

by validating against (typically experimental) reference data for realistic or canonical test cases.32

As simulation fidelity has improved over the past decade with the development of higher-order and33

geometry-resolving numerical techniques, as well as with the increasing use of petascale computing34

resources to achieve very fine spatial resolutions and improved physical realism, a long-standing35

difficulty in such validation efforts has come into sharper focus.36

Namely: Even if a simulation is able to solve physically-realistic governing equations with high37

accuracy, unavoidable uncertainties in real-world boundary conditions, material properties, and38

other parameters result in ambiguity as to whether the computational and real-world systems are39

actually equivalent. That is, there are few assurances that discrepancies between computational40

and experimental results during a validation test are not simply due to limitations in the character-41

ization of the real-world system. Cases where knowledge of a real-world system is limited include42

experiments that were not originally intended for validation purposes, systems with limited access,43

or parameters that are difficult to measure directly [1].44

In broad terms, this difficulty can be addressed by proposing distributions of likely parameter45

values, performing simulations with parameters sampled from those distributions to determine the46

spread of outcomes in a particular quantity of interest within the flow, and then using statistical47

inference to determine distributions for unknown parameter values [1–4]. This approach can, in48

principle, be attempted using full Bayesian analyses, which have recently gained popularity for49

parameter estimation in engineering applications [5–8]. However, in nearly all such analyses, the50

requisite components of Bayes’ theorem (specifically, the likelihood function) may be unknown51

or enormously costly to compute and, consequently, non-physics-based reduced-order surrogate52

models have often been used to sample the unknown parameter space [6, 7, 9–11]. Optimization53

techniques have also been used for parameter estimation (e.g., [12–16]), but these methods seek to54

provide single values of unknown parameters, with no intrinsic measure of uncertainty when using55

potentially imperfect computational models and real-world data.56

2



In the present study, approximate Bayesian computation (ABC), a data-driven Bayesian tech-57

nique adopted from the biological and geophysical sciences, is used to estimate unknown parameters58

for complex, turbulent thermal-fluid flows. The power of ABC lies in the fact that far fewer simula-59

tions are required than in full Bayesian analyses since ABC does not require a likelihood function,60

thus permitting the use of physics-based models. Rather than attempting to match the reference61

data at all locations and times, as in full Bayesian analyses, the ABC method develops an approx-62

imate posterior distribution for unknown parameters through comparison of summary statistics63

from the reference data and model simulations. A wide variety of reference data can be used to64

drive the estimation, including measurements that are only indirectly related to parameters of in-65

terest. Because the technique naturally provides posterior distributions for unknown parameters,66

Bayesian confidence intervals can be obtained along with parameter estimates. Once parameter67

estimates are obtained, they can either be used in higher-fidelity numerical simulations of the same68

system, or they can be considered as part of the description of the real-world system itself (with69

appropriate uncertainty caveats).70

This study is one of a growing number of efforts to use data-driven methods with either exper-71

imental or higher-fidelity computational reference data to improve accuracy and quantify uncer-72

tainty in turbulent flow simulations. For example, ensemble Kalman filtering (EnKF) approaches73

have been used to assimilate reference data in simulations [17–20] and to infer turbulence model74

discrepancies [21]. In such approaches, reference data are used to update the state of a simulation75

or parameters in the simulation as the simulation progresses. Generally, however, EnKF methods76

require extensive and high quality reference data to provide reliable state and parameter estimates.77

The maximum a posteriori (MAP) method has also been used to infer both parameter [22] and78

model [23] uncertainties. This method maximizes the posterior using either an analytical function79

or a Monte Carlo approach, but the analytical function used to represent the posterior (or the80

likelihood function) is often only known approximately, and the number of simulations required81

in even Markov chain Monte Carlo approaches can be enormous. Recently, the ABC method has82

been used to infer Arrhenius parameters for chemical kinetics rate coefficients in the context of83

combustion [24].84

The present study is specifically targeted at problems for which the reference data are spatially85

and temporally sparse, statistical in nature, or otherwise lacking in sufficient detail to update the86

model simulations at all locations and times (precluding the use of EnKF methods) and for which87

the true posterior is either intractable or prohibitively expensive to compute (precluding the use of88

MAP methods). As a demonstration of ABC, this paper outlines the estimation of inflow boundary89
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conditions for two compressible turbulent flows: (i) a periodically forced high-temperature jet, and90

(ii) a weakly but steadily forced helium-air plume. Both cases are two-dimensional (2D), but are91

physically complex due to compressibility and the corresponding coupling between temperature,92

density, buoyancy, and forced advection. The first case is intended to demonstrate the utility and93

breadth of ABC by using computational reference data to estimate the frequency, amplitude, and94

mean of the forced inflow. Since these parameters and the underlying physical model are precisely95

known for the computational data, the success of the ABC approach can be quantified. The second96

case is a demonstration of ABC using experimental measurements in an engineering context.97

It should be noted that the present study is focused on demonstrating the use of ABC for98

estimating physical parameters that are difficult to obtain for real-world systems, as opposed99

to calibrating model parameters used in reduced-order or engineering models of more complex100

phenomena. Such model parameter calibrations are also possible using ABC and are the subject101

of future research [25].102

II. APPROXIMATE BAYESIAN COMPUTATION103

The ABC framework is a relatively new approach for linking reference data to physical and104

model parameters [26–32]. It was first conceived by Rubin [33] and then subsequently applied by105

Pritchard et al. [34] to the study of population dynamics. Although the technique has traditionally106

been applied in biology [34–40], it has recently gained traction in geophysics [41–47], primarily for107

calibrating parameters in reduced-order models of complex phenomena. It has also been used108

recently in the context of chemical kinetics modeling for combustion [24].109

From a fundamental perspective, the ABC method produces a posterior distribution of unknown110

parameters given some reference data. This occurs by comparing observations or summary statistics111

from the reference data to corresponding data or summary statistics from lower-cost physics-112

based ‘model’ simulations (e.g., simulations with coarse spatial resolutions or lower-order numerical113

schemes). The model simulations are repeated many times, with each simulation using parameters114

drawn from a prior distribution. The prior distribution is the best guess at the span of the unknown115

parameter space; it must be wide enough to contain the true parameter values, but narrow enough116

to keep the task computationally manageable. Parameter values are retained if the model data117

or summary statistics are similar to the reference observations. Once many such candidates are118

obtained, a posterior distribution is formed, providing estimates for the most likely parameter119

values as well as their uncertainties, given the reference data.120
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FIG. 1. [Color online] Schematic of the general ABC approach corresponding to Method D from Marjoram

et al. [27], and of the specific ABC implementation used in the present study.

The specific ABC algorithm used in this work is Method D from Marjoram et al. [27]. Given121

the summary statistic S obtained from reference data D, this algorithm involves the following122

steps (see also the schematic in Figure 1):123

1. Generate parameters θ from the prior distribution P (θ).124

2. Simulate approximate data D̂ using parameters θ and compute the approximate statistic Ŝ.125

3. Calculate the distance δ(S, Ŝ) between the reference, S, and simulated, Ŝ, statistics.126

4. Accept θ if δ(S, Ŝ) ≤ ε (where ε is the ‘rejection distance’) and build the posterior distri-127

bution of accepted parameters, denoted P [θ | δ(S, Ŝ) ≤ ε].128

5. Return to step 1 and repeat a total of N times until a reasonable estimate is obtained for129

the posterior distribution.130

In general, the parameters θ, data D and D̂, and summary statistics S and Ŝ, are multi-131

dimensional and are correspondingly indicated by boldface notation.132

In broad terms, the prior distribution is simply the initial guess for the values of the true133

parameters. Greater confidence in the values of unknown parameters permits a more concentrated134

prior distribution (e.g., a Gaussian instead of a uniform distribution). The only requirement on135
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the prior is that its range spans the true values of the unknown parameters. In many practical136

cases, a wide prior can be used initially to gain an approximate idea of the true parameter values,137

and then a narrower prior can be used to determine parameter values with greater precision.138

The use of summary statistics is intended to reduce the overall computational cost of the pa-139

rameter estimation. Although it would be ideal to compare all of the available data D to all of the140

simulation data D̂, this is typically a very high-dimensional problem and is not computationally141

feasible in general. Thus, instead, summary statistics are used. A key challenge in successfully142

implementing ABC is to identify relevant summary statistics that significantly reduce the dimen-143

sionality of the data, while still maintaining sufficient identifiability of unknown parameters [48].144

Examples of summary statistics include averages, standard deviations, probability distribution145

functions (PDFs), and power spectral densities (PSDs).146

The choice of distance function is typically based on the form of the summary statistic. For147

example, the root mean square error can be used to compare spatial profiles of average quantities148

and the Hellinger distance [49] or Kullback-Leibler divergence [50] can be used to compare PDFs.149

The specific choice of rejection distance, ε, is typically determined by a balance between computa-150

tional cost and parameter estimate uncertainty. Smaller values of ε lead to higher rejection rates151

and reduced uncertainty in estimated parameter values [28], but also increase the number of model152

simulations necessary to generate a sufficiently converged posterior.153

With respect to evaluating the success of the ABC parameter estimation, “accuracy” can be154

assessed either by comparing the approximate posteriors generated using ABC to the true poste-155

riors, or by comparing the estimated parameter values to the true parameter values, along with156

a measure of certainty in the estimated values. In the present study, the true posteriors are not157

known analytically and they are prohibitively expensive to compute numerically. As a result, the158

accuracy of the ABC approach is quantified here by computing 95% Bayesian confidence intervals159

(sometimes called credible intervals), denoted CB, from the approximate parameter posteriors,160

then determining whether CB contains the true parameter value. The ultimate measure of accu-161

racy in the present study is indicated by how closely a central tendency of the posterior (such as162

the mean) matches the true parameter value. The degree of certainty in the estimated parameter163

value is determined by the width of CB, where narrower intervals indicate more certain parameter164

estimates.165

Additional details on the specific choices for the prior, summary statistics, distance function,166

and rejection distances used in the present ABC implementation are outlined in the following167

sections, and are also summarized in Figure 1.168
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III. DEMONSTRATION OF ABC USING COMPUTATIONAL REFERENCE DATA169

As a demonstration of ABC, inflow parameters for a periodically forced high-temperature tur-170

bulent buoyant jet [51–55] are estimated using computational reference data. This case is examined171

due to the simplicity of the geometry combined with the complexity of the high-temperature un-172

steady compressible flow physics. Large eddy and direct numerical simulations (LES and DNS,173

respectively) are used as reference data, and model simulations are performed using LES.174

The use of computational reference data allows the success of ABC to be assessed when the175

physics underlying the reference data, as well as all system parameters, are known exactly. Three176

questions, in particular, are addressed: (i) How accurately can ABC estimate unknown parameters177

when the reference data physics are exactly reproduced by the model simulations? (ii) How accu-178

rately can ABC estimate unknown parameters using model simulations that imperfectly represent179

the physics of the reference case? (iii) How accurately can ABC estimate unknown parameters180

using reference data that are only indirectly connected to the parameters of interest?181

The first question represents a ‘best case scenario’ where there is zero model error and is ex-182

amined using both model and reference data from LES. Despite the exact correspondence between183

the governing equations solved in the model and reference LES, however, the flow fields obtained184

from each of the simulations differ on a local and instantaneous basis due to the use of different185

random initial conditions. The second question pertains to a more realistic application of ABC186

where the physics governing the reference data are not exactly represented by the model simula-187

tions. This question is examined here using LES model simulations and DNS reference data, and188

is further addressed in Section IV using experimental reference data. The third question addresses189

the identifiability of unknown parameters using different types of reference data, and is exam-190

ined by performing ABC at different heights above the inlet using either velocity or temperature191

measurements.192

It should be noted that the test where both the model and reference data are obtained from193

LES most closely resembles an observing system simulation experiment (OSSE), which is a common194

technique used for the validation of data assimilation methods [56, 57]. In the present context, the195

OSSE represented by this test allows the choices of prior, summary statistic, distance function, and196

rejection distance to be evaluated in the absence of model error. In this sense, these tests indicate197

whether the ABC approach can ever be expected to succeed, and to what extent. The following198

analysis illustrates that, even in such a ‘best case scenario’, the ABC parameter estimation does not199

perfectly recover the true parameter values due to the presence of stochasticity in the model and200
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reference data. That is, the model and reference data are never in perfect local and instantaneous201

agreement because each of the simulations are initialized with different random temperature fields202

(even when using identical boundary parameter values). Thus, the true parameter values are only203

ever recovered approximately, even when the governing equations used to generate the model and204

reference data are identical.205

The test where the model data are obtained from LES and the reference data from DNS is206

intended to address a common concern when parameter estimation methods are evaluated using207

OSSEs. Namely, that assessments of the method are likely to be overly optimistic due to the exact208

correspondence between the physics and numerics underlying the model and reference simulations.209

This issue, sometimes referred to as an “inverse crime” [58, 59] or the “identical/fraternal twin210

problem” [60, 61], is typically resolved by using different models, for example with different dis-211

cretizations, numerics, or physics, for the generation of the reference data and for the parameter212

estimation. Here, the LES-DNS tests are intended to provide a more realistic assessment of the213

accuracy of the ABC method than the LES-LES tests, since both the grid resolution and underly-214

ing governing equations in the LES and DNS are different. The test using experimental reference215

data and LES model data in Section IV is similarly intended to enable a more realistic assessment216

of the accuracy of the ABC approach.217

A. Physical and Numerical Setup218

The reference buoyant jet has a sinusoidally varying inlet velocity with a frequency of 4 Hz,219

an amplitude of 0.2 m/s, and a mean of 0.5 m/s. The inflow velocity is spatially uniform across220

the inlet. The physical domain is 1 × 2 m and the inlet is 0.1 m wide. The ambient and inlet221

temperatures are 300 K and 1700 K, respectively, resulting in substantial density differences and222

buoyancy-driven flow. Instantaneous fields of velocity magnitude (i.e., speed) and temperature are223

shown in Figure 2.224

All of the computations were performed using the FireFoam solver [62] within OpenFOAM225

[63, 64]. The simulations were restricted to 2D to minimize computational cost, although the ABC226

method is equally applicable in 3D. For the LES, the compressible filtered Navier-Stokes equations227

were solved with second-order accuracy in space and time using the one-equation eddy viscosity228

model [65] for closure of sub-grid scale stresses. The LES domain was discretized using 61, 088229

cells, with grid stretching in the vertical direction and two levels of refinement near the jet inlet.230

For the DNS computations, the compressible Navier-Stokes equations were solved in conjunction231
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FIG. 2. [Color online] Representative fields of speed v (a) and temperature T (d) from DNS for the period-

ically forced turbulent buoyant jet. Panels (b) and (c) show reference probability density functions (PDFs)

and power spectral densities (PSDs), respectively, of v at heights of 5, 10, 15, and 20 cm. PDFs and PSDs at

different heights are shifted vertically for clarity. Panels (e) and (f) show corresponding PDFs and PSDs of

T . Solid black lines in panels (b,c,e,f) show DNS reference data and dash-dot blue lines show LES reference

data. PSDs are computed using Thomson’s multitaper estimate [68].

with the total energy equation at a high spatial resolution, again using a second-order accurate232

numerical scheme in space and time. The DNS domain was discretized using 745, 472 cells with233

two levels of grid refinement, giving a grid that was over an order of magnitude larger than the234

LES grid.235

For both the LES and DNS, the ideal gas equation was used to relate state variables, and236

fluid viscosity and specific heat varied with temperature according to the Sutherland model [66]237

and JANAF tables [67], respectively. The LES and DNS numerical schemes were also the same,238

with Crank-Nicolson time stepping and Gauss integration with linear interpolation for spatial239

derivatives. Pressure-velocity coupling was accomplished using the PIMPLE algorithm, which240

combines the pressure-implicit split-operator (PISO) and the semi-implicit method for pressure-241

linked equations (SIMPLE). An adaptive time step was used to limit the maximum CFL condition242

to 0.5 for the LES and 0.2 for the DNS.243
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B. ABC Implementation244

In this demonstration, ABC is used to estimate the frequency, amplitude, and mean of the245

periodic forcing at the inlet of the buoyant jet given either LES or DNS reference data, with246

model simulations from LES. The reference data consists of time series of speed or temperature247

measured at nine heights above the inlet, ranging from roughly 0.5 mm up to 0.2 m. Time series248

at each height were recorded over approximately 14 s after a 1 s initialization period, and PDFs249

and PSDs were computed for each time series; these are the ABC summary statistics. The PSDs250

were calculated using Thomson’s multitaper estimate [68, 69], which provides a robust estimate of251

the PSD by reducing energy leakage across frequencies and reducing variance [70].252

To ensure statistical convergence of the reference data, ensembles of 100 statistically independent253

simulations were created using both LES and DNS. Each simulation had the same periodically254

forced inflow at a frequency of 4 Hz, an amplitude of 0.2 m/s, and a mean of 0.5 m/s, but was255

initialized using different stochastically generated temperature fields. The final reference data for256

both the LES and DNS cases were then created by averaging the PDFs and PSDs for each of the257

100 simulations in each ensemble, at each of the nine heights, giving the reference datasets shown,258

for example, in Figure 2(b,c) for speed and in Figure 2(e,f) for temperature. Moreover, Figure 2259

shows that the LES and DNS reference data are in reasonably good agreement.260

Approximately 104 additional LES model cases were generated for the parameter estimation.261

Each simulation was executed with a unique set of inlet parameters randomly sampled from prior262

distributions for the frequency, amplitude, and mean of the sinusoidal velocity oscillations at the263

inlet. The priors were uniform with bounds of 3.6–4.4 Hz for the frequency, 0.0–0.4 m/s for the264

amplitude, and 0.0–1.0 m/s for the mean. Uniform priors were chosen to avoid the creation of265

anomalous biases in the posterior distributions. The width of the priors for the amplitude and266

mean were selected to be ±100% the true parameter values, while the width of the frequency prior267

is ±10% the true value; it will be seen in the following that even with such a narrow frequency268

prior, the posteriors go to zero at the edges of the prior for all heights. Although wider priors would269

result in greater recovery of the edges of the posterior distributions, nearly all of the posteriors270

obtained in this study display a pronounced maximum within the range of values present in the271

priors. It should also be noted that the current priors are centered on the true values and that272

off-centered priors could be formed, for example, by using widths that are [−100%,+200%] the273

true values for the amplitude and mean and [−10%,+20%] for the frequency. However, once more,274

the success of the ABC method will not be affected by the use of such off-centered priors provided275
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that the posteriors already display a distinct maximum within the bounds of the current centered276

priors, as is the case for nearly all of the tests performed here.277

The Hellinger distance [49] was used to quantify the agreement between summary statistics from278

the reference and model data. Values for ε were chosen such that a fixed percentage of the tested279

parameters were retained in the final posterior [36, 39]. Parameter rejection was first performed280

using the Hellinger distance for the PSD, where ε was selected to reject 80% of all parameters281

tested. Subsequently, rejection was performed using the Hellinger distance for the PDF, with ε282

chosen to reject 95% of the remaining parameters. With this sequential approach, only 1% of the283

parameters tested were included in the final posteriors.284

C. Inflow Parameter Estimation Using LES Reference Data285

Figures 3(a-f) show marginal posterior distributions for each inflow parameter using both speed286

and temperature reference data from LES at different heights. The posteriors are represented by287

Gaussian kernel estimations with bandwidths from Scott’s normal reference rule [71]. As noted288

previously, these tests represent a best-case scenario for the ABC method where both the model289

and reference data physics are identical. Correspondingly, Figures 3(a,c,e) show that the true290

parameter values are captured by the ABC posteriors when using speed reference data from LES.291

In general, the uncertainty is smallest at locations close to the inlet, although reasonable estimates292

of the true parameters are still obtained at higher locations.293

For the speed reference data, Figures 3(g,i,k) show that CB is narrowest near the inlet when294

using LES reference data. This indicates that identifiability of the unknown parameters is greatest295

near the inlet when using the speed as reference data, although even higher in the domain it is still296

possible to estimate inflow parameters, albeit with less confidence. Figures 3(g,i,k) also show that297

mean values from the posteriors are in good agreement with the true values, particularly near the298

inlet for the amplitude and mean, and at all heights for the frequency.299

The identifiability of unknown parameters using different measured quantities can be assessed300

by repeating the ABC procedure using PDFs and PSDs computed from temperature time series.301

Figure 3(b) shows that frequency predictions based on temperature reference data are all roughly302

centered on the true parameter value, and Figure 3(h) shows that the posterior means are in good303

agreement with the true value. The amplitude and mean posteriors in Figures 3(d,f) are centered304

around the true parameter values in the region from approximately 0.5 to 1.5 jet widths above the305

inlet. Below these heights, however, there is not enough variation in the temperature field to aid306
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in parameter estimation, given the uniform inflow temperature. Because the PDFs were nearly307

identical at such low heights, the ABC procedure was modified such that 15% of the simulated308

parameters were accepted based solely on the PSD comparison. Higher than 1.5 jet widths above309

the inlet, the connection between the temperature field and the inlet velocity becomes weaker, re-310

sulting in reduced identifiability of velocity boundary conditions using temperature measurements.311

Despite these limitations, as shown in Figures 3(h,j,l), all parameters are predicted for all heights312

within the CB intervals for each posterior.313

The amount of information gained about the unknown parameters during the ABC procedure314

can be quantified using the Kullback-Leibler (KL) divergence [50] between the prior and posterior315

distributions. Higher values of the KL divergence indicate that the posterior is significantly different316

than the prior, while values close to zero indicate that the posterior is similar to the prior and that317

little information about unknown parameters has been gained during the ABC procedure.318

Figure 4 shows vertical profiles of the KL divergence for speed and temperature reference data319

from LES, revealing that, in all cases, at least some information about the unknown parameters320

is gained at nearly all locations within the domain. For the speed reference data in Figure 4(a),321

FIG. 3. [Color online] Top row: Marginal posterior distributions from ABC (visualized using Gaussian kernel

estimation) for the frequency (a,b), amplitude (c,d), and mean (e,f) of the periodically forced turbulent

buoyant jet using speed (a,c,e) and temperature (b,d,f) reference data from LES. Posteriors are calculated

using measurements at heights from 0–20 cm (indicated by colors from blue to yellow). True parameter values

are shown by vertical black dashed lines. Horizontal dash-dot lines and gray regions show the priors. Bottom

row: Vertical profiles of 95% Bayesian confidence intervals, CB , for the marginal posterior distributions in

(a-f). Blue dash-dot lines and gray shading indicate the 95% Bayesian confidence regions, and the solid red

lines show the mean values of the posteriors. True parameter values are shown by vertical black dashed

lines.
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FIG. 4. [Color online] Vertical profiles of Kullback-Leibler (KL) divergences for the marginal posterior

distributions in Figure 3 obtained using LES reference data. Divergences for the frequency (black solid

lines), amplitude (red dash-dot lines), and mean (blue dashed lines) posteriors are shown for speed (a) and

temperature (b) reference data. Each KL divergence vertical profile is normalized by its respective maximum

value.

the greatest information about the unknown parameters is obtained near the jet inlet, and the322

posteriors for the frequency generally provide more information higher in the domain than the323

posteriors for the amplitude and mean. By contrast, for the temperature reference data in Figure324

4(b), the greatest information is obtained higher in the domain, close to 10 cm (corresponding to325

one jet width above the inlet). In general, only the temperature reference data near the jet inlet326

fails to provide significant information regarding unknown parameter values.327

D. Inflow Parameter Estimation Using DNS Reference Data328

As noted previously, evaluations of the ABC method based on tests where the same model is329

used for the reference data and the parameter estimation (as in the LES-LES tests described in the330

previous section) are likely to be overly optimistic. To address this issue, tests where the reference331

data are generated by DNS and the parameter estimation is performed using LES have also been332

carried out.333

Figures 5(a-f) show marginal posterior distributions for each inflow parameter using both speed334

and temperature reference data from DNS at different heights. As with the LES-LES results335

shown in Figure 3, Figures 5(a,c,e) show that the true parameter values are captured by the ABC336

posteriors when using speed reference data, with generally narrower posteriors close to the inlet.337

This is also indicated by the variations of CB in Figures 5(g,i,k), where it can be seen that CB is338

narrowest near the inlet when using speed reference data. The width of CB consistently increases339
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FIG. 5. [Color online] Top row: Marginal posterior distributions from ABC (visualized using Gaussian kernel

estimation) for the frequency (a,b), amplitude (c,d), and mean (e,f) of the periodically forced turbulent

buoyant jet using speed (a,c,e) and temperature (b,d,f) reference data from DNS. Posteriors are calculated

using measurements at heights from 0–20 cm (indicated by colors from blue to yellow). True parameter values

are shown by vertical black dashed lines. Horizontal dash-dot lines and gray regions show the priors. Bottom

row: Vertical profiles of 95% Bayesian confidence intervals, CB , for the marginal posterior distributions in

(a-f). Blue dash-dot lines and gray shading indicate the 95% Bayesian confidence regions, and the solid red

lines show the mean values of the posteriors. True parameter values are shown by vertical black dashed

lines.

with height as the distance from the inlet increases. For each of the unknown parameters, posterior340

means are generally close to the true parameter values.341

For the temperature reference data from DNS, Figures 5(b,d,f) show that the marginal posterior342

distributions once again capture the true parameter values with reasonable success. There is some343

bias in the posteriors for the DNS reference data (particularly for the estimates of the amplitude344

and mean), but the true parameter values are nevertheless contained within reasonably narrow345

95% Bayesian confidence intervals. This is also shown in Figures 5(h,j,l), where CB is widest for346

the temperature-based DNS reference data near the inlet and narrowest roughly one jet width347

above the inlet.348

Vertical profiles of the KL divergence for the DNS reference data are shown in Figure 6. As with349

the LES-LES results shown in Figure 4(a), Figure 6(a) shows that speed reference data from DNS350

provides the greatest information about unknown parameters near the jet inlet, with the frequency351

posteriors providing more information higher in the domain than the posteriors for the amplitude352

and mean. For the temperature reference data in Figure 6(b), the greatest information is once353

again obtained roughly one jet width above the inlet. In general, the trends shown in Figures 4354

14



FIG. 6. [Color online] Vertical profiles of Kullback-Leibler (KL) divergences for the marginal posterior

distributions in Figure 3 obtained using DNS reference data. Divergences for the frequency (black solid

lines), amplitude (red dash-dot lines), and mean (blue dashed lines) posteriors are shown for speed (a) and

temperature (b) reference data. Each KL divergence vertical profile is normalized by its respective maximum

value.

and 6 are similar for the LES and DNS reference data, respectively.355

Taken together, the results for the DNS reference data in Figures 5 and 6 indicate that the356

ABC approach is successful even in non-overly-optimistic tests where the reference and model357

data are significantly different. Overall, the parameter estimation is generally more accurate using358

LES, as opposed to DNS, reference data, but this is unsurprising given the additional model error359

introduced when using the DNS reference data. As a result, ABC is able to provide predictions360

for unknown parameters using either exact or imperfect model simulations (as compared to the361

reference data), and for locations that are indirectly related to the parameters of interest (i.e.,362

using measurements at locations far from the inlet).363

IV. DEMONSTRATION OF ABC USING EXPERIMENTAL REFERENCE DATA364

To demonstrate the utility of the ABC approach when the reference data are obtained from365

an experiment, the ABC technique is next applied to a steadily forced planar plume for which366

experimental data are available from Cetegen et al. [72]. In this experiment, a helium-air mixture367

is weakly forced into 300 K ambient air, resulting in a natural oscillatory behavior of the plume.368

By spanning a range of inflow conditions, Cetegen et al. [72] determined the empirical relation369

St = 0.55Ri0.45 between the Strouhal, St = fw/vi, and Richardson, Ri = (1 − ρi/ρ∞)gw/v2i ,370

numbers, where ρi is inlet density, ρ∞ is ambient density, g is gravity, w is inlet width, vi is inlet371

velocity, and f is the frequency of the natural oscillation.372
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FIG. 7. [Color online] Representative 2D fields of density (kg/m
3
) from LES at six different times (a-f) for

the steadily forced plume described in Section IV. The fields shown begin at an arbitrary time t0 late in the

LES and are separated by a time interval spanning one complete period, tP (tP = 1/f = 0.22 s).

In this demonstration, ABC is performed assuming that the oscillation frequency above the jet373

inlet, f , has been measured experimentally and that the density of the inflow mixture, ρi/ρ∞, is374

unknown (where ρi/ρ∞ = 0.14 for pure helium and 1 for pure air). All other properties of the375

inflow, including vi and w, are assumed to be known. This case thus serves as the first experimental376

demonstration that ABC is able to accurately estimate unknown parameters in complex thermal-377

fluid flows, while also providing measures of uncertainty in the parameter estimates.378

The model simulations were once again performed using LES in FireFoam [62]. The plume had a379

width of w = 0.07 m and a steady uniform inflow velocity of vi = 0.067 m/s. The reference Strouhal380

number was assumed to be St = 4, which is close to several values measured experimentally (see381

Figure 8). The inlet width and velocity were held fixed for 100 LES runs while the inlet density382

ratio varied from 0.14 to 0.6, corresponding to the published range of density ratios from [72]. The383

lowest density ratio corresponds to pure helium while the upper value was found in [72] to be the384

bounding case beyond which the characteristic natural oscillation was not observed. The Strouhal385

number was obtained from the peak frequency in a fast Fourier transform of vertical velocity a386

distance w above the inlet; this was the summary statistic. The distance function consisted of an387

L1 error norm between reference and model peak frequencies, and ε was chosen to retain 20% of388

the parameter values from the model simulations. The characteristic oscillation of the plume is389

captured by the LES, as shown in Figure 7.390

Figure 8 shows that the estimated value of Ri from ABC for St = 4 agrees closely with the391

experimental data. Additional tests for St = 2 and 3 were also performed using vi = 0.1 m/s and392

0.15 m/s, respectively. These different inlet velocities were necessary to span a range of Ri while393
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FIG. 8. [Color online] Relationship between Strouhal number St = fw/vi and inlet Richardson number

Ri = (1− ρi/ρ∞)gw/v2i for the steadily forced helium-air plume. Experimental results from Cetegen et al.

[72] are indicated by open circles, and the empirical fit St = 0.55Ri0.45 is shown as a blue dash-dot line. ABC

results are indicated by filled red circles located at the mean Ri of the posterior distribution. Uncertainty

bars show the minimum and maximum values of Ri in the posteriors.

constraining the physically allowable values of ρi/ρ∞ to between 0.14 and 0.6. Once again, Figure394

8 shows that ABC provides estimates of Ri that are in close agreement with experiments. As a395

result, ABC correctly identifies the unknown Ri that would provide the desired natural oscillation396

frequencies for known inlet velocity and width.397

V. CONCLUSIONS398

Approximate Bayesian computation (ABC) has been used to estimate unknown physical pa-399

rameters in complex thermal-fluid flows. As a demonstration of the approach, ABC was used to400

estimate the frequency, amplitude, and mean of the velocity inflow in a periodically forced turbu-401

lent buoyant jet, as well as the inlet Richardson number for a steadily forced helium-air plume. In402

the former case, computational reference data were used to drive the parameter estimation, while403

in the latter case experimental reference data were used. For both cases, ABC provided accurate404

estimates of unknown physical parameters even when the model simulations did not exactly match405

the physics underlying the reference data (e.g., when using LES for the model simulations and406

reference data from either DNS or experiments), and when the reference data were only indirectly407
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connected to the unknown parameters of interest (e.g., when using measurements distant from the408

jet and plume inlets, or when using temperature measurements to infer velocity inlet parameters).409

The primary impacts of using imperfect model simulations or only indirectly connected measure-410

ments were observed in the width of the Bayesian confidence intervals. As the physics of the model411

simulations more closely matched that of the reference data, and as the connection between the412

measurements and unknown parameters improved, the confidence intervals were found to become413

more narrow.414

Although the present demonstration indicates that ABC provides accurate estimates of parame-415

ter values with relatively little uncertainty, there are many directions for future research. Different416

choices for the prior, summary statistic, distance function, and rejection distance can all poten-417

tially lead to slightly different parameter estimates. Further work is required to determine the418

specific effects of each of these choices on the accuracy and uncertainty of ABC. Markov chains419

can also be used to significantly reduce the cost of ABC by limiting the number of parameter420

values that are rejected, even for relatively small rejection distances [27]. Such approaches have421

become more popular in recent years, but have yet to be applied in the present context. Finally,422

the true power of ABC lies in its ability to predict unknown parameters in real-world systems, and423

future work will more deeply explore the use of experimental reference data to drive parameter424

estimates, particularly taking into account experimental uncertainty in the context of validation425

efforts for simulations of complex thermal-fluid problems. An important direction for future re-426

search is therefore to apply the ABC method to problems where the true parameter values are427

unknown.428
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