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Abstract13

We study the influence of wettability on the morphology of fluid-fluid displacement through14

analog porous media in the limit of vanishing flow rates. We introduce an invasion-percolation15

model that considers cooperative pore filling and corner flow mechanisms, and captures interface16

motion at the pore-scale for all quasi-static flow regimes between strong drainage and strong17

imbibition. We validate the method against recent experimental observations of wetting transition18

in microfluidic cells patterned with circular posts, and we use it to explore the sensitivity of fluid19

invasion to wettability heterogeneity, post spacing, and post height. Our model therefore extends20

the Cieplak-Robbins description of quasi-static fluid invasion by reproducing the wetting transition21

in strong imbibition, a feature that requires incorporating three-dimensional effects.22
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I. INTRODUCTION23

Fluid-fluid displacement in porous media is a rich phenomenon, where the interplay be-24

tween wettability, pore-scale disorder, viscosity ratio of invading and defending fluids, and25

magnitude of viscous forces relative to that of capillary forces (defined by the capillary num-26

ber, Ca) generates a wide spectrum of interface patterns. The study of the mechanisms27

behind these patterns is of relevance to many practical applications. For instance, in the28

limit of high capillary numbers, the displacement of high-viscosity fluid by a low-viscosity29

fluid develops a morphology akin to diffusion-limited aggregation [1–3], and hence serves30

as an analog system to dielectric breakdown [4], electrodeposition [5], and propagation of31

forest fires [6]. Furthermore, both high and low capillary number displacement regimes have32

direct practical significance in soil remediation and chemical filters [7], fuel cell technology33

[8], carbon sequestration [9], oil recovery [10], and design of microfluidic devices [11].34

For a given fluid pair, the wettability of the porous medium plays a fundamental role in35

defining the nature of the displacement both at pore [12–14] and macroscopic scales [15, 16].36

Wettability is often defined through the contact angle θ between the fluid-fluid interface37

and the solid. We adopt the convention that θ is measured from the invading phase, such38

that θ > 90◦ corresponds to drainage, and θ < 90◦ corresponds to imbibition. In the limit39

of low capillary number and strong drainage (i.e. strongly non-wetting invading fluid), the40

fluid-fluid interface advances through capillary fingering and forms a jagged interface that41

tends to trap defending fluid throughout the displacement [17–20]. In weak imbibition (i.e.42

weakly wetting invading fluid), in contrast, the interface tends to move as a compact front43

[15, 16, 21, 22], where capillary forces work to flatten the interface through cooperative44

pore filling [23, 24]. While the mechanisms of fluid-fluid displacement in drainage are fairly45

well explored, fluid-fluid displacement in imbibition continues to challenge our mathematical46

descriptions.47

Patterned microfluidic devices offer a convenient way to visualize the fluid-fluid displace-48

ment in a controlled and repeatable environment. As a quasi-two-dimensional analog of49

natural porous media, these microfluidic devices are typically fabricated by generating a50

pattern of posts on a solid surface and confining it between two flat plates, allowing careful51

control of both pore geometry and wettability. Early microfluidic experiments [1, 17–19]52

explored the interplay between viscous and capillary forces in drainage and weak imbibition,53
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and their findings are in line with the theory [15, 16, 25, 26]. Only recently has this body of54

work been extended to strong imbibition, where new displacement patterns emerge [27, 28].55

Zhao et al. [27] conducted a series of viscously unstable experiments on microfluidic56

devices with an irregular pattern of circular posts, where water displaced oil radially from57

the center of the flow cell at different injection rates and different contact angles between 150◦58

(strong drainage) and 7◦ (strong imbibition). The authors reported a new wetting transition59

in the strong imbibition regime (7◦ < θ < 45◦): flow reverts from compact displacement to60

a corner-flow regime, where the invading fluid advances by preferentially coating the corners61

between the posts and top/bottom plates of the flow cell. Similar observations were recently62

reported on a regularly patterned microfluidic cell with square posts [28]. These new findings63

may have significant implications for physical modeling of the displacement processes with64

tunable wetting conditions.65

Several computational approaches are available to model pore-scale fluid-fluid displace-66

ment. These include, in decreasing order of fidelity (and required computational power):67

[29] (1) molecular dynamic simulations; (2) numerical solutions of the Navier-Stokes equa-68

tions with interface and contact-line tracking; (3) lattice or dissipative particle dynamics69

based models; and (4) pore-network models. The first three approaches require a detailed70

description of the pore geometry, and are not yet practical for obtaining macroscopic inva-71

sion patterns. Pore-network models, on the other hand, rely on a simplified pore geometry72

and a simplified description of the flow, and are therefore less computationally demanding73

[30]. The geometric details as well as simplifying assumptions of the interface vary widely74

from one study to another [31–34].75

Two particular subclasses of pore-network models are of interest in reproducing the ex-76

perimental observations of Zhao et al. [27] in the limit of very low Ca: invasion-percolation77

algorithms [19, 20] and the quasi-static interface tracking method of Cieplak and Robbins78

[23, 24]. Invasion-percolation algorithms are robust, but can only capture the invading in-79

terface morphology in strong drainage. The interface-tracking algorithm of Cieplak and80

Robbins [23, 24] is applicable to wettabilities from strong drainage to weak imbibition,81

although it is susceptible to the biases of user-defined conventions in injection pressure in-82

crements and scanning order of pore invasion mechanisms. Neither method extends to the83

corner-flow regime of strong imbibition.84

Here, we implement an invasion-percolation algorithm that qualitatively reproduces fluid-85

3



fluid displacement morphologies for all wettabilities, from strong drainage to strong imbi-86

bition. By building on the work of Cieplak and Robbins [23, 24], we are able to explicitly87

calculate the critical pressures of pore-scale instabilities, including the instability events po-88

tentially responsible for the corner flow regime in strong imbibition [27]. This new approach89

eliminates the need for user-assigned pressure increments, instead advancing the interface90

in the manner of invasion-percolation. Our quasi-static algorithm captures the fluid-fluid91

displacement in the limit of very low Ca, where viscous forces can be neglected.92

The algorithm was implemented on a two-dimensional flow geometry similar to the one in93

the experiments of Zhao et al. [27]. We used the model to capture the wetting transition in94

strong imbibition and explored the sensitivity of the flow pattern to pore-scale heterogeneity95

in contact angle, post spacing, and to three-dimensional effects of finite post height.96

II. METHOD97

Experimental observations of fluid-fluid displacement in different wettability regimes pro-98

vide an intuitive way to understand the underlying assumptions behind different models of99

multiphase flow.100

In drainage, the invasion pattern advances by overcoming local capillary entry pressures101

within the porous medium [18]. In the limit of vanishing Ca, viscous dissipation can be102

neglected and the invasion process is well captured by the invasion-percolation algorithm103

[20, 35, 36]. This approach replaces the pore space with a network of nodes (pores) and104

edges (throats). Throats that contain a fluid-fluid interface are considered active. Every105

active throat is ranked according to its critical capillary pressure, which can be calculated106

from the throat size. The invading fluid moves by advancing locally into the throat with the107

lowest critical capillary pressure, resulting in invasion avalanches and displacement fronts108

that often loop on themselves and trap clusters of the defending fluid behind the advancing109

front.110

While the invasion-percolation algorithm is in good agreement with experiments in111

drainage [18], it fails to reproduce the invading fluid pattern during imbibition. Here, coop-112

erative pore filling mechanisms make the invading pattern smoother, and invasion proceeds113

through compact fronts [19].114

Cieplak and Robbins [23, 24] showed that in order to capture cooperative pore filling115
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effects during imbibition one needs to account for the local pore geometry [23, 24]. They116

approximated the porous medium by placing posts on a regular 2D lattice; every post was117

assigned a random radius from a uniform distribution. The interface consisted of a collection118

of arcs between the posts. Every arc intersected nearby posts at a prescribed contact angle119

and curvature defined by the Laplace pressure ∆p.120

Cieplak and Robbins [23, 24] introduced three types of instabilities: “burst” (no stable121

arc at given ∆p), “touch” (interface touches opposite post), and “overlap” (two neighbour-122

ing interfaces coalesce within the pore). The algorithm moves the fluid-fluid interface at123

fixed injection pressures by searching for unstable arcs and replacing them with new stable124

configurations (pore invasion). When no unstable arcs are found, the invading fluid pressure125

is increased to induce further advance.126

Unlike the invasion-percolation algorithm, local interface instabilities are sensitive to127

geometric configurations of neighbouring arcs, allowing for cooperative pore filling (mostly128

dominated by touch and overlap instabilities) during imbibition. Moreover, the algorithm129

produces results nearly identical to invasion-percolation algorithm in drainage, where burst130

instabilities are prevalent[24]. Thus, the model of Cieplak and Robbins [23, 24] extends the131

description of quasi-static fluid-fluid displacement in porous media from strong drainage to132

weak imbibition.133

At the same time, Cieplak and Robbins [23, 24] acknowledged that the arbitrary se-134

quence of pressure increments affects the morphology of simulated invasion fronts. Unlike135

the invasion-percolation algorithm, where the sequence of local interface advances is de-136

termined through global critical pressure ranking, the Cieplak and Robbins [23, 24] model137

advances unstable arcs in the order they are discovered by a user-defined search convention.138

Moreover, the choice of pressure increments often results in more than one type of insta-139

bility within the same arc; instabilities are removed by authors’ convention where touch140

instabilities are removed first and burst instabilities are removed last.141

We found that by reformulating the original approach of Cieplak and Robbins [23, 24], one142

can explicitly calculate critical pressures of all instability events and advance the interface143

in an invasion-percolation-like manner. The interface moves based on the ranking of critical144

pressures that are calculated from local arc and post geometries. Thus, this new formulation145

eliminates the need for arbitrary pressure increments and allows the least stable arcs to146

advance first. Below we describe the details of the new formulation followed by the algorithm147
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in the spirit of invasion-percolation.148

Consider a set of neighboring posts (FIG. 1). On every image, posts are numbered from149

1 to 3 (where applicable): left post is 1, right post is 2, and the top post is 3 (FIG. 1(b)-150

(d)). Each post is defined through its radius, location expressed in Cartesian coordinates,151

and a contact angle. For example post 1 has radius r1, location (x1,y1), and contact angle152

θ1 measured from the invading fluid between posts 1 and 2 (FIG. 1(a)). Without loss of153

generality, we rotate and translate the coordinate system so that points (x1,y1), (x2,y2),154

(x3,y3) turn into (0,0), (X2,0), (X3,Y3).155

For the description that follows, we assume that the posts are tall enough that the events156

considered in FIG. 1(b)-(d) can be formulated in a two-dimensional sense. The validity and157

limitations of this assumption are further explored in section III.158

Consider an interface of radius of curvature rp that meets post 1 at contact angle θ1 (FIG.159

1(a)). We define d1 to be the distance from the center of interface curvature to the center of160

post 1. Given an expression for value of ∠ACP , the distance d1 can be determined from the161

law of cosines for △ACP . Both ∠PCU and ∠TCA are equal to π/2 and ∠UCT is π − θ1.162

Since ∠ACP + ∠PCU + ∠UCT + ∠TCA = 2π, then ∠ACP = θ1. Therefore,163

d1(rp, θ1) = AP =
√

r12 + rp2 − 2r1rp cos θ1. (1)164

Equation (1) defines the distance between the center of curvature (Xp,Yp) and the center165

of post 1 (0,0). This means that point (Xp,Yp) lies on a circle concentric with post 1 and166

radius d1, where the interface satisfies the contact angle θ1 and has radius of curvature rp.167

All points satisfying this requirement are shown as a dashed line on FIG. 1(a).168

A similar construction for an interface intersecting with a second post of radius r2 and a169

contact angle θ2 centered at (X2, 0) defines a second circle centered at post 2. For a given170

rp, this second circle (dashed line FIG. 1(a) opening to the right) will share either two, one171

or zero common points with the set of potential centers of curvature for the interfaces which172

stably contact post 1. FIG. 1(a) shows a case where the interface is stable. Considering only173

the case when the invading fluid is sourced from below the X-axis, the stable interface touch-174

ing both posts will be centered at a point (Xp, Yp) which is determined to simultaneously175

satisfy176
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FIG. 1. (a) Invasion front configuration between two posts; (b) Burst event: unstable interface

(red line) advances into the pore; (c) Touch event: interface touches the nearest post; (d) Overlap

event: two fronts (green lines) coalesce on post surface and fill the pore; (e) Corner flow event:

corner meniscus touches and coats the neighbouring post; (f) Capillary bridge event: corner menisci

coalesce mid-post before reaching the next post; (g) Invading front configuration with post IDs:

red, blue, green interfaces correspond to “burst”, “touch”, “overlap” critical interfaces.

X2
p + Y 2

p = d1(rp, θ1)
2, (2a)177

(Xp −X2)
2 + Y 2

p = d2(rp, θ2)
2, (2b)178

Yp ≤ 0. (2c)179

Subtraction of (2a) and (2b), allows for the direct calculation of Xp and then Yp can be180

trivially found as the negative root of equation (2a). Equation (2c) ensures that one selects181

the correct root when solving for Yp (FIG. 1(a)).182

The equations considered here are simplified significantly by the choice of post placement.183

For posts located at generic grid points, the post centers can be simply translated and184

subsequently rotated to achieve this configuration. Following calculations in this modified185

coordinate system the results can be simply rotated and translated back to the original186

coordinate system.187

7



We are now ready to define several instability events that determine interface propaga-188

tion. Following the work of Cieplak and Robbins [23, 24], we consider “burst”, “touch”,189

and “overlap” events, and we additionally introduce a new class of “corner” events. The190

order and frequency of these pore-level events ultimately define the shape of the quasi-static191

invasion pattern. Below we find the critical Laplace pressures ∆p (corresponding to radius192

of curvature rp via the Young-Laplace equation, 1/rp = ∆p/γ) at which each event takes193

place.194

Burst Event195

As the pressure of the invading phase increases, the radius of interface curvature rp196

decreases. This results in lower values for both d1 and d2. As a result, increasing ∆p reduces197

the radii of the dashed lines in FIG. 1(a), and the number of their intersection points198

(solutions for Equation (2)) changes from 2 to 1, and eventually 0. This means that there is199

no longer a stable interface between posts 1 and 2; this event is referred to as “burst” (see200

FIG. 1(b)). The “burst” event coincides with the last stable configuration of the interface201

between two posts at given contact angles θ1 and θ2. This occurs when there is only a202

single root to Equation (2), and also corresponds to the case when Yp = 0 (which implies203

a zero discriminant in the quadratic equation). Introducing this condition in Equation (2)204

allows finding the critical radius of curvature rp that corresponds to “burst” as a tangential205

intersection of dashed circles in FIG. 1(a):206

X2
p = d1(rp, θ1)

2, (3a)207

(Xp −X2)
2 = d2(rp, θ2)

2. (3b)208

Equations (3) can be rearranged to give a quadratic equation in rp; with the burst radius209

chosen to yield a positive burst pressure.210

Touch Event211

The “touch” event refers to the configuration depicted in FIG. 1(c). Here, the interface212

tangentially intersects the third post centered at (X3,Y3) and with radius r3. This configu-213
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ration can be viewed as the intersection of black dotted lines and the circle of radius rp + r3214

centered at (X3,Y3), represented by the blue dotted line in FIG. 1(c):215

X2
p + Y 2

p = d1(rp, θ1)
2, (4a)216

(Xp −X2)
2 + Y 2

p = d2(rp, θ2)
2, (4b)217

(Xp −X3)
2 + (Yp − Y3)

2 = (rp + r3)
2. (4c)218

Equation (4) can be solved analytically for the critical value of rp that satisfies the “touch”219

condition. Again, the touch condition given by the solution of Equation (4) can be reduced220

to a quadratic equation in rp, although the expansion to this form involves some laborious221

algebra.222

Overlap Event223

Cieplak and Robbins [23, 24] defined the “overlap” event as an instability where two224

advancing contact lines meet on the surface of a post (see FIG. 1(d)). The solution to the225

overlap radius of curvature can be written as the intersection of three circles—the interface226

between posts 1 and 2, the interface between posts 2 and 3, and the circle corresponding to227

the surface of post 2:228

(X −Xp12)
2 + (Y − Yp12)

2 = rp
2, (5a)229

(X −Xp23)
2 + (Y − Yp23)

2 = rp
2, (5b)230

(X −X2)
2 + Y 2 = r22. (5c)231

Here (Xp12,Yp12) and (Xp23,Yp23), which are also functions of rp, denote the centers of232

curvature for interfaces between posts 1 and 2, and 2 and 3, respectively. Equation (5)233

coupled with solutions for (Xp12,Yp12) and (Xp23,Yp23) can be solved numerically for a critical234

value of rp.235

The underlying assumption in the above equations is that both interfaces in FIG. 1(d)236

have the same radius of curvature rp. In a quasi-static process, as assumed here, the pressure237

is spatially uniform in both invading and defending fluids with a Laplace pressure drop238
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FIG. 2. (a) Schematic diagram of menisci coalescence away from the post surface. (b) The diagram

demonstrates drainage overlap at θ > 90◦: menisci coalesce inside the pore space, leaving trapped

oil on the wall of the invaded post.

between them. Thus, we can assume that ∆p12 = ∆p23 in overlap event calculations.239

Therefore, from the Young-Laplace equation, we have that γ
rp12

= γ
rp23

or rp12 = rp23 = rp.240

Drainage Overlap Event241

The original definition of “overlap” event by Cieplak and Robbins [24] is valid only for242

θ ≤ 90◦. When θ > 90◦, the two menisci coalesce away from the post, trapping some243

defending liquid on the post wall [11], as illustrated for θ = 120◦ in FIG. 2(b). This effect244

has been largely ignored in pore-level simulations, and a careful experimental investigation245

was only reported recently by Lee et al. [11].246

Consider the “drainage overlap” configuration in FIG. 2(a), where overlap occurs at247

θ > 90◦ and a distance a away from post 2. The solution for this coalescence can be248

obtained as an intersection of the two menisci and a circle of radius (r2+ a) concentric with249

post 2:250

(X −Xp12)
2 + (Y − Yp12)

2 = rp
2, (6a)251

(X −Xp23)
2 + (Y − Yp23)

2 = rp
2, (6b)252

(X −X2)
2 + Y 2 = (r2 + a)2. (6c)253

Noting that (r2+ a)2 = d2− r2p, where d
2 is analogous to equation (1), unknown a can be254

eliminated from the above expressions. This allows solving “drainage overlap” numerically255

for the critical value of rp.256
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Corner and Capillary Bridge Events257

In addition to the events described above, all of which apart from “overlap” for θ > 90◦258

had already been identified previously [23, 24], Zhao et al. [27] experimentally observed259

a transition from pore invasion in weak imbibition to corner flow in strong imbibition.260

In order to capture this transition it is necessary to consider the shape of the fluid-fluid261

interface in 3D. When the solid walls have high affinity for the invading liquid, the liquid262

accumulates in corners between the posts and the top/bottom plates of the cell, adopting a263

constant-curvature configuration shown in FIG. 1(e).264

In our model, a “corner” event occurs when the interface swells sufficiently to touch a265

neighboring post; this allows flow towards the corner of the neighbor post. The distance266

from the center of the wetted post to the surface of its nearest neighbor is denoted by rn.267

This distance can be estimated from a force balance on the corner liquid in the vertical268

direction [37]:269

2r1 cos θ1 − 2rn sin θ1 + (r2n − r21)∆p/γ = 0. (7)270

Equation (7) can be used to determine the critical pressure differential across the interface271

that is required for a “corner” event for every post on the invasion front. This equation is272

valid when the height of the posts is significantly taller than the spacing between the posts.273

When the post height is comparable to the post spacing, the top and bottom corner274

menisci might intersect in the middle of the post before a corner event. This results in275

the coalescence of the two interfaces, and invading liquid coats the post in the shape of a276

capillary bridge (FIG. 1(f)). In this case, we use the constant interface curvature equation277

shown in Appendix A to find the pressure at which mid-post coalescence takes place. A278

more detailed discussion of the corner liquid interface shape and validity of Equation (7) is279

given in Appendix A.280

Invasion Algorithm281

The closest analog to the invasion algorithm presented here is the invasion-percolation282

method [20, 35, 36], where the invasion front advances by overcoming threshold pressures283

associated with pore throats. At every step, a pore with the lowest threshold pressure gets284
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invaded first; the interface is updated and the algorithm proceeds to the next invasion step.285

The simplicity of invasion-percolation leaves very little room for misinterpretation, but it286

has traditionally been applied only in strong drainage.287

The quasi-static invasion of the fluid-fluid interface is governed entirely by the critical288

pressures of “burst”, “touch”, “overlap”, and “corner” events. To illustrate how the pore-289

level threshold pressures combine to determine the evolution of the invasion front, consider290

the initial configuration in FIG. 1(g). This initial invasion front is obtained by connecting291

the innermost posts, a procedure which does not necessarily produce a stable front. Here,292

every post has an identification number.293

We calculate the critical invasion pressures for pore-scale events by solving Equations294

(3)–(7) for every post on the invasion front. To advance the invading fluid, we traverse the295

invasion front and select the post with the smallest critical invasion pressure ∆p (e.g., a296

“touch” instability for the interface at post 5 in FIG. 1(g)).297

The manner in which the invasion front changes following an event depends on the type298

of instability that takes place. If a “burst” or “touch” instability occurs, the nearest post to299

the interface is added to invasion front (FIG. 1(b)-(c)). If the least stable event is “overlap”,300

the post where the contact lines meet is removed from the invasion front.301

Finally, if a “corner” flow event occurs, a newly captured post is added to the list of302

corner invasion posts. We keep track of this list separately from all other events because303

the manner in which corner menisci advance is distinctly different. As we show later, this304

leads to competition between corner invasion and cooperative pore filling invasion at some305

contact angles, leading to the transition in pore-level displacement mechanism observed by306

Zhao et al. [27]. We assume that cooperative pore filling front posts are also coated in their307

corners, so the corner list is at least as long as the other list; an assumption that is reasonable308

for the quasi-static description we employ here, but which will likely be inaccurate at very309

high capillary numbers, when viscous forces dominate and films of the defending fluid are310

left behind.311

By following these simple rules, one can capture the complexity of invasion patterns and312

their relation to substrate wettability. Although this method was built with the framework313

initially proposed by Cieplak and Robbins [24] in mind, there are several features of our314

approach that are important to note.315

Firstly, the evolution of the interface in the algorithm of Cieplak and Robbins [24] was316
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somewhat sensitive to the arbitrary selection of pressure increments and the order in which317

the invasion mechanisms were scanned. In the Cieplak and Robbins [24] study, after each318

pressure increment, every interface was scanned for “burst”, “touch”, and “overlap” in319

sequence, and an unstable interface was allowed a single step forward. This means that320

the natural order of the instability events could be disturbed with a poor choice of pressure321

increments or scanning order; a shortcoming acknowledged by the authors [23, 24]. In322

contrast, our algorithm always advances the least stable interface within the invasion front,323

therefore eliminating arbitrariness.324

Secondly, by maintaining the list of critical pressures, new computations only need to325

be performed in the neighborhood of newly invaded pores. This feature may prove to be326

especially useful should the algorithm be extended to a dynamic invasion front (i.e. when327

taking into consideration the pressure changes associated with viscous forces during the328

motion of the invasion front as in Holtzman and Segre [31]).329

Finally, within the current framework, we can easily assign unique contact angles to330

individual posts. We utilize this feature to generate different realizations of the same invasion331

experiment. That is, for every realization, we assign a random contact angle for every332

post from a narrow distribution centered around a global mean. This brings us closer to333

experimental conditions, where small local deviations from the average contact angle of the334

substrate exist due to material impurities and inhomogeneity from the fabrication process.335

III. RESULTS AND DISCUSSION336

We use the model described in the previous section to address the following objectives:337

(1) we test whether our method is able to fully capture the invasion-pattern morphology338

through the wetting transition from strong drainage to strong imbibition; (2) we explore the339

sensitivity of the wetting transition to local perturbations in contact angles through pore-340

level event statistics and the macroscopic fractal dimension; (3) we study the links between341

pore spacing and mechanisms of pore-level displacement; (4) finally, we explore the limits of342

our model by introducing three-dimensional effects with finite post heights within the flow343

geometry.344

The baseline pore geometry used in this work was generated in a similar manner to Zhao345

et al. [27]. MATLAB’s pdemesh was used to generate a circular Hele-Shaw cell configuration346
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FIG. 3. Generated pore geometry along with post diameter and pore throat size histograms. Posts

were placed on irregular triangular lattice generated with MATLAB’s pdemesh, and post radii were

assigned to 45% of the smallest connected edge.

with diameter of 15cm. Centers of the posts were placed at the nodes of the generated347

irregular mesh. Then the radius of each individual post was assigned to 45% of the smallest348

edge at a corresponding node. The final geometry of posts and the histograms of the resulting349

post radii and throat sizes are shown in FIG. 3.350

Invasion Front Morphology Through the Wetting Transition351

We simulated radial invasion of water into the oil-filled microfluidic cell described above,352

with substrate contact angles between 160◦ (strong drainage) and 10◦ (strong imbibition).353

Pore invasion simulations in FIG. 4 demonstrate that the morphology of the invasion pattern354

depends strongly on the wettability of the substrate. In particular, the invasion pattern355

becomes more compact as the scenario changes from strong drainage (θ = 160◦) to weak356

imbibition (θ = 45◦), and this is accompanied with a reduction in the amount of trapped357

oil behind the invasion front. In strong imbibition, the invading fluid starts to preferentially358

accumulate in the corners formed by the posts with the top and bottom plates. This results359

in an invasion mechanism that competes with “burst”, “touch”, and “overlap” events.360

Consider a single post with invading liquid accumulating in its corners with top/bottom361

plates. As the pressure of the invading fluid increases, the size of the “corner” meniscus362
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FIG. 4. Immiscible fluid invasion simulation results: algorithm presented in section II covers the

full range of pore wettabilities, from strong drainage (θ = 160◦) to strong imbibition (θ = 10◦).

Dark blue regions represent fully invaded pores; light blue regions represent partially invaded pores

with coated post corners. We include video files of the invasion process at different wettabilities in

supplementary materials.

increases, and at some critical pressure the liquid extends far enough to reach the post’s363

closest neighbour. At this point, the invading liquid flows into the corner of the next post.364

Here, invasion proceeds akin to invasion-percolation, albeit on a dual network, where the365

sites are the posts and the links are the edges of the corresponding Delaunay tesselation.366

This mode of invasion leads to fingering patterns, in contrast with the compact invasion367

characteristic of weak imbibition. The pattern at θ = 40◦ in FIG. 4 is particularly notewor-368

thy: here, frequencies of cooperative pore filling and corner flow events are comparable, and369

the invasion front advances in a mixed regime.370

More generally, the invading front morphology in FIG. 4 can be classified into three371

categories: (1) invasion-percolation in strong drainage (mostly “burst” events, θ = 160◦),372

(2) cooperative pore filling in weak imbibition (mostly “touch” and “overlap” events, θ =373

45◦), (3) and “post chaining” due to “corner flow” or “capillary bridge” events in strong374

imbibition (θ = 10◦). The first two categories take place at contact angles between 160◦ and375

45◦, and they are very much in line with the quasi-static simulations of Cieplak and Robbins376

[23, 24]. The latter category was experimentally observed only recently[27].377

Furthermore, we find that the finger width measurements (FIG. 12) of the emerging378

patterns are in line with experimental observations [15, 16, 27] and numerical predictions379

[23, 24]. In strong drainage, the invading patterns have finger width comparable to the size380

of a typical pore. When the flow is dominated by cooperative pore filling events, the finger381

width diverges to a size of about 18 pores. Finally, the finger width reduces to a fraction of382
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a pore size in corner flow dominated regime. We include the detailed discussion on finger383

width measurements in Appendix C, and we include video files of the invasion process at384

different wettabilities in supplementary materials.385

Sensitivity of Macroscopic Invasion to Local Contact Angle Perturbations386

Any real substrate is bound to have imperfections that perturb local contact angles from387

the global mean. In the context of the experiments by Zhao et al. [27], local imperfections388

in contact angle could arise from dust deposition on the substrate during fabrication of the389

microfluidic cell, and one typically takes a great deal of care in minimizing these effects.390

In practice, no two invasion tests look exactly the same, even when conducted following391

the same experimental protocol. However, while different realizations of the same experimen-392

tal conditions can be expected to produce non-identical invasion patterns, those patterns393

should possess a common quality. This raises an interesting question of quantifying the394

similarity of the invasion patterns.395

We mimic local imperfections in contact angle by assigning unique contact angles to396

every post in the flow geometry. In particular, we select the contact angles from a uniform397

distribution with 2◦ range centered around the global mean. FIG. 5 presents the summary398

from multiple realizations. Every “experiment” was repeated four times for contact angles399

between 160◦ and 10◦, producing four different realizations for each set of invasion conditions.400

The degree of similarity of the resulting invasion patterns was assessed by means of two401

metrics: (1) the percentage of cooperative pore filling events (“touch” and “overlap”), and402

(2) the fractal dimension of the invasion pattern. The fractal dimension was calculated using403

the box counting method [38, 39]. The details of the box counting calculations are included404

in Appendix B.405

The results in FIG. 5 demonstrate that the percentage of cooperative pore filling events406

is a robust classifying metric for the invasion shapes; it exhibits negligible variability among407

realizations. As the contact angle changes from 160◦ to 45◦, “touch” and “overlap” events408

become dominant. At contact angles below 45◦, “corner flow” events take over.409

In contrast, the fractal dimension shows a higher variability from one realization to an-410

other, and here we can appreciate the difference in invasion shapes quantitatively. For411

example, consider the two realizations with θ = 84◦ in FIG. 5. At a glance, the two invasion412
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FIG. 5. Cooperative pore filling and fractal dimension plots. Invasion patterns for different real-

izations at each fixed global contact angle. As the system moves from strong drainage (θ = 160◦)

to weak imbibition (θ = 45◦), the percentage of cooperative pore-filling events gradually increases.

The transition from weak to strong imbibition is marked with a sharp drop in both fraction of

cooperative pore filling events and fractal dimension.

patterns look similar, but there are subtle differences in the invaded regions and clusters of413

trapped oil. The fractal dimension reflects this difference, resulting in appreciable scatter of414

points at θ = 84◦ in FIG. 5.415

The fractal dimension data reported in FIG. 5 is computed with box counting method,416

and shows reasonable values for all flow regimes. The mean fractal dimension for invasion-417

percolation is 1.83; for cooperative pore filling is between 1.83 and 1.96; and in the corner418

flow regime is 1.65.419

Overall, we were able to mimic the simulation of the same experimental conditions with lo-420

cal imperfections in the wetting properties of the substrate. While every simulation produces421

a “unique” pattern, each pattern falls into one of the shape categories (invasion-percolation,422

cooperative filling, corner flow) based on the percentage of cooperative pore filling events423

17



plot.424

Influence of Drainage Overlap and Post Spacing on Cooperative Pore Filling425

Consider the schematic diagrams of “drainage overlap” and the original “overlap” events426

in FIG. 6(a). During the invasion process, the “drainage overlap” always precedes the427

original “overlap” event of Cieplak and Robbins [23, 24] and thus corresponds to a lower428

critical pressure. Since we advance the invasion front into pores with lowest critical pressures,429

by overestimating the critical pressures of “overlap” events, one would erroneously advance430

the invasion front through spurious “burst” instabilities. This is especially likely to happen431

when the spacing between the posts is large. We examine the significance of “drainage432

overlap” by increasing the spacing between posts in the original pore geometry by a factor433

λ > 1.434

FIG. 6(b) shows that by considering “drainage overlap”, we recover a considerable num-435

ber of cooperative pore filling events otherwise lost if one follows the original definition of436

“overlap” event of Cieplak and Robbins [23, 24]. Simulations with “drainage overlap” result437

in about 30% cooperative pore filling event ratio at θ = 160◦ for λ = 4, while the original438

“overlap” produces no cooperative filling events at θ = 160◦ for all λ.439

One can intuitively understand why larger spacing between posts increases the frequency440

of cooperative pore filling events by examining two posts and a fluid-fluid interface between441

them at λ = 1 and λ = 4 (FIG. 6(c)). In drainage, as the pressure of the invading fluid442

increases, the interface approaches its “burst” configuration. When the spacing between the443

posts is small (λ = 1), the fluid-fluid interface remains mainly within the gap between the two444

posts. In contrast, when the spacing is wide (λ = 4), the interface extrudes significantly away445

from the gap between two posts before reaching the “burst” configuration. As a result, this446

interface is more likely to encounter — and coalesce with — the neighboring fluid interfaces.447

In the extreme limit, when λ ≫ 1, we expect the fluid front to advance mainly through448

cooperative pore filling via “drainage overlap” events, even in strong drainage. Therefore,449

the “drainage overlap” presented in section II is crucial for the validity of the quasi-static450

invasion model on a wide range of pore geometries, especially in simulating multiphase flow451

through highly porous materials such as low-density micropillar arrays [21] or fibrous media452

[40–42].453
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FIG. 6. (a) Schematic diagrams of “drainage overlap” and “overlap” event of Cieplak and Robbins

[23, 24]. (b) Percentage of cooperative pore filling events for posts spaced out by a factor of λ

from the original post geometry. The colored circles represent simulations with “drainage overlap”

considered; solid lines represent simulations with the original “overlap” definition of Cieplak and

Robbins [23, 24]. (c) Schematic diagram of post spacing and fluid-fluid interface.

The “drainage overlap” events (see section II) result in trapping of the defending liquid on454

the surfaces of the posts at θ > 90◦ (FIG. 2(b)). Furthermore, the earlier onset of cooperative455

pore filling due to λ changes the amount and the manner in which the defending fluid is456

trapped behind the invasion front. Trapping of the defending liquid is an interesting problem457

on its own, but it is not the focus of this work.458

Three-Dimensional Effects: Out-of-Plane Curvature459

In the simulations described so far, we neglected the out of plane curvature contributions460

in the Young-Laplace equation when calculating critical pressures of “burst”, “touch” and461

“overlap” events in section II, akin to the simulations of Cieplak and Robbins [23, 24]. The462

ascribed correction to the critical pressures is that ∆p
γ

= 1
rp

is replaced by ∆p
γ

= 1
rp

− 2 cos θ
h

463

for “burst”, “touch”, and “overlap” events.464

As the height of the posts decreases, the relative magnitudes of the critical pressures465

change. This, in turn, alters the final patterns of the invasion fronts (FIG. 7). As the466

post heights approach 100µm, the critical pressures of “burst”, “touch”, “overlap” events467
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FIG. 7. Figure shows how post heights alter the shapes of the invasion fronts: the onset of the

corner flow dominated regime is heavily influenced by the out-of-plane curvature correction of the

“burst”, “touch”, and “overlap” instabilities. The magnitude of the correction is controlled by the

height of the posts. Invasion fronts on the right are plotted for different h at θ = 10◦.

become lower than critical pressures of “corner” and “capillary bridge” flow events, leading468

to a dominance of cooperative pore filling at low contact angles. However, in reality, Zhao469

et al. [27] observed corner flow dominated regime at θ = 7◦.470

This discrepancy between the experiment and our quasi-static simulations can be due to471

several factors. Firstly, this out of plane curvature adjustment is rather crude, and was only472

implemented to test the limits of our 2D model. A full three-dimensional consideration of the473

invasion would be more accurate, although the formulation would also be significantly more474

complex. Secondly, and perhaps more importantly, we have likely overestimated the critical475

pressures of “corner” events. This can be appreciated from a close examination of invasion476

progression at strong imbibition in the experiments of Zhao et al. [27]. There, on average,477

corner menisci appeared to grow only up to about the middle of pore throats, at which478

point the neighbouring posts were coated. In our model, the critical pressures of corner flow479

events were calculated assuming the full growth of the corner meniscus across the throat,480

which results in higher critical pressures. Indeed, imposing the half-throat rule in our model,481

produces a transition to corner flow at around θ = 22◦. This earlier coating of the posts482

could be due to the establishment of a conductive film ahead of the corner meniscus that483
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was not visible in the experimental images. Indeed, the fluid invasion through thin film flow484

in strong imbibition and accumulation of invading fluid in the corners was also observed by485

Odier et al. [28]. Resolving the detailed dynamics of post bridging in the strong imbibition486

regime warrants further experimental and theoretical investigations.487

Furthermore, solid surface roughness in realistic 3D rock geometries may provide conti-488

nuity to the wetting layers. In the presence of strong surface roughness, growth of the corner489

menisci would still dominate in strong imbibition, but the morphology of the invading pat-490

tern would likely be controlled by the heterogeneity in surface roughness rather than the491

spacing between the posts. While the considerations of roughness and film flow in realistic492

3D geometries are outside the scope of this work, they are, however, potentially important493

mechanisms in strong imbibition.494

IV. CONCLUSIONS495

Overall, our approach to immiscible fluid invasion in disordered micropillar arrays can be496

viewed as an extension of the invasion-percolation algorithm to include wettability through497

critical invasion pressures for cooperative filling and corner flow events. This approach498

eliminates the need for (and thus the sensitivity to) arbitrary increments in the invading499

pressures and scanning order of the interface for instability events observed in the earlier500

work [23, 24]. Our algorithm also allows assigning a unique contact angle to every post, to501

study the sensitivity of the invasion patterns to local wettability variations.502

The invasion model presented here was coded into an efficient simulation algorithm,503

making it an attractive starting point for dynamic pore invasion simulations. A natural504

way of extending this algorithm is through incorporating viscous forces with a coupled pore-505

network model [31, 43, 44].506

We have tested the invasion model by comparing the simulation outputs with the ex-507

periments of Zhao et al. [27]. Our quasi-static model was able to capture the nature of508

the invasion fronts at low capillary numbers for the full range of substrate wettabilities,509

including the transition from invasion-percolation to cooperative filling to corner flow as a510

function of contact angle. This can have important implications in enhanced oil recovery,511

carbon sequestration, and microfluidic applications. For example, in petroleum production,512

a more compact invasion pattern is preferred when displacing oil from the reservoir by water513
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injection. In some instances of reactive transport in microfluidic applications, however, one514

might want to induce the fingering invasion to maximize the interface area between invading515

and defending liquids.516

Fluid injection can result in localized redistribution of stress loads within porous media517

accompanied with dilation of the pore space [43, 44]. Some of the recent experimental obser-518

vations of pore-scale poroelasticity include localized fluid-induced deformation of hydrogel519

packs[45] and glass bead pack deformation caused by immiscible liquid infiltration[46–48].520

The dynamic extension of the model presented here could be further extended to include521

pore deformations due to changes in effective stress under different wettability conditions,522

which could capture the potential interplay between pore wettability and deformation during523

fluid-fluid displacement.524

V. ACKNOWLEDGEMENTS525

We would like to thank Amir Pahlavan for insightful discussions. This work was partly526

funded by the US Department of Energy (grant DE-SC0018357).527

Appendix A: Corner Meniscus528

In this appendix we examine the shape of the corner meniscus around a typical post. We529

follow a similar derivation to that of the droplet shape on a fiber [37]. We treat our post530

as a fiber and impose desired contact angles as boundary conditions at the interface ends,531

imposing that contact angles of θ are maintained at both post and plate contacts. Finally,532

we examine the growth and potential mid-post coalescence of the top/bottom menisci.533

1. Corner Meniscus Shape534

Here we determine how far the meniscus extends in the horizontal and vertical directions535

for a given Laplace pressure, and check whether the force balance equation suggested in this536

work adequately captures the horizontal extent of the meniscus.537

FIG. 8 shows a cross section of the corner meniscus around a post with radius r1. By538

developing an argument very similar to the formulation of the droplet shape on a fiber of539
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FIG. 8. Shape of the corner meniscus around the post with radius r1. AM and AN are the principal

radii of curvature at point A, where AM is in plane and AN is perpendicular to the plane.

De Gennes et al. [37], we can find the meniscus shape equation. We start with the Young-540

Laplace equation for an arbitrary point A on the liquid interface:541

1

AN
−

1

AM
=

∆p

γ
. (A1)542

Noting that r = AN · cosα and ds = AM · dα, Equation (A1) can be written as:543

cosα

r
−

dα

ds
=

cosα

r
−

dα

dr

dr

ds
=

∆p

γ
. (A2)544

Furthermore, dr = sinαds, so the Young-Laplace equation takes the following form:545

cosα

r
−

dα

dr
sinα =

∆p

γ
. (A3)546

Noting that dr = sinαds and dx = cosαds,547

dx

dr
= ẋ = cotα. (A4)548

Squaring both sides of Equation (A4) leads to the following equations:549

sinα =
1

(1 + ẋ2)1/2
, (A5a)550

cosα =
ẋ

(1 + ẋ2)1/2
. (A5b)551

Differentiating Equation (A4) with respect to r, yields:552

ẍ = −
1

sin2 α

dα

dr
. (A6)553

23



FIG. 9. Interface shape of a corner meniscus outside a post. Equation (A7) solved with θ = 40◦,

r1 = 500µm, rn = 1200µm. Here, ∆pf represents the Laplace pressure obtained from the force

balance Equation (7). Condition ẋ(rn) = tan θ1 is exactly satisfied when ∆p = ∆pf .

Finally, substituting Equations (A5) and (A6) into Equation (A3), we obtain the final554

equation for the liquid interface:555

ẋ

r(1 + ẋ2)1/2
+

ẍ

(1 + ẋ2)3/2
=

∆p

γ
. (A7)556

Now, Equation (A7) with ẋ(r1) = cot θ1 and x(r1) = 0 can be used to find the corner557

meniscus profile. FIG. 9 shows the solution of Equation (A7) for r = (r1, rn) with a typical558

geometry and contact angle used in this study.559

The pressure drop across the interface should be such that ẋ(rn) = tan θ1. It turns out560

that this condition is exactly satisfied when ∆p is calculated from the force balance equation561

(7). This verifies the validity of the force balance approach in finding critical values of ∆p562

for corner flow.563

At the same time, FIG. 9 shows that the extent of the corner meniscus is of comparable564

size in horizontal and vertical directions. Since the height of the posts in Zhao et al. [27]565

experiments is 100µm, we need to consider two cases: (1) corner menisci at the top and566

bottom which do not touch; and (2) corner menisci that meet and merge at the mid-height567

of the cell. When the liquid menisci do not meet in the middle of the post, the critical ∆p568

for corner flow can be estimated from the force balance equation (7). However, when corner569

liquids meet, the shape of the interface can be estimated as a capillary bridge between two570

flat plates, described by the equation [37]:571
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(a) (b)

FIG. 10. Laplace pressure for a growing corner meniscus. Initially, the invading liquid is confined

to the corners. As the horizontal extent of the liquid grows, the top and bottom corners meet at

the mid-height of the post, and the shape changes into a capillary bridge. This transition point

corresponds to the negative jump in Laplace pressure. (a) Evolution of the corner menisci for

contact angles between 4◦ and 44◦ and r1 = 500µm. (b) Evolution of the corner menisci for post

radii between 300µm and 800µm and contact angle of 40◦.

1

rn −
h

2 cos θ1
(1− sin θ1)

−
2 cos θ1

h
=

∆p

γ
(A8)572

2. Corner Meniscus Growth573

We now consider the growth of the corner meniscus on a post with height of 100µm574

(FIG. 10(a)). At first, the invading liquid is confined to the top and bottom corners of575

the post—growth of the meniscus in the horizontal direction increases the Laplace pressure576

requirement. Top and bottom menisci grow to the point that they touch at mid-height of577

the post. At this point, the shape of the corner liquid changes into a capillary bridge.578

We make the following observations. Firstly, before the menisci merge, the Laplace579

pressure increases with growing rn. After they merge, the shape turns into a capillary bridge,580

and the Laplace pressure decreases with growing rn. This means that if the liquid invasion581

was stimulated with small pressure increments, the corner liquid would grow gradually with582

increasing ∆p, and then grow spontaneously after assuming a capillary bridge shape.583

Secondly, the magnitude of the discontinuity in ∆p at the corner liquid merger point is584
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smaller at low contact angles (FIG. 10(a)). This can be explained intuitively by visualizing585

the corner merging instant at contact angles of 0◦ and 45◦. For θ = 0◦, when two corner586

liquids meet at the mid-height of the post, dr
dx
|x=h/2 = 0 both before and after the merger.587

However, for θ = 45◦, dr
dx
|x=h/2 = 1 before and dr

dx
|x=h/2 = 0 after the merger. This means that588

at 45◦ the invading liquid needs to “snap” from the corner to bridge shape. The magnitude589

of this “snap” is small at contact angles near 0◦.590

Finally, FIG. 10(b) shows that the Laplace pressure is smaller for larger posts. The out-591

of-plane radius of curvature (AN in FIG. 8) is always greater than the radius of the post,592

and hence posts with greater radius correspond to lower Laplace pressures (Equation (A1)).593

In other words, it is easier to grow the corner menisci around the posts with larger radius.594

Appendix B: Measuring Fractal Dimension595

The morphology of the invading fluid phase can be complex (FIG. 4), and fractal dimen-596

sion can be an intuitive way to capture this complexity. Fractal dimension can be thought597

of as an “index of the scale-dependency of a pattern” [38]. In this work, we utilize the box-598

counting method [38, 39] to estimate the fractal dimension of the invading fluid patterns.599

The box counting method iteratively tiles the image containing the flow pattern with600

boxes of size ǫ. Each iteration uses increasingly greater value of ǫ and measures the number601

N of boxes that contain (or “directly cover”) the flow pattern. The magnitude of the slope602

of N against ǫ on a log-log plot defines the box-counting fractal dimension [39].603

To estimate the fractal dimension of the invading fluid we took the following steps: (1)604

obtain the invasion pattern image from the simulation, with fully surrounded posts treated605

as part of the invading phase (FIG. 11(a)); this step typically produced images of 1200×1200606

pixels in size; (2) convert image to black and white (FIG. 11(b)); (3) grid the image with607

boxes of size ǫ between 1 and the number of pixels in each direction of the image (npix)608

(FIG. 11(c)-(d)); (4) record the number N of boxes required to fill the pattern for each ǫ;609

(5) calculate the fractal dimension as an absolute value of the slope of N against ǫ on a610

log-log plot (FIG. 11(e)).611

When calculating the slope of N against ǫ on the log-log plot, we imposed user-defined612

expectations on the bounds of the fractal behavior. We exclude the boxes close to the image613

size, so we set ǫ <
npix

8
.614
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FIG. 11. Fractal dimensions calculated with the box-counting method. (a) color image (1500×1500

pixels) produced by the invasion algorithm for θ = 40◦; (b)-(d) black and white versions of the

invasion pattern placed on a grid of size ǫ = [1, npix]; (e) fractal dimension measured as a slope

of number N of filled boxes against ǫ on a log-log plot, slope was calculated from points with

ǫ = [1,
npix

8
].

Appendix C: Measuring Finger Width615

In order to estimate the invading fluid finger width (w), Cieplak and Robbins [23, 24] put616

forward the following method. First, they slice the invasion pattern along the nodes of their617

regular lattice. Then, they measure the size of the invaded region clusters along each 1D618

slice. The mean size of the clusters was taken as an estimate of w, which was then divided619

by the lattice length a.620

We cannot follow the method of Cieplak and Robbins [23, 24] precisely since our post621

geometry was built on an irregular lattice. We use a close equivalent estimate of w instead.622

We start with black and white images used to measure box-counting fractal dimension and623

slice it into separate rows. We collect the statistic of the invading clusters in resulting slices624

using MATLAB’s bwconncomp function, where mean size of the clusters estimates w in625

pixels. We repeat the same procedure on an image where pore spaces and posts have white626

and black colors respectively. This allows estimating a as an average pore size in pixels.627

Thus, we recover the w/a used by Cieplak and Robbins. The above procedure was repeated628

for vertical slices as well.629

FIG. 12 shows that the finger width spans several pores in the invasion-percolation regime,630
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FIG. 12. Ratio of the invading pattern finger width to mean pore size, estimated in analogy to the

work of Cieplak and Robbins [23, 24].

and starts diverging at contact angles below 60◦. This growth of finger width is abruptly631

interrupted below 40◦, where fluid invasion is dominated by corner flow and w is only a632

fraction of the mean pore size a.633

[1] Jing-Den Chen and David Wilkinson, “Pore-scale viscous fingering in porous media,” Physical634

Review Letters 55, 1892–1895 (1985).635
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