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The turbulent pipe flow of inelastic shear thinning fluids has many practical applications, however there
is a deficit in understanding of how shear thinning rheology modifies turbulence structure in the near-wall
boundary layer (affecting shear stress and pressure drop) and in the core (affecting mixing). While previous
direct numerical simulation studies have examined the effect of shear-thinning rheology at low Reynolds
number (Reτ,max = 323), the way in which these effects vary with Reτ was unknown. In particular, from
earlier work it was unclear if inner-scaled mean axial velocity profiles for Newtonian and shear-thinning
fluids could collapse to a common curve with increasing Reynolds number. Via direct numerical simulations
of Newtonian and one shear-thinning rheology for friction Reynolds number Reτ = 323 − 750 (ReG =
10 000− 28 000), the current study investigates how increasing Reynolds number modifies turbulent pipe flow
of a power-law fluid with particular focus on the boundary layer profiles. The results show that the inner-scaled
mean axial velocity profiles for Newtonian and shear-thinning fluids can not collapse to a common curve with
increasing Reynolds number, which is consistent with predictions from the Dodge & Metzner correlation.
In inner-scaled coordinates, mean viscosity profiles are shown for the first time to become independent of
Reynolds number except close to the pipe centre. The contribution of viscosity fluctuations in the mean
shear budget and in the mean flow and turbulence kinetic energy budget remains small at all Re. Both
increasing Reynolds number and shear thinning influence the turbulence kinetic energy budget near the
wall, however, the region where shear-thinning is important is much wider than the region where increasing
Reynolds number influences the results. The persistence of shear-thinning effects on turbulence modification
in pipe flow requires consideration in the development of suitable turbulence models for such fluids. The
current results suggest that the effect of shear-thinning rheology in turbulence models can be captured via a
Reynolds-number-independent mean viscosity model in the inner region.

I. INTRODUCTION

Many fluids in industry and nature exhibit a non-
uniform viscosity which can depend on several param-
eters such as shear rate, shear history and fluid vis-
coelasticity. These fluids are called non-Newtonian fluids.
Generalised Newtonian (GN) fluids is a subclass of non-
Newtonian fluids for which the shear stress tensor τ can
be written as:

τ = ρν(γ̇)s. (1)

Here shear rate γ̇ = (2s : s)1/2 is the second invariant of
the strain rate tensor s = [(∇v)+(∇v)T ]/2 where T rep-
resents matrix transpose, v is the velocity, ρ is fluid den-
sity and ν is fluid kinematic viscosity (also called the ef-
fective viscosity). The GN assumption asserts an instan-
taneous response of the fluid to the applied shear stress.
GN fluids can be shear-thinning or shear-thickening de-
pending on whether their viscosity decreases or increases
with increasing shear rate. Modern paints, mining slur-
ries, tomato ketchup, human blood are examples of GN
fluids1.
Viscosity of GN fluids is often expressed via a math-

ematical equation called a rheology model which defines
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the function ν(γ̇). The power-law (PL) rheology model is
one such rheology model which is widely used for shear-
thinning GN fluids (here onwards referred to as shear-
thinning fluids). It defines the fluid kinematic viscosity
as:

ν = ρ−1Kγ̇n−1, (2)

where fluid consistencyK and flow index n are constants.
For 0 < n < 1, the PL rheology model gives shear-
thinning behaviour and for n = 1 it reduces to a New-
tonian rheology (uniform viscosity). We note that the
PL rheology model is one of the many rheology models
available for GN fluids, however, if an appropriate range
of shear rate is covered in rheology characterisation, the
choice of the rheology model does not significantly affect
the turbulent flow predictions2. Although PL rheology
model shows unrealistic viscosities at shear rates close to
zero, it is not a concern for turbulent flow simulations
where viscosity at such low shear rates are irrelevant2.
Turbulent pipe flow of GN fluids has gained much

attention due to its industrial relevance. Experimen-
tal studies, however, were focused mainly on devising
a correlation for the turbulent Fanning friction factor
f = 2τw/ρU

2
b , where τw = (D/4)∂P/∂z is the mean

wall shear stress, ∂P/∂z is the mean axial pressure gra-
dient, D is the pipe diameter and Ub is the bulk velocity
(flow rate per unit area). One such early study is by
Metzner and Reed 3 . The non-uniform viscosity of GN
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fluids makes the choice of viscosity scale in the conven-
tional Reynolds number definition Re = UbD/ν ambigu-
ous. By collapsing the laminar friction factor curve of
PL and Newtonian fluids, Metzner & Reed proposed the
following definition which is now called Metzner–Reed
Reynolds number.

ReMR =
8ρU2−n

b Dn

K(6 + 2/n)n
. (3)

For a Newtonian fluid (n = 1) ReMR reduces to Re. Met-
zner & Reed reported a decrease in the turbulent friction
factor for a fixed ReMR and delay in transition to turbu-
lence to a higher ReMR with shear thinning. The friction
factor measurements in laminar flows agreed well with
the theoretical curve f = 16/ReMR. In contrast, their
turbulent flow measurements were scattered, which they
suggested was due to the lack of fully developed turbu-
lence at those Reynolds numbers. Metzner & Reed also
proposed a turbulent friction factor correlation, however,
the constants in the correlation were determined empir-
ically using only three to four data points which made
the correlation unreliable. Since Metzner & Reed several
other turbulent friction factor correlations have been pro-
posed for GN fluids4, however for PL fluids, the Dodge
& Metzner correlation5 which is given as:

1√
f
=

4.0

(n)0.75
log10[ReMR(f)

1−n/2]− 0.4

(n)1.2
(4)

has been found to agree the best with experimental
measurements6.
It is worthwhile mentioning here that the Metzner–

Reed Reynolds number is not the only Reynolds number
definition available for GN fluids. An alternate definition
called the generalised Reynolds number (ReG) defined as:

ReG = UbD/νw. (5)

is also widely used7–11 for GN fluids. This Reynolds num-
ber definition uses the nominal wall viscosity νw for the
viscosity scale as proposed by Bogue and Metzner 7 . The
nominal wall viscosity νw is the fluid viscosity at the wall
shear rate in a laminar pipe flow and for PL fluids, it is
given as:

νw = ρ−1K1/nτ1−1/n
w . (6)

The nominal viscosity νw should not be confused with
the mean wall viscosity ν̄w which is obtained posteri-
ori in simulations as a time-averaged quantity. It is al-
most impossible to determine ν̄w experimentally due to
difficulties involved in accurately resolving the wall ve-
locity gradients in experiments. In contrast, the nominal
wall viscosity νw can be easily determined in experiments
from the measurements of the mean axial pressure gra-
dient and rheology. For turbulent pipe flow of shear-
thinning fluids, Singh, Rudman, and Blackburn 8 showed
via numerical simulation that ν̄w was only slightly higher
(≈ 2%) than νw at ReG ≈ 11 000.

As mentioned earlier, most experimental studies of tur-
bulent pipe flow of GN fluids were focused on the fric-
tion factor measurements and lacked statistical data of
velocity fluctuations and Reynolds shear stresses. Park
et al. 12 was the first study where such measurements
were reported, however, only for weakly turbulent flows
(ReG ≤ 3500). They recorded an increase in the ax-
ial velocity fluctuations and decrease in the tangential
velocity fluctuations with shear thinning. Similar find-
ings were reported by Pinho and Whitelaw 13 for a much
higher Reynolds number ReG ≈ 111 000. However, the
fluids Pinho & Whitelaw used (Carboxymethyl cellulose
solutions) are known to exhibit some visco-elasticity5 and
therefore, were not pure GN fluids.

Direct numerical simulations (DNS) is a powerful tool
to investigate turbulent flows. DNS captures all dynam-
ically relevant length scales and once validated, can be
reliably used to obtain a detailed picture of the flow. DNS
of Newtonian fluids does not require any empirical corre-
lation or model, however in case of GN fluids, it relies on
the rheology model ν(γ̇) for estimating viscosity. Since
the rheology model and its parameters are determined via
regression from the experimental data, any error intro-
duced in the rheology characterisation can significantly
affect the accuracy of the DNS predictions for GN flu-
ids. Recently we showed that the high shear rate data
is the most important factor to get a good agreement
between DNS and experiments2. In contrast, the errors
introduced in the rheology characterisation at low shear
rates such as those found near the pipe centre had no
noticeable effect on the DNS predictions.

DNS has been successfully used to investigate the ef-
fect of GN rheology on turbulent flow2,8–11,14. Similar
to experiments12,13, DNS has also shown increased tur-
bulent anisotropy in the flow with shear thinning8,9,11,
which is hypothesised to be a result of reduced turbulent
energy transfer from the axial component to the trans-
verse ones11. Axial velocity streaks which are the im-
prints of axial vortical structures have been found to run
longer and become wider with shear thinning8,9. We re-
cently analysed the mean flow and turbulent kinetic en-
ergy budgets in pipe flow for PL fluids at a fixed Reynolds
number of ReG ≈ 11 000 and found the shear-thinning ef-
fect on the energy budgets to be confined mostly near the
wall8. We confirmed these findings in a separate study15

where we compared the results of PL and modified PL
rheology models (PL rheology near the wall and a New-
tonian rheology away from the wall). Modifying the PL
rheology model away from the wall did not affect the pro-
files of mean axial velocity and Reynolds shear stresses.

With increasing Reynolds number, the viscous region
in a turbulent pipe flow becomes smaller (in outer units)
and thus, inertial effects become more dominant com-
pared to viscous effects. Therefore, one might expect the
effect of shear-thinning rheology on turbulence statistics
to disappear at large Reynolds number. However, by
analysing the DNS of turbulent pipe flow of Newtonian
and PL fluids for 10 000 < ReG < 28 000, the current
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study shows that this is not true. The results show no-
ticeable shear-thinning effects on the turbulence statistics
in the Reynolds number range considered here with no
evidence that these effects will disappear ever for very
high Reynolds numbers. The mean axial velocity profiles
of PL fluids becomes Reynolds number invariant in the
inner layer and converge to a profile with a larger shift
compared to the Newtonian log-law profile. In addition
to these new results, the statistics of mean flow and tur-
bulent kinetic energy budgets are presented, which will
be useful for the development and validation of RANS
and LES models for GN fluids.

II. METHODOLOGY

A. Numerical method and non-dimensional variables

The numerical method used here is identical to that
used in our earlier studies8–10. Here, we briefly review
the simulation methodology. For an incompressible fluid
with a spatially varying viscosity, the conservation of
mass and momentum equations can be written as:

∂v/∂t+v·∇v = ρ−1 (−∇p+∇ · τ + ρg) , with ∇·v = 0
(7)

where v is the velocity vector, p is the static pressure,
τ is the stress tensor and ρg is body force. In the sim-
ulations, there is no mean axial pressure gradient and
the flow is driven by the body force. For ease of nota-
tion, we divide p, τ and ρg in Eq. 7 by the constant
fluid density ρ, but refer to them as pressure, stress and
body force respectively. These governing equations are
solved using a nodal spectral element-Fourier DNS code.
The modified shear stress tensor, τ/ρ, is modelled via
the GN assumption (Eq. 1) and the fluid viscosity, ν(γ̇),
is modelled via the PL rheology model (Eq. 2). Note
that the PL rheology model gives an infinite viscosity at
zero shear rate, however, shear rates close to zero are un-
likely to occur under turbulent flow conditions. There-
fore, the infinite viscosity of the PL rheology model at
zero shear rate is not an issue for modelling turbulent
flow of shear-thinning fluids and can be avoided safely
by techniques such as using a bi-viscosity model16. The
governing equations are solved in Cartesian coordinates
where the pipe cross section (x − y plane) is discretized
using spectral elements as shown in Fig. 1, while Fourier
expansion is used in the axial (z) direction which is thus
periodic. Results are later transformed for presentation
in cylindrical coordinates with subscripts r and θ rep-
resenting the quantities in the radial and the azimuthal
directions. For more details of the simulation code we
refer the reader to Rudman et al. 9 , Rudman and Black-
burn 10 , Blackburn and Sherwin 17 .
For much of the analysis presented here, the results

are expressed in wall units using friction velocity u∗ =
(τw/ρ)

1/2 for velocity scale, νw for the viscosity scale and
νw/u

∗ for the length scale. Thus, the non-dimensional

(a)

(b)

FIG. 1. Detail of spectral element meshes used to discretise
pipe cross-section. The mesh in (a) has 300 spectral elements
with 11th-order element interpolation functions and was used
for Reτ = 323. The mesh in (b) has 1188 spectral elements
and was used for Reτ = 500 with 8th-order interpolation func-
tion and for Reτ = 750, 10th-order interpolation functions
were used. In each panel, spectral element boundaries are
shown at left and collocation points at right.

distance from the wall is given as y+ = (R− r)/(νw/u
∗)

where r is the radial distance from the pipe centre and
R is pipe radius. The non-dimensional mean axial ve-
locity and mean viscosity are expressed as U+

z = Uz/u
∗

and ν+ = ν̄/νw. Turbulence intensities are expressed in

wall units as u′+
i = (u′2

i )
1/2/u∗. Shear rate is normalised

by u∗2/νw, stress terms by ρu∗2 and the energy budget
terms by (u∗)4/νw. Therefore, using the scaling The y+

definition is also referred to as the distance from the wall
in inner coordinates since the distance is scaled by vis-
cous units. In outer coordinates, the non-dimensional
distance from the wall is expressed as y/R.

B. Simulation parameters

Simulations are run for flow indices n = 0.6 and
n = 1.0 (Newtonian). For PL fluid, the flow index
n = 0.6 is chosen here because of its prevalence in indus-
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trial fluids. Newtonian simulations are run so that a di-
rect comparison between Newtonian and shear-thinning
fluids could be made. Because bulk velocity Ub is a pre-
dicted or measured quantity, the bulk velocity dependent
Reynolds numbers ReMR or ReG can not be determined
a priori. Therefore, we define a friction Reynolds number
as:

Reτ = u∗R/νw (8)

This definition of Reτ is consistent with the Newtonian
definition with νw used for the viscosity scale. An ad-
vantage of this definition is that for a given mean wall
shear stress τw i.e. body force and rheology, Reτ can be
calculated a priori and can be fixed in simulations with
predefined rheologies.
Simulations were run for three friction Reynolds num-

bers Reτ = 323, 500 and 750, the parameters for which
are supplied in Table I. The non-dimensional body force
gR/u∗2 = 2 and the nominal wall viscosity νw = 1/Reτ
are set in simulations. It is important to note the impli-
cations of fixing Reτ for ReMR and ReG. The friction
Reynolds number Reτ is related to ReG and ReMR via
the friction factor f as:

ReG = Reτ/(f/8)
1/2,

ReMR =
Renτ 2

4−n/2

[3 + 1/n]nf1−n/2
. (9)

Due to drag reduction produced by shear-thinning (lower
f), slightly higher values of ReG are expected for PL
fluid compared to Newtonian fluid for a fixed Reτ (Ta-
ble I). The relationship between Reτ and ReMR is com-
plex. Table I shows the lower fluid consistency K and
Metzner–Reed Reynolds number ReMR for PL fluid com-
pared to Newtonian fluid and only at Reτ = 750 is ReMR

for PL fluid close to the Newtonian value at Reτ = 323
(10 450 vs. 10 322). However, as will be seen later in
Figs. 6 (a) and 7 (c), these two flows (n = 1.0,Reτ = 323
and n = 0.6,Reτ = 750) differ from each other. This sug-
gests that ReMR may not be appropriate for character-
ising turbulent pipe flow of different n. The normalised
bulk velocity Ub/u

∗ is higher for the PL fluid than New-
tonian fluid, which is due to the turbulent drag reduc-
tion by shear thinning8. The ratio of Newtonian and
non-Newtonian friction factors slightly decreases with in-
creasing Reτ ; this is further discussed in Section III B
along-with the results of the friction factor.
The viscosity rheograms are plotted in wall units on

linear-linear and log-log axes in Fig. 2. These plots are
only dependent on the fluid rheology, not the flow regime
and therefore, are identical for different Reτ . As set, both
PL and Newtonian fluids show the same viscosity at the
nominal shear rate γ̇ = γ̇w (γ̇+ = 1). Near the wall where
shear rates γ̇+ > 1 are common2 and there PL fluid shows
smaller viscosity than Newtonian fluid. However, the PL
fluid viscosity is higher than the Newtonian fluid away
from the wall (γ̇+ < 1).

Reτ n K/(ρu∗2−nRn) ReG ReMR Ub/u
∗ fN/fNN

323
1.0 3.0870 × 10−3 10 322 10 322 15.93 -
0.6 31.181 × 10−3 11 189 5498 17.28 1.176

500
1.0 1.9996 × 10−3 17 260 17 260 17.04 –
0.6 24.0201 × 10−3 18 471 7836 18.47 1.174

750
1.0 1.3333 × 10−3 27 000 27 000 18.04 –
0.6 18.8348 × 10−3 28 600 10 450 19.47 1.165

TABLE I. Simulation parameters for Newtonian and PL (n =
0.6) liquids for different Reτ . The non-dimensional body force
gR/u∗2 is 2 and the nominal wall viscosity is 1/Reτ .

(a)
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Newt.

PL, n = 0.6

(b)

0.01 0.1 1 3

1

5

γ̇+

ν
+

FIG. 2. Viscosity rheograms plotted for Newtonian and PL
fluids on (a) linear-linear and (b) log-log axes.

C. Details of mesh, domain and time averaging

Amesh and domain independence study carried out for
Reτ = 323 in Singh, Rudman, and Blackburn 8 showed
that a mesh which is well-resolved for Newtonian fluid
is typically adequate for shear-thinning fluids at similar
Reτ . However, a slightly longer domain is required for
shear-thinning fluids compared to Newtonian ones. A
domain length of Lz ≈ 12D is chosen here for Reτ = 323
which is supported by a domain-independence study8 and
is slightly reduced to Lz ≈ 10D for higher Reτ . This cor-
responds to a pipe length of approx. 7700 wall units at
Reτ = 323 and 15000 wall units at Reτ = 750. These val-
ues are similar to those suggested as satisfactory domain
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Reτ ∆y+ ∆rθ+ ∆z+ ∆t/(νw/u
∗2)

323 0.8–4.0 5-6 21 0.035
500 0.8–4.0 5-6 12 0.023
750 0.8–4.0 5-6 12 0.021

TABLE II. Mesh spacing and time step size in wall units used
in pipe flow simulations at different Reτ

lengths for Newtonian fluids18. The adequacy of the do-
main lengths considered is also checked via the two-point
correlation of the axial velocity fluctuations:

ρu′

zu
′

z
(∆z) = 〈u′

z(r, θ, z, t)u
′
z(r, θ, z +∆z, t)〉/〈u′

z(r, θ, z)
2〉.

(10)
As seen in Fig. 3, ρu′

zu
′

z
decays to zero in each fluid for all

Reτ considered, which is evidence of adequacy of domain
lengths in the current simulations.
The mesh-resolutions and time-step are given in Ta-

ble II for different Reτ . We used a mesh-resolution and
time-step suggested by our assessment at Reτ = 32319

and followed typical Newtonian values18,20,21 at higher
Reτ . The mesh at Reτ = 323 had 300 spectral elements
of 11th-order tensor-product shape functions (Np = 11)
and 384 axial data planes (Nz = 384). The number of
spectral elements were increased to 1188 for higher Reτ
and (Np, Nz) were increased from (9, 864) at Reτ = 500
to (11, 1296) at Reτ = 750. The sum of the turbulent ki-
netic energy budget terms (see Eq. 16) is almost zero in
all simulations (not shown here), which suggest the ad-
equacy of current mesh-resolutions. The cross-sectional
view of the meshes is shown in Fig. 1.
Simulations were run until the calculated instanta-

neous wall shear stress and bulk velocity reached a
statistically steady state value before collecting averages.
The time-averaged statistics were then collected for
approximately 12 to 15 transit times of the domain.

D. Comparison with the published data

For validating the numerical method, the current DNS
results of Newtonian fluids are compared with those avail-
able in the literature in Figs. 4 and 5. Note that our pre-
vious study8 compared DNS results at Reτ = 323 only
with the experimental results of den Toonder and Nieuw-
stadt 22 ; in the present study, DNS results of Newto-
nian fluids available in the literature at similar Reynolds
number20,23 are also included in the comparison. The
current DNS results at Reτ = 323 agree well with the
experimental results of den Toonder and Nieuwstadt 22

at Reτ = 314 except very close to the wall where some
of the experimental results are acknowledged to be un-
reliable. There is a good agreement between the current
results and the DNS results of Chin 23 at Reτ = 500.
The current results of mean axial velocity and the tur-
bulent kinetic energy budgets (see Section VA for the
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∆z/D
ρ
u
′ z
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FIG. 3. Two point correlation coefficient of axial velocity
fluctuations plotted as a function of separation distance ∆z/D
at (a) r/D = 0.35 and (b) r/D = 0.48.

equation and the definition of different terms) are in a
good agreement with El Khoury et al. 20 . A small devia-
tion seen for velocity fluctuations and Reynolds stress is
due to slightly higher values of Reτ in El Khoury et al.

compared to the current values (360 vs 323 and 550 vs
500).

III. RESULTS AND DISCUSSION

A. Instantaneous flow

The effect of Reynolds number on the instantaneous
flow structures are shown in Fig. 6 for Newtonian fluid
and in Fig. 7 for the shear-thinning fluid using contours
of instantaneous axial velocity u+

z plotted in inner coor-
dinates on an wrapped cylindrical surface at y+ = 10 and
in outer coordinates at a cross-section. Turbulence struc-
tures become wider and slightly longer with increasing
Reτ for each fluid. However, in outer scaling, the near-
wall structures are finer for higher Reτ as expected. With
shear thinning, the near-wall turbulence structures be-
come longer and wider, which highlights the presence of
larger eddies and a narrower range of turbulent eddy sizes
in shear-thinning fluid compared to Newtonian fluid. Un-
like Newtonian fluids, wider and coarser turbulent struc-
tures in shear-thinning fluid are associated with higher
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FIG. 4. Inner-scaled statistical profiles from DNS of Newtonian fluid at Reτ = 323 (solid lines), compared to experimental
results of den Toonder and Nieuwstadt 22(circles: Reτ = 314) and DNS results of El Khoury et al. 20 (filled circles: Reτ = 360).
(a) mean axial velocity; (b) rms of axial and radial velocity fluctuations; (c) Reynolds shear stress and azimuthal velocity
fluctuations (d) turbulent kinetic energy budget.
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FIG. 5. Inner-scaled statistical profiles from DNS of Newtonian fluid at Reτ = 500 (solid line), compared to DNS results of
El Khoury et al. 20 (filled circles: Reτ = 550) and Chin 23 (squares: Reτ = 500). (a) mean axial velocity; (b) rms of axial and
radial velocity fluctuations; (c) Reynolds shear stress and azimuthal velocity fluctuations (d) turbulent kinetic energy budget.
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turbulent kinetic energy which is a result of increased
axial fluctuations8.
The velocity integral length scale is a measure of the

characteristic correlation distance between the velocity
fluctuations in the flow field and can be used to quantify

the information in Fig. 6 and Fig. 7. Here the stream-
wise integral velocity scale l+z and the azimuthal integral
velocity scale l+rθ are calculated by integrating the corre-
sponding two-point correlations functions as:

l+z (y
+) =

∫
〈u′

z(y
+, θ, z+, t)u′

z(y
+, θ, z+ +∆z+, t)〉/〈u′

z(y
+, θ, z+)

2〉d(∆z+) (11)

l+rθ(y
+) =

∫
〈u′

z(y
+, θ, z+, t)u′

z(y
+, θ +∆θ, z+, t)〉/〈u′

z(y
+, θ, z+)

2〉d(∆z+)

where 〈〉 represents the spatial averaging in the azimuthal
direction for l+z and in the streamwise direction for l+rθ.
The integration is done to the point where the integrand
functions first cross zero. l+z and l+rθ are time-averaged
for approximately 30 − 50 time snapshots collected over
a period of 30− 50 time units. Both the streamwise and
azimuthal integral length scales l+z and l+rθ increase with
increasing Reτ for each fluid, which is consistent with
Figs. 6 and 7. As expected, shear-thinning fluids shows
larger l+z and l+rθ than Newtonian fluid at all Reτ .

B. First order turbulence statistics

Mean axial velocity and viscosity

Inner-scaled profiles of mean axial velocity (U+
z ) and

its gradient ∂U+
z /∂y+ are presented in Fig. 9. For Newto-

nian fluids, it is common to subdivide the flow region into
viscous sublayer (y+ < 5), buffer layer (5 < y+ < 30),
log-layer (30 < y+ < 200) and core-region (y+ > 200)24.
Additionally, the flow is divided into inner layer (y/R <
0.1) and outer layer (y+ > 50) and there is an overlap
region (y+ > 50, y/R < 0.1). Although this kind of de-
lineation is not obvious for GN fluids8, we use the same
subdivision here for ease of discussion. The mean axial
velocity profiles are almost independent of Reτ in the vis-
cous sublayer for each fluid and outside the viscous sub-
layer, the U+

z profiles deviate below with increasing Reτ .
The mean axial velocity U+

z is larger for the PL fluid
which leads to a larger bulk velocity U+

b compared to
Newtonian fluid (Table I). The effect of Reτ on U+

z pro-
files diminishes at larger Reτ and it seems unlikely that
the inner-scaled U+

z profiles of two fluids will ever col-
lapse with increasing Reτ . The U+

z profiles of each fluid
are expected to become Reτ -independent with further
increasing Reτ , which suggests the possibility of defin-
ing a new non-dimensionalisation to collapse the non-
Newtonian and Newtonian profiles, however, we are not
aware of any such theoretical analysis for GN fluids.
An examination of mean axial velocity profiles via their

gradients shows that the slope of the mean axial veloc-
ity is also independent of the Reynolds number for both
fluids (Fig. 9 b). Shear thinning increases the mean ax-
ial velocity gradient above unity in the viscous sublayer,

which is a result of non-zero turbulent viscous stress there
as explained in Singh, Rudman, and Blackburn 8 .

From Fig. 9, the mean axial velocity appears to ap-
proximately follow a log-law profile A ln y+ + B in the
overlap layer for both fluids with similar slope A. This
is further investigated via the log-law indicator function,
Ξ = y+∂U+

z /∂y+, that is constant in where the U+
z pro-

files follow a log-law (log region). Fig. 10 (a) shows that
for both fluids, the mean axial velocity profiles follow a
log-law scaling only in a narrow range of y+ which widens
with increasing Reτ . This is consistent with the findings
of Chin, Monty, and Ooi 21 , Ahn et al. 25 and Zagarola,
Perry, and Smits 26 for Newtonian fluids. The plateau in
the Ξ profile is usually taken as the slope parameter A in
the log-law21. As seen in Fig. 10 (a), the slope parameter,
A, slightly decreases with increasing Reτ for both the flu-
ids and slightly increases with shear thinning (A = 2.52
for PL fluid vs. 2.41 for Newtonian fluid at Reτ = 750).
The location where the plateau in Ξ is reached shifts away
from the wall with shear thinning.

Although a log-law scaling is commonly assumed, at
the present Reynolds numbers, a log-law correlation is
not convincing. Therefore, we have alternately consid-

ered a power-law scaling U+
z = Cy+

Γ
where C and Γ are

constants. It is worth noting that theoretically a power-
law scaling is obtained in general and a log-law scal-
ing is obtained asymptotically for an infinite Reynolds
number27. However, the existence of both the scalings
has been suggested, but in different ranges of y+28. The
validity of a power-law scaling for the current results is
checked via its indicator function Γ = (y+/U+

z )∂U+
z /∂y+

plotted in Fig. 10 (b). The figure shows that the mean
axial velocity profiles approximately follow a power-law
scaling over a somewhat wider range of y+ than a log-law
scaling. Therefore, a power-law correlation is perhaps
slightly better than a log-law at the Reynolds number
considered here. The power-law coefficient Γ is almost in-
dependent of Reτ and slightly decreases with shear thin-
ning (Γ = 0.15 for Newtonian vs. 0.14 for PL fluid).

In turbulent boundary layer flows of Newtonian fluids,
the velocity defect Uz,CL − Uz where Uz,CL is the mean
centre line velocity, become independent of the viscosity
in the outer layer24, which is also seen here in Fig. 11. Ve-
locity defect profiles of Newtonian and PL fluids collapse
in this region, which suggests that the velocity defect in
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(a) (d)

(b) (e)

(c) (f )

FIG. 6. Contours of inner-scaled instantaneous axial velocity u+
z plotted (a–c) in inner coordinates on a developed cylindrical

surface z+ − rθ+ at y+ = 10 and (d–f ) in outer coordinates on a cross-section for a Newtonian fluid at (from top to bottom)
Reτ = 323, 500 and 750. For a–c, the flow is from left to right and the region is 7000 wall units long and 1600 wall units wide.
The contours levels vary from blue to red with the values 8 to 20.

(a) (d)

(b) (e)

(c) (f )

FIG. 7. Contours of inner-scaled instantaneous axial velocity u+
z plotted (a–c) in inner coordinates on a developed cylindrical

surface z+−rθ+ at y+ = 10 and (d–f ) in outer coordinates on a cross-section for PL fluid at (from top to bottom) Reτ = 323, 500
and 750. For a–c, the flow is from left to right and the region is 7000 wall units long and 1600 wall units wide. The contours
levels vary from blue to red with the values 8 to 20.

the outer layer is largely independent of the fluid rheol-
ogy despite the PL fluid showing very large viscosity (as
will be discussed in the following). This lends support to
the idea that the larger inner-scaled mean axial velocity
and the bulk velocity shown by PL fluid as compared to
Newtonian fluid (see Table. I and Fig. 9 a) are largely
due to the differences in the flows of the two fluids near

the wall.

Overall the mean axial velocity profiles of both New-
tonian and shear-thinning fluids show a similar Reτ -
dependence, however for each Reτ , the differences be-
tween the profiles of two fluids are clearly evident. Shear-
thinning fluid exhibit larger mean axial velocity U+

z in
outer flow region than Newtonian fluid.
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FIG. 8. (a) Streamwise and (b) azimuthal integral length
scales of axial velocity fluctuations plotted as a function of
y+.
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FIG. 9. Profiles of the inner-scaled (a) mean axial velocity
and (b) mean axial velocity gradient plotted for Newtonian
(black lines) and PL fluids (orange lines). Blue lines in (a)
show the law of wall with the slope parameter determined in
Fig. 10 (a) for Reτ = 750.
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FIG. 10. (a) log-law and (b) power-law indicator functions
for Newtonian and PL fluids. Vertical lines show the location
where the labelled values are read.
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FIG. 11. Profiles of the velocity defect plotted in outer coor-
dinates for Newtonian and PL fluids at different Reτ .

Similar to the mean axial velocity, the mean viscosity
profile of shear-thinning fluid is also almost independent
of Reτ in the viscous sublayer and is slightly higher than
the Newtonian viscosity (ν+ = 1) (Fig. 12). The mean
viscosity profiles show a log-like region in buffer and log
layers and the extent of this log-like region increases with
increasing Reτ . The mean viscosity profiles collapse for
different Reτ below the wake region. The reason for the
functional form of the collapsed mean viscosity profiles is
not obvious.
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FIG. 12. Profiles of the normalised mean viscosity plotted for
PL fluid at different Reτ . For line legend see Fig. 9.

Friction factor

Using the non-dimensionalisation based on wall units,

friction factor can be written as f = 2/U+
b

2
where U+

b
is the area weighted averaged of the mean axial velocity
U+
z . The DNS predictions of the friction factor are shown

in Fig. 13. With increasing Reτ , U
+
z integrates to larger

y+ (Fig. 9 a) which gives a higher U+
b and hence a lower

friction factor f for higher Reτ . Due to the increase in
U+
z with shear thinning in the log-layer and core-region,

U+
b is larger and the friction factor is lower for the PL

fluid compared to Newtonian fluid.
Several empirical correlations have been proposed for

PL fluids29 in which the Dodge & Metzner correlation5

(Eq. 4) has been found to agree well with the
experiments6. For Newtonian fluids, the Dodge & Met-
zner correlation reduces to the Nikuradse correlation. Al-
though the Dodge & Metzner correlation is widely used
for PL fluids, it does not have a theoretical support30.
Anbarlooei & Cruz30 proposed the following alternate
friction factor correlation based on the Newtonian Bla-
sius correlation.

f =

(

0.102− 0.033n+
0.01

n

)/

Re
1/2(n+1)
MR (12)

DNS predictions of friction factor are compared with
these correlations in Fig. 13. The current predictions
for Newtonian fluids agree better with the Blasius corre-
lation than Nikuradse’s correlation, which is consistent
with the findings of El Khoury et al. 20 for the Reynolds
numbers considered here. Both Dodge & Metzner and
Anbarlooei & Cruz correlations agree well with each
other for the shear-thinning fluid in ReMR . 100 000.
The agreement between DNS and the correlations is good
at Reτ = 323, however for higher Reτ , DNS slightly
under-predicts the friction factor compared to the cor-
relations.
The ratio of DNS predictions of the friction factor for

Newtonian and PL fluids was observed to be only slightly
decreasing with increasing Reτ in Table I. This is further

1000 10000
0.004

0.01

0.016

ReMR

f
=

2
τ w

/
(ρ
U

2 b
)

FIG. 13. Comparison of the friction factor obtained via DNS
(circles) and those of the Dodge & Metzner correlation (solid
lines) and the Anbarlooei & Cruz correlation (dashed lines)
for Newtonian (black lines) and PL fluids (orange lines).

FIG. 14. Ratio of friction factors for Newtonian and PL fluids
obtained from the correlation (Eq. 13) plotted against Reτ

with the inset figure showing a closer look in the Reτ -range
considered in this study.

analysed using the Dodge & Metzner correlation which
can be expressed as an explicit function of Reτ as:

1√
f
=

4

n0.75
log10

[
Renτ 2

4−n/2

(3 + 1/n)n

]

− 0.4

n1.2
. (13)

The ratio of f for Newtonian and PL fluids is plotted
against Reτ in Fig. 14 which shows that in the range of
Reτ considered here, the ratio fN/fNN decreases very
slowly (see the inset figure). The decrease in fN/fNN

with Reτ becomes slower as Reτ is increased and it ap-
pears that fN/fNN will approach to unity only for an
infinite Reτ .

Mean shear stress budget

As explained in Singh, Rudman, and Blackburn 8 , the
Reynolds decomposition for velocity v = V + v′; viscos-
ity ν = ν̄ + ν′ and the rate of strain tensor s = S + s′,
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where defining V , ν̄ and S as the time-averaged quanti-
ties, leads to the following expression for the (r, z) com-
ponent of the mean shear stress:

τ+rz = τv
+

rz + τR
+

rz + τfv
+

rz =
r

R
=

(

1− y+

R+

)

. (14)

where τv
+

rz = ν̄+∂U+
z /∂y+, τR

+

rz = −v+r v
+
z and τfv

+

rz =

2ν′s′rz
+
. Since except (r, z), all other components of the

mean shear stress are zero in a pipe flow, the subscript
rz is dropped in the following discussion for clarity. Note
that τ+rz is independent of the fluid rheology and the pro-
files of τ+rz of both Newtonian and shear-thinning fluids
will collapse on top of each other for a fixed Reτ as shown
and discussed in Singh, Rudman, and Blackburn 8 for
Reτ = 323.
The profiles of the inner-scaled mean shear stress com-

ponents in the (r, z) direction are plotted in Fig. 15 for
both fluids at different Reτ . As expected from the re-
sults of the mean axial velocity gradient and the mean
viscosity (Fig. 9 b and Fig. 12), the mean viscous stress

τv
+

is almost independent of Reynolds number for both
fluids except in the viscous sublayer. In the viscous sub-

layer, τv
+

slightly increases with increasing Reτ for PL
fluid, which is due to an increase in the magnitude of the

turbulent viscous stress τfv
+

(Fig. 15 c).

Compared to τv
+

and τfv
+

, profiles of the Reynolds

shear stress, τR
+

, show a largeReτ -dependence. For each

fluid, τR
+

increases significantly in the log layer and core
region and the peak moves further away from the wall
with increasing Reτ . This trend is consistent with past
studies of Newtonian fluids20,21. Differences between the
τR

+

profiles of two fluids disappear in the outer log-layer
and core region for all Reτ supporting the idea that the
effect of shear-thinning is confined near the wall. The y+

location where τR
+

profiles of two fluids start overlapping
each other is almost independent of Reτ , which suggests
that the region where the PL rheology have a major influ-
ence on the flow is independent of the Reynolds number,
however, this needs to be confirmed. Overall, the Reτ
dependence of the mean shear stresses is similar for both
fluids.

Turbulence intensities and viscosity fluctuations

Turbulence intensity profiles of both fluids are also
similarly affected with increasing Reτ with each com-

ponent increasing with Reτ (Fig. 16). Similar to τR
+

,
the axial turbulence intensity u′+

z shows a large Reτ -
dependence only for y+ & 30. The location of maximum
u′+
z is independent of Reτ for each fluid. The effect of

shear-thinning on u′+
z disappears near the pipe centre

for y+ & 200. The same is seen via the axial turbulence
intensity profiles plotted against y/R, which almost col-
lapse in the outer layer for Newtonian and PL fluids and
for different Reτ (Fig. 16 b).
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FIG. 15. Profiles of the (a) mean viscous stress τv+

(b)

Reynolds shear stress τR+

and (c) turbulent viscous stress

τ fv+

plotted for Newtonian and PL fluids at different Reτ .

Unlike u′+
z , profiles of the radial and azimuthal tur-

bulence intensities, u′+
r and u′+

θ , do not collapse near
the pipe centre for the two fluids, however, however, the
gap between the profiles of two fluids becomes smaller at
higher Reτ . The radial and azimuthal turbulence inten-
sity profiles may collapse for Newtonian and PL fluids
in the outer layer but at Reynolds numbers larger than
considered here (Fig. 16 b,d,e). Profiles of the root mean
square viscosity fluctuations are marginally affected with
increasing Reτ (Fig. 17 a) with the differences seen more
clearly when normalised by the local mean viscosity ν̄+

(Fig. 17 b).

Overall these results show clear differences between
the flow of shear-thinning and Newtonian fluids at all
Reτ considered here. The effect of shear thinning on
turbulence intensity profiles diminishes with increasing
Reτ especially in the log-layer and core region, however,
it is still significant at the highest Reτ considered here
(Reτ = 750).
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FIG. 16. Profiles of turbulence intensities plotted as a function of (a)–(c) y+ and (d)–(f ) y/R for Newtonian and PL fluids at
different Reτ .

C. Higher order turbulence statistics

A detailed discussion on the mean flow kinetic energy
(MFKE) and the turbulent kinetic energy (TKE) budgets
is available for PL fluids in Singh, Rudman, and Black-
burn 8 at a fixed Reynolds number. Here, we analyse the
effect of Reynolds number on these energy budgets but
to keep the paper short, the results are included as an
appendix in Sec. V where the main points are as follows.

Similar to the results of the first order turbulence
statistics presented above, profiles of the different terms
in the mean flow kinetic energy (MFKE) and the tur-
bulent kinetic energy (TKE) budget terms show a sim-
ilar Reτ -dependence for Newtonian and PL fluids. In
the MFKE budget, only the MFKE production and its
transport via the Reynolds stress (turbulent transport
of MFKE) show a large Reτ -independence. The MFKE
production by definition (U+

z ∂P+/∂z+) follows the same
trend as the mean axial velocity U+

z . Similar to the

Reynolds shear stress, the turbulent transport of MFKE
(T m = −∂(Uiu′

iu
′
j)/∂xj) show a large Reτ -dependence

only for y+ & 30 and the shear-thinning effect disappears
in the outer layer and core region. The non-Newtonian
terms (terms introduced due to viscosity fluctuations) re-
main small compared to other terms at all Reτ and thus,
only marginally contribute in the MFKE budget.

The turbulent kinetic energy budgets show Reynolds
number and shear-thinning dependence only near the
wall. The Reynolds number effect disappears for y+ .
30 whereas the shear-thinning effect can be seen until
y+ ≈ 100. The contribution of the non-Newtonian terms
(terms introduced due to viscosity fluctuations) remains
small compared to turbulent production and dissipation,
however, they increase in magnitude with increasing Reτ .
Over the results show that the shear-thinning effect on
the energy budgets is unlikely to disappear even at very
high Reynolds number.
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FIG. 17. Profiles of the rms viscosity fluctuations normalised
by (a) the nominal wall viscosity and (b) the local mean vis-
cosity plotted for PL fluid at different Reτ .

IV. SUMMARY AND CONCLUSIONS

Due to the difficulties in optical measurements in GN
fluids, most experimental studies of turbulent pipe flow
of GN fluids were limited to measuring turbulent fric-
tion factor and much insight has been gained via direct
numerical simulations. Past DNS studies of GN fluids
showed distinguishably different flow behaviour for GN
fluids compared to Newtonian ones. The most notable
differences were that the mean axial velocity profiles shift
above the Newtonian profiles in the log-layer, axial turbu-
lence intensity increase but the radial and the azimuthal
components decrease with shear-thinning. The GN rhe-
ology was found to affect the turbulent kinetic energy
budget mostly in the near wall-region. Despite of the sig-
nificant advancement of computational technology, much
of the DNS data available for GN fluids is limited to
low Reynolds numbers (ReG < 12 000). As the Reynolds
number increases, the viscous region becomes smaller in
outer units compared to the pipe radius, it is not clear
whether the observed shear-thinning effects will persist at
higher Reynolds number. This is the fundamental ques-
tion we attempt to answer in this study. Simulations car-
ried out for Newtonian and shear-thinning PL (n = 0.6)
fluids for Reτ = 323, 500 and 750 provide strong evidence
that the effect of shear-thinning will not disappear with
increasing Reynolds number. There is a persistent differ-

ence between the two sets of curves in the near-wall re-
gion that stems from a difference in rheologies, and which
is mostly independent of Reynolds number. It seems un-
likely that the inner-scaled mean axial velocity profiles
will ever collapse to a common curve for Newtonian and
PL fluids. This phenomenon is consistent with the pre-
dictions of the Dodge & Metzner correlation. For the
Reynolds number range considered here, the mean axial
velocity profiles are found in a better agreement with a

power-law scaling (U+
z = Cy+

Γ
) than a log-law scaling

(A ln y+ + B) for each fluid. With increasing Reynolds
number, the mean axial velocity tend to become indepen-
dent of the Reynolds number, which suggests the possibil-
ity of defining a new non-dimensionalisation to collapse
the Newtonian and non-Newtonian mean axial velocity
profiles at larger Reτ . However, data for a range of flow
indices n and larger Reτ are required to propose such
non-dimensionalisation and therefore, it remains future
work.
In the mean shear stresses, the Reynolds shear stress

is the most affected by varying Reynolds number and it
becomes independent of the shear-thinning rheology by
y+ ≈ 200 irrespective of the Reynolds number. Profiles of
the axial turbulence intensity when plotted in outer units
collapse in the outer layer for Newtonian and PL fluids
at all Reynolds number. The radial and the azimuthal
turbulence intensity profiles are also expected to follow
a similar trend but at larger Reynolds numbers than
considered here. The y+ location up to which varying
Reynolds number has the most prominent effect on the
turbulent kinetic energy budget is larger for the shear-
thinning fluid compared to Newtonian fluid (y+ ≈ 30
vs y+ ≈ 20). However, for a given Reynolds number,
the shear-thinning effects on the turbulent kinetic en-
ergy budget persist until y+ ≈ 200 and the Newtonian
and PL profiles collapse on top of each other beyond this
y+. Interestingly, in this y+ range (y+ . 200), the mean
viscosity profiles are largely independent of the Reynolds
number. The reason for the functional form of the col-
lapsed mean viscosity profiles is not obvious. However,
the Reynolds number independence of the mean viscos-
ity profiles and small contribution of the viscosity fluc-
tuations in the mean shear stress and the energy bud-
gets have implications on RANS and LES of GN fluids.
These results suggest that the effect of shear-thinning
rheology in RANS or LES can be captured via an appro-
priate mean viscosity model in the inner region, and such
mean viscosity model for a fluid can be independent of
the Reynolds number.
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V. APPENDIX.

A. Energy budgets

The equations for the mean flow and the turbulent ki-
netic energy budgets are described in detail in Singh,
Rudman, and Blackburn 8 , Pinho 31 and only a brief
overview is given here to introduce terms required in the
later discussion.
Using the Reynolds decomposition, the total kinetic

energy per unit mass q = uiui/2 is written as q̄ = K +
k where K = UiUi/2 is the mean flow kinetic energy

(MFKE) and k = u′
iu

′
i/2 is the turbulent kinetic energy

(TKE). For a steady axially homogeneous flow of non-
Newtonian fluid, the mean flow kinetic energy budget
equation is written as:

Wdp/dz

︷ ︸︸ ︷

−Uj
∂P

∂xj
+

T
m

︷ ︸︸ ︷
(

−
∂Uiu′

iu
′
j

∂xj

)

+

D
m

︷ ︸︸ ︷

2
∂ν̄SijUi

∂xj
+

ǫm

︷ ︸︸ ︷

(−2ν̄SijSij)

+

−P
︷ ︸︸ ︷

u′
iu

′
jSij +

Υm
nn

︷ ︸︸ ︷

2
∂Uiν′s′ij
∂xj

+

χnn
︷ ︸︸ ︷

(−2ν′s′ijSij) = 0,

(15)

where a subscript nn is used for terms which are non-zero
only for a non-Newtonian fluid. The following terminol-
ogy is used for different terms in Eq. 15:

W+
dp/dz: the mean flow energy production;

T m
: turbulent transport;

Dm
: the mean viscous transport;
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ǫm: the mean viscous dissipation;

−P: turbulent energy transfer or negative of turbulent
kinetic energy production.

Υm
nn: the turbulent viscous stress transport;

χnn: The mean shear turbulent viscous dissipation;

Similarly, the turbulent kinetic energy budget equa-
tion for a steady axially homogeneous flow of a non-
Newtonian fluid can be shown to be8:

P
︷ ︸︸ ︷

−u′
iu

′
jSij +

{

T
︷ ︸︸ ︷

−1

2

∂u′
iu

′
iu

′
j

∂xj

Π
︷ ︸︸ ︷

−
∂p′u′

j

∂xj

D
︷ ︸︸ ︷

+
∂(2ν̄s′iju

′
i)

∂xj

}
ǫ

︷ ︸︸ ︷

−2ν̄s′ijs
′
ij

+

{

ξnn
︷ ︸︸ ︷

∂(2ν′u′
iSij)

∂xj
+

Dnn
︷ ︸︸ ︷

∂(2ν′s′iju
′
i)

∂xj

} χnn
︷ ︸︸ ︷

−2ν′s′ijSij

ǫnn
︷ ︸︸ ︷

−2ν′s′ijs
′
ij = 0.

(16)

The terms in the first row appear for both Newtonian and
non-Newtonian fluids, for which the following is standard
terminology:

P: turbulent kinetic energy production;

T : turbulent velocity transport;

Π: pressure related transport;

D: mean viscous transport;

ǫ: mean viscous dissipation.

The terms in the second row in Eq. 16 appear due to
viscosity fluctuations and therefore, vanish for Newtonian
fluids. The following terminology is used for these terms:

ξnn: mean shear turbulent viscous transport;

Dnn: turbulent viscous transport;

χnn: mean shear turbulent viscous dissipation;

ǫnn: turbulent viscous dissipation.

In the terminology used here, the nature of different
terms (transport, production, dissipation etc.) has been
identified in their name. The kinetic energy is gener-
ated via the productions terms, redistributed within the
domain via the transport terms and dissipated via dissi-
pation terms. The TKE production P appears in both
equations with opposite sign and threfore, represents the
kinetic energy transfer from the mean flow to turbulence.
Note that the non-Newtonian terms χnn, ǫnn are named
as dissipation terms due to their similarity with the New-
tonian dissipation terms ǫm and ǫ. These non-Newtonian
terms are not strictly dissipation terms and have been
found to be positive for shear-thinning fluids and there-
fore, reduce the dissipation arising from the Newtonian

terms8. The mean flow and turbulent kinetic energy bud-
gets are discussed in detail in Davidson 32 , Eggels 33 for
Newtonian fluids and the effect of shear thinning for a
fixed Reτ is presented in Singh, Rudman, and Black-
burn 8 . Here, the energy budgets are analysed to see
whether the effect of shear thinning on the mean flow
and the turbulent kinetic energy budgets is enhanced or
diminished with increasing Reτ .

B. Mean flow kinetic energy budget

The mean flow receives energy via the working of the
mean pressure gradient on the mean flow and dissipates
via viscous effects. Energy is transferred from the mean
flow to TKE via production P+. For shear thinning, vis-
cosity fluctuations introduce additional terms, the tur-
bulent viscous stress transport Υm

nn and the mean shear
turbulent viscous transport χ+

nn. Since P+ and χ+
nn ap-

pear in both MFKE and TKE budget equations, these
terms are discussed later with the TKE budget and the
remaining MFKE budget terms are plotted in Fig. 18
where the main points are discussed below.
The Newtonian MFKE budget terms, W+

dp/dz,

T m+

,Dm+

and ǫm
+

, by definition depend on a mean

shear stress component (τv+, τR
+
or τfv

+
) and mean ax-

ial velocity U+
z . Therefore, similar to the mean axial ve-

locity and the mean shear stresses, the Newtonian MFKE
budget terms are affected similarly with Reτ for both flu-
ids. The MFKE production, W+

dp/dz = (U+
z ∂P+/∂z+)

which can also be written as 2U+
z /Reτ , decreases with

increasing Reτ (Fig. 18 a). The turbulent transport of

MFKE, T m+

, is a sink of MFKE in the core region where
it balances the MFKE production (other MFKE budget

terms vanish there). The location where T m+

reaches
a local maximum slightly shifts towards the wall with

increasing Reτ for both fluids. The magnitude of T m+

decreases in the core region with increasing Reτ , which
is due to the lower MFKE production there for larger

Reτ . The turbulent transport T m+

changes sign around
y+ ≈ 60 and thus transports energy from the core region
towards the wall. Similar to the axial turbulence inten-
sity (u′+

z ) profiles, the profiles of T m+

of Newtonian and
PL fluids overlap each other in the core region, however,

there is no obvious relation between T m+

and u′+
z .

The remaining terms are the viscosity dependent terms

(Dm+

, ǫm
+

and Υ+
nn) which are significant only near the

wall for y+ . 100 (Fig. 18 c–e). The mean viscosity de-

pendent terms i.e. the mean viscous transport, Dm+

,

and the mean viscous dissipation, ǫm
+

, dominate the
MFKE budget near the wall and similar to the mean

viscous stress, τv
+

, both of these terms show a marginal

dependence on Reτ . Due to the higher τv
+

in the shear-

thinning fluid, the magnitude of Dm+

and ǫm+ is higher
for PL fluid compared to the Newtonian fluid. The tur-
bulent viscous stress transport, Υ+

nn, which is due to
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FIG. 18. Profiles of the terms which appear only in the mean flow kinetic energy budget (Eq. 15) plotted for Newtonian (black
lines) and PL fluids (orange lines).

the turbulent viscous stress τfv
+

, show a similar Reτ -

dependence as seen for τfv
+

in Fig. 15 (c) and slightly in-
creases with increasing Reτ . However, the magnitude of
Υ+

nn is very small compared to the mean viscous dissipa-

tion ǫm
+

. The negative values Υ+
nn close to the wall sug-

gest that it decreases the total viscous dissipation there.
Overall, the Reynolds number dependence of the

MFKE budget terms is similar for both the fluids and
the contribution of the non-Newtonian transport term,
Υ+

nn, is small in the total MFKE transport.

C. Turbulent kinetic energy budget

As mentioned earlier, TKE receives energy from the
mean flow via the TKE production P+ and similar to the
MFKE, TKE is dissipated via the viscous effects. Vis-
cosity fluctuations introduce additional transport (ξnn,
Dnn) and dissipation (χnn and ǫnn) terms. Profiles of

different TKE budget terms are plotted in Fig. 19 where
the main points are discussed below.

Similar to the MFKE budget, Newtonian terms in
the TKE budget are also similarly affected by increas-
ing Reτ for each fluid (Fig. 19 a-e). The TKE produc-

tion, P+ = τR
+

(∂U+
z /∂y+), is higher for higher Reτ

for each fluid (Fig. 19a), which is due to the increased

Reynolds shear stress τR
+

with increasing Reτ as seen
in Fig. 15 (c). The location of the maximum P+ is al-
most indpendent of Reτ but slightly shifts away from
the wall with shear thinning. Shear thinning decreases

τR
+

, therefore, the TKE production P+ is lower for PL
compared to the Newtonian fluid. The gap between P+

profiles of Newtonian and PL fluids is significantly large
at all Reτ .

The increase in the TKE production with increasing
Reτ is accompanied by an increase in the mean viscous
dissipation, ǫ+ (Fig. 19 b). The mean viscous dissipation
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FIG. 19. Profiles of the turbulent kinetic energy budget terms (see Eq. 16) plotted for Newtonian (black lines) and PL fluids
(orange lines) at different Reτ .

ǫ+ shows Reτ -dependence mainly for y+ . 30. Larger
ǫ+ near the wall for higher Reτ indicates larger shear

rate fluctuations s′ijs
′
ij

+
(ǫ+ = 2ν+s′ijs

′
ij

+
) for higher

Reτ because the mean viscosity is constant for a Newto-
nian fluid and is independent of Reτ there for PL fluid
(Fig. 12). Deviation between the profiles of Newtonian
and PL fluids in the viscous sublayer slightly increases
with increasing Reτ .

The mean viscous dissipation near the wall is mainly
balanced by the mean viscous transport, D+, there.

Therefore, the profiles of D+ show a similar Reτ -
dependence as ǫ+ for y+ < 3, and D+ there is larger for
higher Reτ (figure 19 c). The mean viscous transport D+

vanishes beyond y+ & 30. Profiles of the other Newto-
nian transport terms, T + and Π+, which are small com-
pared to D+ (approximately five and ten times smaller),
also show a similar Reτ -dependence for each fluid as seen
for the mean viscous transport D+ (figures 19d and e).
However unlike D+, T + and Π+ do not vanish until
y+ ≈ 100. The non-Newtonian terms arising due to vis-
cosity fluctuations are significant only for y+ . 30 where
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FIG. 20. Profiles of the sum of the Newtonian and non-
Newtonian transport and the dissipation terms plotted for the
Newtonian (black lines) and the shear-thinning fluid (orange
lines).

they increase in magnitude with increasing Reτ (figures
19 f and g).

Profiles of the total transport T k+

= T ++Π++D++

ξ+nn+D+
nn and the total dissipation ǫk

+

= ǫ++χ+
nn+ ǫ+nn

provide a complete picture of the effect of increasing Reτ
on the turbulent kinetic energy budget. As seen in Fig. 20

the profiles of both T k+

and ǫk
+

are also affected simi-

larly with increasing Reτ for each fluid. Both T k+

and
ǫk+ are larger for higher Reτ . The total TKE trans-

port, T k+

, shows a Reτ -dependence only in the viscous

sublayer whereas the total turbulence dissipation ǫk
+

is
affected by increasing Reτ until the outer edge of the
buffer layer (y+ . 30). The gap between the profiles of
Newtonian and PL fluids is larger in the viscous sublayer
and it seems unlikely that the gap will close even at very
high Reynolds number.
The overall effect of increasing Reτ on the TKE budget

is qualitatively similar for each fluid. The non-Newtonian
terms act as a sink in the TKE budget and their contribu-
tion increases with increasing Reτ . The Reynolds num-
ber effect is mainly confined near the wall for y+ . 30
whereas the shear-thinning effect is seen until y+ ≈ 100.
The shear-thinning effect on the energy budgets is un-
likely to disappear even at very high Reynolds number.


