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Abstract

The effects of mechanical generation of turbulent kinetic energy and buoyancy forces on the1

statistics of air temperature and velocity increments are experimentally investigated at the cross2

over from production to inertial range scales. The ratio of an approximated mechanical to buoy-3

ant production (or destruction) of turbulent kinetic energy can be used to form a dimensionless4

stability parameter ζ that classifies the state of the atmosphere as common in many atmospheric5

surface layer studies. We assess how ζ affects the scale-wise evolution of the probability of ex-6

treme air temperature excursions, their asymmetry and time directionality. The analysis makes7

use of high frequency turbulent velocity and air temperature time series measurements collected8

at z=5 m above a grass surface at very large frictional Reynolds numbers Re∗ = u∗z/ν > 1× 105
9

(u∗ is the friction velocity and ν is the kinematic viscosity of air). A multi-time measure of the10

disbalance between forward and backward phase-space trajectories is employed to investigate the11

time-directional properties of the scalar (temperature) field. Using conventional higher-order struc-12

ture functions, we find that temperature exhibits larger intermittency and wider multifractality13

when compared to the longitudinal velocity component, consistent with laboratory studies and14

simulations conducted at lower Re∗. We find that the magnitude of ζ, rather than the sign of the15

heat flux, impacts the distribution of scalar increments at separation scales well within the inertial16

subrange. Conversely, the direction of the heat flux fingerprints the observed time-directionality17

properties of the scalar field in the first two decades of inertial sub-range scales. These combined18

findings demonstrate that external boundary conditions, and in particular the magnitude and sign19

of the sensible heat flux, have a significant impact on temperature advection-diffusion dynamics20

within the inertial range.21

∗ enrico.zorzetto@duke.edu.
† andrew.bragg@duke.edu.
‡ gaby@duke.edu.
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I. INTRODUCTION22

Turbulence in fluids is prototypical of spatially extended nonlinear dissipative systems23

characterized by large fluctuations that are active over wide ranging scales [1]. The dynam-24

ics of a substance or scalar advected by a turbulent flow (often termed ’scalar turbulence’25

[2]) is by no means an exception to this description. Scalar turbulence shares many phe-26

nomenological parallels with the much studied turbulent velocity fluctuations, especially in27

the inertial subrange. However, scalar turbulence also exhibits distinctive large- and fine-28

scaled temporal patterns (e.g. ramp-cliff) that are usually weak or all together absent from29

their component-wise turbulent velocity counterparts [2–4]. This finding is particularly true30

in the atmospheric surface layer (ASL) [5, 6], a layer within the atmospheric boundary layer31

(ABL) that is sufficiently far above roughness elements but not too far from the ground32

to be directly impacted by the Coriolis force. In the ASL, the frictional Reynolds number33

Re∗ = u∗z/ν can readily exceed 105, where z is the distance above the ground surface, u∗ is34

the friction velocity related to the kinematic turbulent stress, and ν is the kinematic viscos-35

ity of air. A direct consequence of this large Re∗ is a wide separation between scales over36

which turbulent kinetic energy (k) is produced and dissipated. In the absence of thermal37

stratification, k is produced at scales commensurate with z; however, the action of fluid38

viscosity responsible for the dissipation of k occurs at scales commensurate to or smaller39

than the Kolmogorov microscale ηK = (ν3/〈ε〉)1/4, where 〈ε〉 is the mean turbulent kinetic40

energy dissipation rate that is proportional to u3
∗/z for a neutrally stratified ASL [6]. These41

estimates of 〈ε〉 and ηK result in z/ηK ∼ Re
3/4
∗ > 5000 in the ASL, which is rarely achieved42

in direct numerical simulations or laboratory studies. Embedded in this wide ranging scale43

separation is the inertial subrange [7], where self similar scaling of velocity and air temper-44

ature structure functions is expected to hold for eddy sizes much larger than ηK but much45

smaller than z. Integral scales or scales comparable to z are directly influenced by boundary46

conditions imposed on the flow including surface heating (or cooling) in the ASL, whereas47

small scales (e.g. ηK) may attain universality and local isotropy after a large number of48

cascading steps away from the energy injection scales.49

Much attention has been historically dedicated to the inertial subrange and the subse-50

quent cross-over to the viscous or molecular regimes precisely because of the possible uni-51

versal character of turbulence at such fine scales [4, 8–12]. However, it is now accepted that52
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some coupling between small and large scales exists, especially for passive scalars [2, 4, 13],53

that act to enhance intermittency buildup across scales and distort any universal behavior54

by injecting the effects of the boundary conditions (or the k generation mechanism). Along55

similar lines of inquiry, it has been conjectured that the presence of coherent ramp-cliff56

patterns in concentration (or temperature) time series are responsible, to some degree, for57

this coupling [4]. Ramp-cliff structures are characterized by local intense scalar gradients58

separated by large quiescent regions. The presence of ramp-cliff structures in scalar time59

series has been shown to break locality of eddy interactions and determine some departures60

from small scale isotropy.61

Sweep-ejection dynamics connected to the presence of ramps are likely to play a major62

role in observed extreme value statistics, as shown e.g., for Lagrangian velocity sequences in63

plant canopy turbulence [14]. Moreover, ramps are asymmetric and produce non-zero odd64

ordered structure functions, sharing striking resemblance with flight-crash events recently65

reported for the turbulent kinetic energy of Lagrangian particles [15]. Even though ramps66

have been extensively observed experimentally [3], studied as surface renewal processes [13],67

and from a Lagrangian perspective [2, 16], a unified picture describing their effects on inertial68

scales statistics remains lacking and motivates the work here.69

Our main objective is to investigate two questions about scalar turbulence at scales span-70

ning production to inertial subranges: How do ramp-cliff patterns modify (i) the probability71

of extreme scalar concentration or air temperature excursions and its corollary intermit-72

tency buildup, and (ii) symmetry and time reversibility of scalar turbulence. These two73

questions are explored for differing turbulent energy injection mechanisms (mechanical and74

buoyancy forces) in the ASL. Here we focus on the production-to-inertial scales instead of75

the usual inertial to viscous ranges for the following reasons. First, any cross-scale coupling76

with ramp-cliff patterns is likely to be sensed at large scales commensurate with the ramp77

durations. Second, these scales are deemed most relevant when constructing sub-grid scale78

models for improving Large Eddy Simulations [17–20]. Third, these scales encode much79

of the scalar variance that is needed when deriving phenomenological theories for the bulk80

flow properties based on the spectral shapes of the turbulent velocity and air temperature81

[21–25], especially for the ASL.82

To achieve the study objectives, high frequency measurements of the three velocity com-83

ponents and air temperature fluctuations in the ASL are used to explore flow statistics at84
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the transition from production to inertial scales. In particular, the focus is on the first two85

decades dominated by approximate inertial subrange effects, where the transition from the86

large eddies to the universal equilibrium or inertial range occurs. The statistical properties87

of temperature increments within this range of scales is examined with the goal of addressing88

to what extent the tail properties (and thus the probability of extreme events) at fine scales89

still carry signatures from the production ranges and in particular of large coherent struc-90

tures such as ramp-cliffs. The experiments here span several atmospheric stability regimes91

that dictate to what degree turbulent kinetic energy is mechanically or buoyantly generated92

(or dissipated) depending on surface heating (or cooling) and on the turbulent shear stress93

near the ground [26]. However, due to the large Reynolds number encountered in the ASL,94

the stable stratification is not sufficiently severe to allow for a transition to non-turbulent95

regimes. Therefore, the turbulence can be studied as three dimensional and fully developed.96

The manuscript is organized as follows: In section II, the budget for turbulent kinetic97

energy forced by a mean velocity gradient and buoyancy is reviewed so as to define the key98

variables and dimensionless quantities pertinent to ASL flows. Then, the statistical tools99

used to characterize intermittency and time directionality of the scalar field are introduced.100

Section III presents the experimental setup, data processing, and compares the outcome of101

this experiment with predictions from traditional turbulence theory in the inertial subrange.102

The results obtained investigating extreme values and time directional properties for velocity103

and temperature are then presented in section IV. In section V the main conclusions are fea-104

tured. The appendix shows that distortions of the inertial range due to stable stratification105

are not relevant for the range of scales studied here.106

II. THEORY107

A. Overview of ASL similarity at large- and small-scales108

The turbulent kinetic energy budget for a stationary and planar homogeneous flow in the109

absence of subsidence is given by110

∂k

∂t0
= 0 = −u′w′dU

dz
+ βogw′T ′ + PD + TT − ε, (1)

where k = (u′2 + v′2 + w′2)/2 is the turbulent kinetic energy, u′, v′, and w′ are the turbulent111

velocity components along the mean wind (or x), lateral (or y), and vertical (or z) directions,112
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respectively, t0 is time, and the five terms on the right-hand side of Eq. (1) are mechanical113

production, buoyant production (or destruction), pressure transport, turbulent transport of114

k, and viscous dissipation of k, respectively, βo is the thermal expansion coefficient for gases115

(βo = 1/T , T is air temperature here), g is the gravitational acceleration, −u′w′ = u2
∗ is the116

turbulent kinematic shear stress near the surface, and w′T ′ is the kinematic sensible heat117

flux from (or to) the surface. When w′T ′ > 0, buoyancy is responsible for the generation118

of k and the ASL is classified as unstable. When w′T ′ < 0, the ASL is classified as stable119

and buoyancy acts to diminish the mechanical production of k. The relative significance of120

the mechanical production with respect to the buoyancy generation (or destruction) may be121

expressed as122

−u′w′dU
dz

+ βogw′T ′ =
u3
∗
κz

[
φm(ζ) +

κzβogw′T ′

u3
∗

]
=
u3
∗
κz

[φm(ζ)− ζ] , (2)

where123

dU

dz
=
u∗
κz
φm(ζ), ζ =

z

L
, L = − u3

∗

κgβow′T ′
, (3)

and φm(ζ) is known as a stability correction function reflecting the effects of thermal stratifi-124

cation on the mean velocity gradient (φm(0) = 1 recovers the von Karman-Prandtl log-law),125

κ ≈ 0.4 is the von Karman constant, and L is known as the Obukhov length as described by126

the Monin and Obukhov similarity theory [26]. The physical interpretation of L is that it is127

the height at which mechanical production balances the buoyant production or destruction128

when φm(ζ) does not deviate appreciably from unity. For a neutrally stratified ASL flow,129

|L| → ∞ and |ζ| → 0. The sign of L reflects the direction of the heat flux, with nega-130

tive values of L corresponding to upward heat fluxes (unstable atmospheric conditions) and131

positive values of L corresponding to downward heat flux (stable atmosphere).132

Several bulk flow statistics in the ASL can be reasonably described by the aforementioned133

Monin-Obukhov similarity theory, including the mean air temperature gradient dT/dz and134

the air temperature variance T ′2, both varying with ζ when normalized by a temperature135

scale T∗ = −w′T ′/u∗. However, the statistics of some large-scale features within the tem-136

perature time series traces, such as the statistics of ramp-cliff patterns, do not scale with137

z. For starters, the ramp characteristic dimension is generally larger than z and their du-138

ration exceeds the mean vorticity time scale (κzφm(ζ)−1)u−1
∗ . Ramps have been observed139

within canopies, near the canopy atmosphere interface, and other types of flows as reviewed140

elsewhere [4, 13]. While z/L may not be the proper scaling parameter for ramps, it does141
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indirectly impact many of their features in air temperature time traces sampled within the142

ASL. For example, in stably stratified ASL flows, the temperature ramps appear ’inverted’143

when compared to their near-neutral counterparts. The amplitudes and durations of ramps144

can increase with increasing instability due to weaker shearing and intense buoyant updrafts145

[27, 28].146

At small scales associated with the inertial subrange, the velocity and temperature second-147

order structure functions are commonly described by the Kolmogorov 1941 (K41) theory [7]148

given as149

S2
u(r) = [∆u(r)]2 = 4Co,u(〈ε〉r)2/3, (4)

150

S2
w(r) = [∆w(r)]2 = 4Co,w(〈ε〉r)2/3, (5)

151

S2
T (r) = [∆T (r)]2 = 4Co,T 〈εT 〉〈ε〉−1/3r2/3, (6)

where ∆u(r) = u(x + r) − u(x), ∆w(r) = w(x + r) − w(x), and ∆T (r) = T (x + r) − T (x)152

are the velocity and temperature increments at separation distance (or scale) r, 〈ε〉 and153

〈εT 〉 are the k and temperature variance dissipation rates respectively, Co,u and Co,w are154

the Kolmogorov constants for the longitudinal and vertical velocity components, and Co,T155

is the Kolmogorov-Obukhov-Corrsin (KOC) constant. These scaling laws, obtained under156

the assumptions of similarity and local isotropy, appear to hold reasonably in the ASL for157

scales smaller than z/2 [29]. Moreover, the normalized third order structure functions158

S(r) =
S3
u

(S2
u)

3/2
=
〈∆u(r)3〉
〈∆u(r)2〉3/2

(7)

and159

F (r) =
S3
TTu

S2
T [S2

u]
1/2

=
〈∆u(r)∆T (r)2〉

〈∆T (r)2〉〈∆u(r)2〉1/2
(8)

must be constant to recover K41 predictions for S2
u and S2

T in the inertial range [30].160

However, relevant deviations from K41 scaling have been reported for higher order struc-161

ture functions, especially for the scalar fluctuations. These deviations arise as (i) Eqs. (4) -162

(6) do not account for intermittency related to spatial variability of the actual ε and εT , and163

(ii) the hypothesis of local isotropy might not hold for scalars due to non-local interactions164

across scales [31]. A signature of the latter is the large structure skewness for temperature165

determined by ramp structures [4, 29]. Many models, starting from Kolmogorov’s log-normal166

dissipation rate refinement [32], seek to relax some of the restrictive assumptions of K41 so167
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as to explain the anomalous scaling observed in higher order moments. For scalars, these168

corrections are commonly expressed as169

SnT = Cn (εr)n/3 (r/LI)
ζ′n−n/3 (9)

where the exponent ζ ′n implies a scaling different from K41 that depends on the moment170

order n. The presence of an integral time scale LI suggests an explicit dependence on large171

scale eddy motion within the inertial subrange. One estimate of LI may be derived from172

the integral length scale of the flow given by173

LI = U · Iw = U ·
∫ ∞

0

ρw(τ0)dτ0, (10)

where ρw(τ0) is the vertical velocity autocorrelation function and τ0 is the time lag. Here, Iw174

is presumed to be the most restrictive scale given that w′ is the flow variable most impacted175

by the presence of the boundary.176

The statistics of air temperature increments across scales (τ0/Iw) for different ζ conditions177

are explored with a lens on two primary features: buildup of heavy tails and destruction178

of asymmetry originating from ramp-cliff structures at the cross-over from τ0/Iw > 1 to179

τ0/Iw ≈ 0.1. Because changes in ζ do result in changes in Iw, the time (or space) lags are180

presented in dimensionless form as τ = τ0/Iw, so that the increments of a flow variable181

∆s, with ∆s = ∆u,∆w,∆T at a given dimensionless scale τ , can be expressed as ∆s(τ) =182

s(t+ τ)− s(t), where t = t0/Iw.183

B. Probabilistic description of intermittency across scales184

The intermittent behavior of ASL turbulent flows has been documented by several ex-185

periments [33, 34], and a number of models have been proposed to capture the effects of186

intermittency on the flow statistics in the inertial range of scales (e.g., lognormal, bi- and187

multi-fractals - beta model, log-stable, She-Leveque vortex filaments, etc). Common to all188

these models is the hypothesis of local isotropy and the accounting for uneven distribution189

of eddy activity in the space/time domain, which explains the anomalous scaling of higher190

order even structure functions.191

Here, a statistical description of scalar increments is used to fingerprint large-scale signa-192

tures across scales τ for different ζ. If such fingerprints exist, the dissipation rates ε and εT193
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need not be sufficient to describe all aspects of the inertial range statistics. The one-time194

probability density function (pdf) of the increments ∆s(τ) of the flow variable s = u,w, T195

at a given dimensionless scale τ , can be expressed as [35]196

p(∆s) =
N

qo(∆s)
exp

∫ ∆s

0

ro(∆s
′)

qo(∆s′)
d∆s′. (11)

This expression is exact when ∆s are realizations of a stationary stochastic process S(t)197

under the condition p(∆s) → 0 as ∆s → ∞. Here qo(∆s) = 〈Ṡ2|∆s〉/〈Ṡ2〉 and ro(∆s) =198

〈S̈|∆s〉/〈Ṡ2〉 are the normalized averages of the first and second order conditional derivatives199

of the process S(t), and N is a normalization constant. Eq. (11) generalizes previous results200

obtained by Sinai and Yakhot [36] and Ching [37] for the pdf of temperature fluctuations201

and their increments, where the term ro(∆s) was linear (ro(∆s) = −∆s). Eq. (11), while202

derived for a twice-differentiable process, can be interpreted as the steady-state solution of a203

Fokker Planck equation with p(∆s) vanishing at infinite boundaries, with drift and diffusion204

coefficient equal to r0 and q0 respectively [38, 39].205

Although Eq. (11) can be directly computed from an observed time series, the estimation206

of the conditional derivatives in qo(∆s) and ro(∆s) becomes inevitably uncertain as ∆s207

approaches the tails of the pdf. However, a number of parametric distributions commonly208

used in statistical mechanics arise as particular cases of Eq. (11) when ro(∆s) = −∆s,209

such as Gaussian (qo constant), power-laws (qo(∆s) ∼ ∆s2) and stretched exponentials210

(qo(∆s) ∼ ∆sa, 0 < a < 2). To facilitate estimation and comparisons with data, two different211

parametric models for the tails of Eq. (11) are here adopted: a Stretched Exponential212

(SE) and a q-Gaussian distribution (QG). The first arises from multiplicative processes of213

normal-distributed random variates [40], while the second maximizes a generalized measure214

of information entropy proposed by Tsallis [41–43]. While QG does not have a clear physical215

basis in the context of turbulent flows [44], it has been widely used in the analysis of216

turbulence simulations and data [13, 45–47]. We employ these two models to infer tail217

behavior as well as to test the independence of our findings from the particular parametric218

distribution used to characterize p(∆s). The QG and SE pdfs are given as219

pQG(∆s) = N(q) ·
(

1 + (q − 1)
∆s2

2ψ2

) 1
1−q

, (12)

220

pSE(∆s) =
η

λ

(
∆s

λ

)η−1

· exp

(
∆s

λ

)η
. (13)
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Both pdf models have two degrees of freedom corresponding to a scale (ψ,λ) and shape221

(η, q) parameter. We adopt the (symmetric) QG model and the SE fitted separately to right222

and left tails of p(∆T ).223

C. Probabilistic description of asymmetry and irreversibility across scales224

The presence of ramp-cliff structures has been conjectured to result in non-local interac-225

tions of different size eddies within the inertial subrange [4]. This non-locality affects both226

even and odd moments of higher order. A statistical framework to investigate the effects of227

ramps on the asymmetric nature of velocity and scalar increments for different atmospheric228

stability classes is now discussed. Sharp edges associated with cliffs might directly inject229

scalar variance at much smaller scales and thus alter the magnitude and sign of odd order230

moments within the inertial range (depending on z/L). The presence of asymmetry has been231

investigated based on odd-ordered structure functions [4] or multipoint correlators [48]. In232

particular, a simple measure for the persistence of asymmetry at small scales is the skewness233

of the scalar increments S3
T = 〈∆T (τ)3〉/〈∆T (τ)2〉3/2. The structure skewness of air tem-234

perature has been found to scale as Reλ = σuλ/ν (where λ is the Taylor microscale and σu235

is the root mean square of the longitudinal velocity fluctuations) and thus for a boundary236

layer ST3 ∼ Re
1/2
∗ . However, for large values of Reλ experimental evidence suggests that ST3237

tends to plateau and become independent of Reλ [4, 31].238

A further signature of ramp-cliff structures is that increments ∆T (τ) may exhibit a time239

directional (or ’irreversible’) behavior. Time reversibility implies that the trajectories of240

a stationary process Θt exhibit the same statistical properties when considered forward241

or backward in time. In particular, for a reversible time series the n-points joint pdf of242

(Θ1,Θ2, ...Θn) is equal to the joint pdf of the reversed sequence (Θn,Θn−1, ...Θ1) for every243

n. While testing this general definition of reversibility would require perfect knowledge244

of the phase space trajectories, a weaker definition is the so called lag-reversibility. This245

condition only requires the two-points pdfs to be equal: fΘt,Θt+τ (Θ1,Θ2) = fΘt+τ ,Θt(Θ2,Θ1).246

While this definition is less general, it still provides a necessary condition for testing time247

reversibility. Moreover, it is consistent with the traditional descriptions of turbulence that248

are primarily based on two-point statistics. Lag reversibility implies that [49]249

Rτ = ρc(Θ
2
t ,Θt+τ )− ρc(Θt,Θ

2
t+τ ) = 0. (14)
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where ρc denotes a correlation coefficient between two variables. This condition can be250

directly tested across different τ and ζ using a conventional correlation analysis.251

A second test for reversibility of scalar trajectories is here performed based on the252

Kullback-Leibner measure, a form of relative entropy that determines the average distance253

between the entire pdf of forward and backward trajectories [39, 50, 51]. Again, the analysis254

here is restricted to the inspection of lag-reversibility (n = 2) across scales τ . In such a255

restricted form, this measure reduces to256

〈Zτ 〉 =

∫
ΩΘ

∫
ΩΘ′τ

p(Θ′τ |Θ)p(Θ) log
p(Θ′τ |Θ)

p(−Θ′τ |Θ)
dΘ′τdΘ, (15)

where Θ′τ = ∆Θ(τ)/τ , and the domains of integration ΩΘ and ΩΘ′τ correspond to the257

populations of the random variables Θ and Θ′τ respectively. Eq. (15) determines, at each258

dimensionless scale τ , the average distance between the probability of the transition ∆Θ(τ)259

and its inverse, at every given level Θ.260

A statistical mechanics interpretation of Eq. (15) would imply that for a system in261

non-equilibrium steady state, the Fluctuation Theorem must hold so that262

log
p(−Zτ )
p(Zτ )

= −Zτ (16)

for the variable Zτ computed at some level Θ263

Zτ (Θ) = log
p(Θ′τ |Θ)

p(−Θ′τ |Θ)
. (17)

Note here the usage of conditional probabilities instead of their unconditional forms em-264

ployed in recent flight-crash studies of Lagrangian fluid particles [15] that also made use of265

Fluctuation Theorem and time-reversibility. Eq. (15) has been shown to have general va-266

lidity [51] independent of the underlying dynamics or statistical-mechanics interpretations,267

when considering conditional statistics.268

III. DATA AND METHODS269

The three velocity components and air temperature measurements were sampled at 56270

Hz using an ultra-sonic anemometer positioned at z =5.2 m above a grass-covered surface271

at the Blackwood Division of the Duke Forest, near Durham, North Carolina, USA. The272

anemometer samples the air velocity in three non-orthogonal directions by transmitting273
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sonic waves in opposite directions and measuring their travel times along a fixed 0.15 m274

path length. Temperature fluctuations are then computed from measured fluctuations in275

the speed of sound assuming air is an ideal gas. The non-orthogonal sonic anemometer276

design used here has proven to be the most effective at reducing flow distortions induced by277

the presence of the instrument.278

The experiment resulted in 123 time series records (henceforth termed ’runs’) each having279

a duration of 19.5 minutes (65536 data points at 56Hz), covering a range of different atmo-280

spheric stability conditions [29]. Of these, only 34 runs passed a stationarity test and were281

included in the analysis (see Table I for a summary of the properties of the flow for these282

runs). The assumption of stationarity is necessary so as to (i) decompose the flow variables283

into a mean and fluctuating part, (ii) adopt Eqs. (11) and (15) so as to describe intermit-284

tency and time irreversibility respectively, and (iii) compute the integral scales needed in285

delineating the transition from production to inertial. To test the dataset for stationarity,286

we employ the second order structure functions of velocity components (u,w) and air tem-287

perature T . Runs were included only if the slope of S2
s = 〈[s(t+ τ)− s(t)]2〉 for time delays288

larger than about 9 minutes (30000 sample points) was smaller than a fixed value (0.01).289

For the 34 runs meeting this strict stationarity criterion, second order structure functions290

for w and T are featured in Fig. 1. As expected, structure functions exhibit an approximate291

2/3 scaling at fine scales and transition to a constant value as the autocorrelation weakens292

at large separation distances.293

The presence of a stable stratification is known to produce distortions on the spectral294

properties of turbulence at scales commensurate with (and larger than) the Dougherty-295

Ozmidov length scale [52]. We investigated this issue (see the Appendix for more details)296

finding that stable stratification effects are only relevant at scales larger than the integral297

scale Iw considered here and not in the inertial range.298

As earlier noted, the most restrictive (i.e. smallest) integral time scale is Iw associated299

with the vertical velocity w due to ground effects. We assume that this time scale charac-300

terizes the transition from production to inertial ranges for all three flow variables u,w, T .301

Eq (10) is here evaluated by integrating ρw(τ) up to the first zero crossing so as to avoid302

the effects of low frequency oscillations. Figure 1 illustrates the integral time scales of w303

and T as a function of ζ, where the aforementioned integral time scales are normalized by304

the mean vorticity time scale dU/dz = φm(ζ)u∗(κvz)−1. It is clear that such normalized305
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Iw is approximately constant across stability regimes and suggests Iw to be proportional306

to the duration of vortices most efficient at transporting momentum to the ground for all307

ζ. Conversely, the temperature integral time scale is much longer than Iw for near-neutral308

conditions and only approaches Iw for strongly unstable conditions.309

A known limitation of sonic anemometry is the presence of distortions at high frequencies310

due to instrument path-averaging. For this reason, the smallest time scale considered in the311

analysis is 0.05 · Iw, which corresponds to a minimum travel path of 30cm (or twice the312

sonic anemometer path length). Taylor’s frozen turbulence hypothesis [53] (r = −Ut) was313

employed to convert values of τ to separation distances r within the inertial subrange even314

though the turbulent intensity σu/U is not small as shown in Table I. For this reason, we315

adopt the dimensionless lag τ for analysis and presentation. The τ can be interpreted as316

temporal or spatial noting that distortions due to the use of Taylor’s hypothesis impact317

similarly the numerator and denominator.318

For every run, ζ was computed using Eq. (3) and then employed to classify the ASL319

stability condition. Most of the runs in the dataset are unstable with a wide range of |ζ|,320

while only 4 runs are characterized by ζ > 0. To ensure a balanced statistical design, two321

stability classes are selected with the same number of runs (8) in each class: strongly unstable322

(|ζ| > 0.5) and near neutral runs (|ζ| < 0.072). A summary of the bulk flow properties for323

these runs are featured in Table (I).324

In the analysis, each flow variable s (s = u,w, T ) is normalized to zero-mean and unit-325

variance (labeled as sn). Then, at scale τ , a time series of ∆s(τ) = sn(t + τ) − sn(t) is326

constructed and again normalized to have unit variance.327

For illustration purposes, Fig. 2 shows sequences of fluctuations u′, w′, T ′ extracted from328

runs in unstable and stable atmospheric regimes. In the first case, temperature fluctuations329

clearly exhibit ramp-cliff structures occurring with time scales larger than Iw. In the sta-330

ble/near neutral case, large scale scalar structure are still present even though their structure331

is qualitatively different from the unstable case, and may include inverted ramp structures332

as in Fig. 2(B) when w′T ′ < 0.333

To test the effects of these coherent structures on inertial subrange statistics, and in334

particular to isolate the effect of temperature ramps on intermittency and asymmetry, syn-335

thetic time series are used and are constructed as follows. First, a phase-randomization of the336

original temperature records [54] is performed by preserving the amplitudes of the Fourier337
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coefficients while destroying coherent patterns encoded in the phase angle. A synthetic saw-338

tooth time series is then superimposed on the time series obtained by phase-randomization.339

Here a coefficient α measures the relative weight of the ramps with respect to the phase-340

randomized sequence. This combination yields realizations of a renewal process (see Fig.341

2(C) for a representative example with α = 0.5) that is unconnected with Navier-Stokes342

scalar turbulence, but mimics sweep-ejection dynamics [13]. Synthetic ramps are here gen-343

erated with exponentially distributed durations and with a mean duration set to a multiple344

of the integral time scale (2 ·Iw in Figure 2(C)). The resulting time series is again normalized345

to have zero mean and unit variance.346

TABLE I: Bulk flow properties for the runs in our dataset.

The table reports the atmospheric stability parameter ζ,

the Obukhov length L [m], the sensible heat flux H =

ρCpw′T ′ [Wm−2] (where ρ is the mean air density and Cp is

the specific heat capacity of dry air at constant pressure), the

mean air temperature T [◦C] and mean velocity U [m/s],

and the integral time scale for w [s], the turbulent intensity

σu/U , the temperature standard deviation σT [◦C], and ver-

tical velocity standard deviation σw [m/s].

Run ζ L H T U Iw σu/U u∗ σT σw

1 -11.56 -0.4 93.2 33.9 2.1 2.62 0.44 0.08 0.48 0.40

2 -1.31 -4.0 121.6 26.9 1.0 7.58 0.72 0.17 0.54 0.30

3 -0.89 -5.8 73.1 27.8 0.5 6.62 0.91 0.16 0.37 0.30

4 -0.81 -6.4 79.9 32.7 0.7 5.75 1.05 0.17 0.61 0.29

5 -0.80 -6.5 138.1 27.4 0.8 8.18 0.48 0.21 0.57 0.31

6 -0.67 -7.7 149.8 31.4 0.9 11.64 1.04 0.23 0.63 0.38

7 -0.59 -8.8 118.1 34.8 1.5 3.43 0.71 0.22 0.58 0.34

8 -0.52 -10.0 85.4 32.5 2.1 1.74 0.37 0.21 0.44 0.37

9 -0.45 -11.5 78.6 31.7 1.1 7.44 0.61 0.21 0.43 0.30

10 -0.44 -11.7 110.7 31.9 1.2 5.89 0.65 0.24 0.49 0.37

11 -0.44 -11.8 39.4 34.4 1.3 3.19 0.45 0.17 0.32 0.29
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Run ζ L H T U Iw σu/U u∗ σT σw

12 -0.40 -13.0 36.6 34.1 1.7 2.30 0.39 0.17 0.37 0.28

13 -0.37 -14.0 65.1 25.2 1.6 2.91 0.39 0.21 0.35 0.27

14 -0.33 -15.6 48.0 28.9 1.4 2.58 0.41 0.20 0.27 0.30

15 -0.33 -15.8 4.8 33.4 1.6 1.59 0.35 0.09 0.09 0.23

16 -0.29 -18.2 115.2 32.1 2.7 2.16 0.37 0.28 0.44 0.47

17 -0.28 -18.5 136.2 29.2 0.9 6.88 1.11 0.30 0.56 0.37

18 -0.27 -19.1 108.6 30.5 1.7 3.56 0.62 0.28 0.54 0.34

19 -0.17 -29.7 70.5 29.5 2.6 2.22 0.29 0.28 0.36 0.42

20 -0.15 -33.8 63.2 32.9 2.2 2.97 0.39 0.28 0.36 0.40

21 -0.14 -37.9 30.9 34.2 1.6 4.17 0.49 0.23 0.34 0.32

22 -0.12 -44.4 118.6 31.0 2.6 3.78 0.42 0.38 0.49 0.42

23 -0.09 -56.5 26.7 33.9 1.9 3.39 0.31 0.25 0.15 0.31

24 -0.08 -61.7 49.7 31.7 2.0 3.50 0.41 0.31 0.27 0.39

25 -0.08 -65.1 17.6 34.0 2.2 3.22 0.29 0.23 0.13 0.31

26 -0.07 -72.5 28.8 31.5 1.8 2.71 0.41 0.28 0.29 0.30

27 -0.04 -126.2 45.1 31.0 4.3 1.21 0.33 0.39 0.35 0.71

28 -0.03 -171.8 3.9 31.3 1.7 3.18 0.39 0.19 0.15 0.30

29 -0.02 -261.4 46.1 31.2 3.8 1.37 0.39 0.50 0.23 0.72

30 -0.02 -304.3 47.1 29.4 5.0 0.84 0.31 0.53 0.21 0.80

31 0.002 2397.4 -0.4 31.2 1.9 1.94 0.44 0.22 0.69 0.32

32 0.01 525.5 -1.3 32.9 0.9 3.00 0.51 0.19 0.18 0.23

33 0.05 93.8 -20.7 29.8 2.6 1.52 0.30 0.27 0.23 0.39

34 0.07 71.4 -14.2 30.4 1.9 2.18 0.37 0.22 0.25 0.28

IV. RESULTS347

The main questions to be addressed here require determination of (i) the probability348

of extreme scalar concentration excursions and concomitant intermittency, and (ii) scalar349

asymmetry and time irreversibility across scales. Here, tools introduced in sections II B and350
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II C are used to investigate how these two features vary from production to inertial scales for351

temperature traces, and to compare this behavior with the observed velocity components.352

Comparison of these quantities for runs recorded in different atmospheric stability conditions353

allows to test whether significant coupling across scales exists, and to what extent velocity354

and temperature statistics are universal at the smallest scale examined here.355

A. Probabilistic description of intermittency across scales356

We first investigate the intermittent behavior of both scalar and velocity components357

by assessing to what extent the scaling of even-order structure functions departs from K41358

predictions. Inspection of scaling exponents ζ ′n in Eq. (9) for u,w, T confirms that K41 pre-359

dictions significantly overestimate scaling exponents for structure functions of order higher360

than 2, as shown in figure 3(A). The scaling exponents obtained for the scalar T show361

reasonable agreement with previous experimental results (Fig. 3(B)), with values systemat-362

ically lower than predicted by the Kraichnan model in the limiting case of time-uncorrelated363

velocity field [55]. The values of ζ ′n averaged over the set of runs observed during the ex-364

periment are lower for the scalar, especially when compared to the longitudinal velocity365

components. From this analysis, intermittency effects appear stronger for the scalar than366

for the longitudinal velocity.367

The empirical pdfs of velocity and air temperature increments (∆s = ∆u,∆w,∆T ) for368

runs in the near-neutral (|ζ| < 0.072) and strongly unstable (ζ < −0.5) classes (Fig. 4) show369

clear transitions from a quasi-Gaussian regime at large lags (τ = 2 in figure) to distributions370

with sharper peaks and longer tails at scales well within the inertial subrange (τ = 0.05).371

This behavior has been documented for a wide range of turbulent flows [56] and is associated372

with the build up of intermittency [32] due to self-amplification inertial dynamics [57].373

The bulk of the pdf of temperature increments at any given scale can also be characterized374

by the coefficients of Eq. (11). Results show some differences between runs with differing |ζ|375

(Fig. 5). Namely, for runs in the strongly unstable class, q0 exhibits a more pronounced peak376

around the origin and is characterized by larger asymmetry at the cross-over scale τ = 1377

compared to their near-neutral counterparts (Fig. 5(A)). Moreover, the results here confirm378

that a choice of linear r0(∆T ) and quadratic q0(∆T ) appear reasonable for ASL flows. In379

the case of an unstable ASL, the term r0(∆T ) remains linear, while inspection of q0(∆T )380

16



suggests that a dependence on s with an exponent smaller than 2 might be more appropriate,381

corresponding to stretched exponential tails for p(∆T ) for small lags τ in unstable ASL flows.382

Comparison with the same data after run-by-run spectral phase randomization [54] shows383

that the latter exhibits almost Gaussian behavior, confirming that the emergence of long384

tails at inertial scales is primarily a consequence of non linear structures in the original time385

series.386

The variation of the tail parameters η and q with decreasing scale τ (Fig. 6) provides a387

robust measure of how the distributional tails of p(∆T ) evolve at the onset of the inertial388

range. For temperature differences, the rates of change across scales of both η and q appear389

to be dependent on the magnitude of the stability parameter ζ. Consequently, while at large390

scales - where the pdf closely resembles a Gaussian - neither η nor q exhibit a significant391

dependence on ζ, for scales well within the inertial subrange stability is clearly impacting392

the tail behavior of ∆T (Fig. 7).393

This evidence suggests that the observed intermittency is not only internal (i.e., not only394

due to variability in the instantaneous dissipation rate [9]) but is also directly impacted by395

the larger scale eddy motion that sense boundary conditions. In particular, when buoyancy396

generation is significant, the heat flux w′T ′ is connected with the sweep and sudden ejection397

of air parcels, corresponding with the sharp edges of the temperature ramps [3, 13]. The398

resulting sawtooth behavior could be responsible for the injection of scalar variance at small399

scales (instead of a gradual cascade), acting in particular on the negative tail of the ∆T pdf,400

as evident from Fig. 5(A). On the other hand, the buildup of non-Gaussian statistics for401

velocity increments is not as impacted by the stability regime, and therefore the dominant402

effects are in this case primarily an effect of internal intermittency.403

B. Probabilistic description of asymmetry across scales404

To compare the data sets used here with laboratory studies, we first test the validity405

of Obukhov’s constant skewness hypothesis, which would require the third order structure406

function of the longitudinal velocity component being constant within the inertial range.407

Figure 8 reports the values of the third order structure functions (Eqs. (7) and (8)) eval-408

uated at the onset of the inertial subrange as delineated by the w time series. Both are409

approximately constant for scales smaller than Iw. While comparison with experiments410
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shows good agreement for S(τ) ' −0.25, F (τ) is systematically smaller than its anticipated411

value [29] (−0.4) for all ζ.412

For the scalar T , The presence of a finite third order temperature structure function413

signifies that local isotropy is not fully attained in the range of scales explored here. The414

temperature skewness S3
T exhibits a plateau for scales smaller than Iw (Fig. 9(A)) similar to415

previous measurements reported in grid turbulence forced by a mean temperature gradient416

[58]. Moreover, S3
T levels off to positive values for ζ > 0, while it becomes negative for417

ζ < 0. This finding is consistent with the presence of ramp-like structures when ζ > 0418

(mildly stable conditions) that are inverted when compared to their unstable counterparts.419

The findings here confirm that at the cross-over from production to inertial, imprints of420

ramp structures persists well into the inertial subrange. The consequence of these imprints on421

time-reversibility is now considered for temperature sequences. The irreversibility analysis422

detects strong irreversbility at large scales that slowly decreases at the onset of the inertial423

range (Fig. 9). This finding is consistent with the idea that atmospheric stability determines424

a preferential direction for the large-scale scalar structures, which becomes progressively425

weaker at scales smaller than τ = 1. Here, the sign of the heat flux has a primary effect426

on the orientation of the ramps, as captured by Rτ . Furthermore, phase randomization427

is shown to destroy much of this time irreversibility (Fig. 9(B)) while the addition of428

synthetic ramps, either with positive or negative orientation, produces values of Rτ that429

closely resemble observations of stable and unstable ASL respectively. These synthetic430

experiments also recover the sign of the third order moment S3
T (Fig. 9(A)) but not its431

magnitude at smaller scales. As one would expect, a sawtooth time series does not fully432

reproduce inertial scale scalar dynamics, even though it does clearly capture the qualitative433

effect of boundary conditions on scalar ramp-cliffs.434

Additional insight can be obtained by the relative entropy measure defined in Eq. (15),435

which was here evaluated by integrating the relative entropy over the joint frequency distri-436

bution of normalized temperature fluctuations and their increments at each scale τ . We used437

a coarse binning for estimating the joint pdf p(T ′(τ), T ) and assumed [51] that only finite438

probability ratios contribute to 〈Zτ 〉. To check the consistency of this approach, calculations439

of Eq. (15) were repeated using a phase space reconstruction technique based on embedding440

sequences (Tt, Tt+τ ) with delay time τ and embedding dimension 2, which confirmed the441

validity of this approach (results not shown).442

18



The averaged relative entropy 〈Zτ 〉, while insensitive to the ramp orientation, at every443

given level T quantifies the imbalance between forward and backward probability fluxes of444

temperature trajectories (Fig. 10(A)). Again, irreversibility of scalar records increases with445

the lag τ and here tend to plateu at larger scales (τ > 1).446

Phase-randomized time series, by comparison, exhibit smaller values of 〈Zτ 〉 in the inertial447

range. As one would expect, the excess is thus likely a direct result of the presence of scalar448

ramps. The presence of asymmetric patterns in temperature time traces further suggests that449

in the inertial range scalar turbulence is more time-irreversible than velocity, as confirmed450

by the larger values of 〈Zτ 〉 at inertial scales (Fig. 10(B)).451

Time-irreversibility of phase space trajectories was further investigated by testing if a452

significant difference exists between the probability distribution p(T ′τ |T ) and p(−T ′τ |T ). To453

this end, a Kolmogorov-Smirnov (KS) test was performed at the significance level 0.05. At454

every scale τ , results were averaged over different values of T and across runs within the same455

stability class. The results from the KS test confirm the picture obtained from the relative456

entropy measure 〈Zτ 〉: The pdf of forward and backward temperature diverge significantly457

as the scale τ increases as shown in figure 10, panels (C) and (D). While this test does not458

capture the sign of the ramps, the behavior of near neutral runs exhibit some difference459

from the case of relevant heat flux: near neutral runs appear on average more reversible460

than unstable runs at the same dimensionless scale τ .461

V. DISCUSSION AND CONCLUSIONS462

In this work, statistical measures for the frequency of extreme fluctuations and the time-463

directional behavior of observed time series were applied to scalar turbulence in the ASL.464

It was demonstrated that i) the extreme value properties of the scalar markedly depend on465

the external forcing, and ii) scalar dynamics is characterized by time-irreversible behavior466

at the scales of injection of scalar variance in the turbulent flow. This time-irreversibility467

propagates down to the smaller scales of the flow examined here, thus carrying fingerprint468

of the energy injection mechanism.469

It is well known that the pdfs of scalar increments develop heavier tails with decreasing470

scales in the inertial range when compared to their velocity counterparts. The analysis here471

shows that within the first two decades of the inertial subrange, this buildup of tails also472
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carries the signature of turbulent kinetic energy generation. The direct injection of scalar473

variance from large scales seem to hinder any universal description of ∆T statistics within474

this range of scales. Instead, the pdf of ∆T (r) for ASL flows appear to be conditional on475

the value of ζ at scale r. This finding reinforces previous experimental results [59] obtained476

for a different type of flow (turbulent wake). In this case, the scalar injection mechanism477

was shown to impact higher order scaling exponents of the temperature structure functions.478

This dependence on atmospheric stability regime for p(∆T ) further suggests that the479

topology of large eddies, and in particular the presence of ramp-cliff scalar structures, may be480

responsible for the scale-wise evolution of intermittency and the persistent time directionality481

at fine scales. This intermittency excess observed in the transition from production to482

inertial scales is consistent with self-amplification dynamics taking place that further excite483

the excess of scalar variance injected by the ramps.484

However, while measures of intermittency appear to be dependent on the absolute value485

of ζ, i.e., on the relative magnitude of shear and buoyancy production terms (regardless on486

the sign of the heat flux), the analysis of asymmetry and time reversibility clearly sense487

the sign of the heat flux H more than the magnitude of ζ itself. This effect is arguably488

a product of the preferential orientation that the external temperature gradient imposes489

on the scalar ramp-cliffs, as explained by sweep-ejection dynamics. This hypothesis was490

here further tested by comparisons with synthetic time series that mimic ramp-cliff patterns491

observed in the scalar time series. The analysis confirmed that much of the observed time492

irreversibility, as well as its dependence on the sign of H, are recovered by these surrogate493

time series (Fig. 9).494

The analysis of time directional properties showed that time-irreversible behavior for the495

scalar is stronger at the large scales of the flow where boundary conditions, and in particular496

the sign of H, determine the orientation and structure of the eddies. At finer scales, time497

irreversibility as quantified by both 〈Zτ 〉 and Rτ progressively decreases as advection destroys498

the preferential eddy orientation imposed by boundary conditions. Note that this behavior499

is not captured by a simple measure of skewness such as S3
T (Fig. 9(A)), which is small at500

large scales and plateaus in the inertial range consistent with previous experiments [4] and501

numerical simulations [60], thus showing that local isotropy is not fully attained at the finer502

scales examined here.503

Turbulent flows exist in a state far from thermodynamic equilibrium, with the flow statis-504
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tics exhibiting irreversibility. This irreversibility is typically described in terms of fluxes of505

energy or asymmetries in the pdfs of the fluid velocity increments [61]. Similar methods506

could be used to describe irreversibility in the scalar field, e.g. using S3
T , and this would507

imply that the irreversibility of the scalar field is stronger at smaller scales than it is at508

larger scales. However, in this paper we have used alternative measures to quantify the509

irreversibility, namely 〈Zτ 〉 and Rτ . These quantities paint a different picture, namely that510

it is the largest scales, not the smallest (inertial) scales in the scalar field that exhibit511

the strongest irreversibility. A potential cause for these differing behaviors is that whereas512

fluxes and quantities such as S3
T are multi-point, single-time quantities, 〈Zτ 〉 and Rτ are513

single-point, multi-time quantities. Thus, these two ways of describing irreversibility pro-514

vide different perspectives about the nature of irreversibility in turbulence, which involves515

fields that evolve in both space and time. This difference in perspectives is a topic for future516

inquiry.517

Collectively, the results presented in this paper suggest the following picture for ASL518

turbulence at the cross-over from production to inertial. Increasing instability in the ASL519

leads to increases in the mean turbulent kinetic energy dissipation rate (as evidenced by Eq.520

(1)) and its spatial autocorrelation function and pdf. The consequences of this increased521

dissipation with increased instability has different outcomes for velocity and scalar turbu-522

lence. For velocity, refinements to K41 appear sufficient to explain the observed scaling in523

the inertial subrange. For scalar turbulence, the picture appears more complicated. Inter-524

mittency buildup with decreasing (inertial) scales is more rapid when compared to their525

velocity counterparts, and the signature of the temperature variance injection mechanism526

persists at even the finer scales explored here.527

Turbulence and scalar turbulence are characterized by a constant flux of energy and528

scalar variance from the scales of production down to dissipation. While early theories529

hypothesized a cascade only depending on these quantities, experimental evidence to date530

supports a more complicated picture. The multi-time information encoded in 〈Zτ 〉 reveal531

that time-reversibility is not constant across scales, as do the fluxes of information entropy.532

Probability fluxes forward and backward in time are not balanced in general for air tem-533

perature increments, especially at the cross-over from production to inertial. Furthermore,534

these fluxes carry the signature of the external boundary conditions (i.e. H) and show that535

dissipation rates themselves are not independent of the large-scale dynamics. Although a536
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formal analogy between Eq. (15) and the thermodynamics of microscopic non-equilibrium537

steady state systems exists, we stress that in the present application turbulent fluctuations538

are macroscopic and are the result of non-linear and non-local interactions.539

Appendix: Stable stratification and distortions of the inertial subrange540

In general, stable stratification limits the onset and extent of the inertial subrange given541

its damping effect in the vertical direction [52]. Here, we show that the scales for which542

these effects are relevant occur at scales larger than the inertial range examined here. The543

Ozmidov length scale [62] (originally suggested by Dougherty [63] in 1961), is defined as the544

scale above which buoyancy forces significantly distort the spectrum of turbulence.545

This length scale, sometimes labeled as the Dougherty-Ozmidov scale, can be expressed546

as547

L0 =

√
ε

N3
, (A.1)

where ε is, as before, the mean turbulent kinetic energy dissipation rate and N is the Brunt548

Väisälä frequency, defined as549

N =

√
g

T

dT

dz
. (A.2)

In the study used here, no information was provided about the actual mean potential tem-550

perature gradient dT/dz. However, an approximated estimate of L0 for the runs collected551

in case of stable atmospheric stratification may be conducted. Note that only 4 runs follow552

this stability class as runs not meeting strict stationarity requirements were excluded from553

the analysis (and they were mainly collected in unstable atmospheric conditions). The mean554

dT/dz was computed using Monin- Obukhov similarity theory as555

dT

dz
= −

(
T ∗

Kvz

)
φT

( z
L

)
(A.3)

where kv = 0.41 is the von Karman constant, z = 5.1 m is the distance from the ground,556

T ∗ = 〈w′T ′〉
u∗

, and for mildly stable stratification557

φT = φm = 1 + 4.7
( z
L

)
. (A.4)

The mean turbulent kinetic energy dissipation rate was computed as558

ε =
u∗3

kvz

(
φm −

z

L

)
(A.5)
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Figure 11(A) shows that the quantity559

Is =
Iwu

∗φm
kvz

= constant ' 0.4 (A.6)

is almost constant across runs and exhibits a value slightly lower than the expected 0.4.560

The estimated values of the dimensionless Ozmidov number L0/ (Iwu
∗φm) are reported561

in Figure 11(B). L0 decreases with increasing stability ζ as the effect of buoyancy is felt by562

eddies of sizes progressively smaller. However, the values of the Ozmidov scale are consis-563

tently larger than the integral scale of the flow Iw for the 4 stable runs here. Hence, ignoring564

distortions caused by stable stratification on inertial subrange scales for the aforementioned565

4 runs may be deemed plausible.566
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A

DC

B

FIG. 1. In the upper panels, the normalized second order structure functions for vertical velocity

(A) and temperature (B) are shown for runs that are weakly unstable (blue dashed lines), strongly

unstable (red lines), and stable (black dash-dot lines). Black lines indicate the value 1 and the

2/3 power law for reference; vertical dashed lines correspond to the dimensionless scales τ = 0.05

(smallest scale not impacted by instrument path length), τ = 1 (integral scale of the flow), and

τ = 5 (typical scale larger than Iw, while small enough not to be impacted by statistical convergence

issues in structure functions calculations). Lower panels illustrate (C) the integral scales of the

flow for s = T (circles) and s = w (crosses) as a function of the stability parameter |ζ|, and (D)

their ratio IT to Iw again as a function of |ζ|, where stable runs (ζ > 0) are indicated by black

squares.
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A B C

FIG. 2. Sequences of velocity and temperature fluctuations extracted from a strongly unstable

run (run 8, ζ = −0.52, Iw = 1.74s, column A) and a stable/near neutral one (run 34, ζ = 0.07,

Iw = 2.18s column B). The presence of ramps and inverted-ramp like structures respectively is

marked by dashed vertical lines. Column (C) illustrates a phase-randomized sequence obtained

from run 34 (top), a series of synthetic ramps with durations exponentially distributed with mean

2Iw (middle) and the surrogate time series obtained merging the above sawtooth pattern with the

phase randomized time series (bottom), where the relative weight of the ramps α was set equal to

0.5.
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A B

FIG. 3. (A) Average values of the scaling exponents for longitudinal velocity u (triangles), vertical

velocity w (squares), and temperature T (circles). Black continuous line and dashed line show

respectively the K41 and the She-leveque predictions for the longitudinal velocity structure func-

tions. Exponents are computed from scales ranging between τ = 0.05 and τ = 0.2. (B) Scaling

exponents for temperature only; Mean and standard deviation values are computed over all the

runs and are indicated by circles and vertical bars, respectively. Data from Mydlarsky and Warhaft

(1990) [58] (squares), Antonia et al. (1984) [64] (triangles), Meneveau et al. (1990) [65] (*) and

Ruiz et al. (1996) (diamonds) [66] are shown for comparison. The KOC scaling (black line) and

results from the Kraichnan model (1994) [55] (dashed line) as reported in [4] are also presented for

reference.
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A CB

𝜏 = 0.05

𝜏 = 2

FIG. 4. Normalized probability density functions observed for increments of longitudinal velocity

(A), vertical velocity (B) and air temperature (C) at large scales (τ = 2, top panels) and small

scales (τ = 0.05, lower panels). The figure includes data from runs in the strongly unstable class

(ζ < −0.5, shown in red), and near neutral class (|ζ| < 0.072, blue). Black lines show the standard

Gaussian distribution for reference.
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𝜏 = 1

𝜏 = 0.1

FIG. 5. Functions q0(∆T ) and r0(∆T ) estimated from the conditional derivatives of the original

temperature time series, for the two classes of strongly unstable (red lines) and near neutral runs

(blue dashed lines). The same quantities are reported for phase-randomized surrogate time series

for comparison (grey circles). Results are shown for the central body of the pdf (within 3σ from

the mean) for illustration purposes. Top panels (A,B) are computed for a lag equal to the integral

time scale of the flow τ = 1, while the bottom panels (C,D) correspond to the smaller time lag

τ = 0.1. Black lines q0 = 1 and r0 = −∆T correspond to the standard Gaussian distribution.
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A CB

FIG. 6. Evolution across scales τ of the q-Gaussian tail parameter q (A), and of the stretched

exponential shape parameter η obtained from separate fit to the left (B) and right (C) tails of

the distribution of temperature increments. Data from two stability classes are included: strongly

unstable (ζ < −0.5, red cirles) and near neutral conditions (|ζ| < 0.072, blue triangles). Black

lines and shaded areas indicate average values and standard deviations respectively computed over

the entire dataset.
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𝜏 = 5

𝜏 = 0.05

FIG. 7. Tail parameters of the pdf of temperature increments across stability conditions ζ. Results

include the q-Gaussian tail parameter q (column A) and the stretched exponential shape parameter

η, obtained from fitting the left (column B) and right tail (column C) of the distribution p(∆T ).

Values of q and η are reported for large scales (τ = 5, upper panels) and small scales (τ = 0.05,

lower panels). Triangles denote strongly unstable runs (ζ < −0.5), squares denote stable runs

(ζ > 0) and circles refer to slightly unstable runs (−0.5 < ζ < 0).
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A B

FIG. 8. Normalized third order structure functions S(τ) and F (τ) at the crossover from inertial to

production scales. Vertical dashed line indicates the integral time scales, horizontal lines show the

constant values 0.25 (A) and 0.4 (B). Results are shown for near neutral runs (|ζ| < 0.072, blue

dashed lines), strongly unstable runs (|ζ| > 0.5, red lines), and runs with intermediate values of |ζ|

(black dash-dot lines).
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A B

FIG. 9. Measures of asymmetry S3
T (A) and time irreversibility Rτ (B) computed for temperature

increments for scales varying from τ = 0.05 to τ = 5. The plots include stable runs (black dashed

lines), weakly unstable runs (blue dash-dot lines) and strongly unstable runs (red lines). For

reference, the same quantities are computed for phase-randomized time series (cyan), and sythetic

time series with sawtooth positive (blue) and inverted ramps (black). Shaded regions correspond

to the 1σ-confidence intervals over 34 realizations of the surrogate time series. Relative weight and

mean duration of the synthetic ramps were set to α = 0.4 and 2Iw respectively.
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FIG. 10. (A) Mean and standard deviation over 34 time series of 〈Zτ 〉 computed for scales varying

from τ = 0.05 to τ = 20. Values of 〈Zτ 〉 are shown for original temperature records (red),

and surrogate time series obtained by phase-randomization (green). For comparison, the same

analysis is reported for fractional brownian motion with Hurst exponent H = 1/3 (blue). (B)

A comparison of 〈Zτ 〉 for temperature (red), longitudinal velocity (yellow) and vertical velocity

(green). The lower panel shows the Kolmogorov-Smirnov test average rejection rate (C) and

average P-value (D) computed for all the temperature time series (cyan for mean value and 1σ

confidence interval), and for different stability classes: strongly unstable runs (ζ < −0.5, red),

near-neutral runs (|ζ| < 0.072, blue) and intermediate values ( 0.072 < |ζ| < 0.5, black). KS

test was performed at the 0.05 significance level, corresponding to the horizontal line in (D). The

vertical dashed line marks the integral time scale Iw.
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FIG. 11. (A) Quantity Is and its expected value 0.4 (black horizontal line) for the 4 stable runs

in the dataset. (B) Normalized Ozmidov length for the same runs.
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