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Intermittency is a hallmark of turbulence, which exists not only in turbulent flows of classical
viscous fluids but also in flows of quantum fluids such as superfluid 4He. Despite the established
similarity between turbulence in classical fluids and quasi-classical turbulence in superfluid 4He, it
has been predicted that intermittency in superfluid 4He is temperature dependent and enhanced
for certain temperatures, which strikingly contrasts the nearly flow-independent intermittency in
classical turbulence. Experimental verification of this theoretical prediction is challenging since
it requires well-controlled generation of quantum turbulence in 4He and flow measurement tools
with high spatial and temporal resolution. Here, we report an experimental study of quantum
turbulence generated by towing a grid through a stationary sample of superfluid 4He. The decaying
turbulent quantum flow is probed by combining a recently developed He∗2 molecular tracer-line
tagging velocimetry technique and a traditional second sound attenuation method. We observe
quasi-classical decays of turbulent kinetic energy in the normal fluid and of vortex line density in
the superfluid component. For several time instants during the decay, we calculate the transverse
velocity structure functions. Their scaling exponents, deduced using the extended self-similarity
hypothesis, display non-monotonic temperature-dependent intermittency enhancement, in excellent
agreement with recent theoretical/numerical study of Biferale et al. [Phys. Rev. Fluids 3, 024605
(2018)].

I. INTRODUCTION

Intermittency in turbulent flows is a topic of extensive study in classical fluid dynamics research [1–5]. In fully
developed turbulence, intermittency manifests itself as extreme velocity excursions that appear more frequently than
one would expect on the basis of Gaussian statistics. Small-scale intermittency results in corrections to the energy
spectrum and velocity structure functions that are nearly universal across a wide range of turbulent flows in classical
fluids [6, 7]. A question that has attracted increasing interest in recent years is whether this universality can be
extended to quantum fluids such as superfluid 4He whose hydrodynamic behavior is strongly affected by quantum
effects and cannot be described by the Navier-Stokes equation [8–13].

Below about Tλ ' 2.17 K, liquid 4He undergoes a second order phase transition into a superfluid phase called He II.
According to the two fluid model [14], He II behaves as if it is composed of two interpenetrating liquids – a superfluid
component and a normal-fluid component made off thermal excitations called phonons and rotons. While the normal
fluid behaves classically, possessing finite viscosity and carrying the entire entropy content of He II, the superfluid
component has neither entropy nor viscosity. Due to quantum restriction, vorticity in the superfluid is constrained
into line singularities, each carrying a single quantum of circulation κ ≈ 9.97× 10−4 cm2/s around its angstrom-sized
core [15]. The fraction ratio of the two fluids strongly depends on temperature. Above 1 K where both fluids are
present, turbulence in He II (also termed as quantum turbulence [16]) takes the form of a tangle of quantized vortices
in the superfluid component, co-existing with more classical-like turbulent flow of the normal fluid. When the velocity
fields of the two fluids are mismatched, a mutual friction force between them, arising from the scattering of thermal
excitations off the cores of quantized vortices, provides an inter-component energy transfer and additional dissipation,
resulting in a modified turbulence scaling [17–21].
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The general properties of quantum turbulence in He II above 1 K depend on the type of forcing. When the
turbulence is generated by an applied heat current in He II, the two fluids are forced to move with opposite mean
velocities (i.e., thermal counterflow) [14]. The mutual friction acts at all length scales in both fluids which leads to
strongly non-classical behavior and decay [21–23]. On the other hand, when the turbulence is generated by methods
conventionally used in classical fluid dynamics research, such as by a towed grid [24, 25] or using counter-rotating
propellers [8], the two fluids can become strongly coupled by the mutual friction force at large scales and behave like
a single-component fluid (i.e., quasi-classical turbulence), possessing some effective viscosity [20, 26]. This coupling
must break down at scales comparable or smaller than the mean inter-vortex distance `Q = L−1/2 (where L denotes
the vortex line density, i.e., the vortex line length per unit volume) since the flow of the superfluid component at these
small scales is restricted to individual vortex lines and cannot match the velocity field of the normal fluid [27]. The
quantity `Q is also known as the “quantum length scale”; it scales similarly to the Kolmogorov dissipation scale, η,
of classical turbulence [28].

The similarity between quasi-classical turbulence in He II and turbulence in classical fluids has attracted a great deal
of interest in both quantum and classical fluid dynamics research fields [29, 30]. Extensive experimental, theoretical,
and numerical work has been conducted to explore various properties of turbulence in He II (see the reviews [18, 31]
and references therein). In recent years, intermittency in He II quasi-classical turbulence has become one of the central
topics. Since the coupling of the two fluids at large scales and their decoupling at small scales are all controlled by
the temperature dependent mutual friction, one may naturally expect temperature dependent turbulence statistics.
Indeed, it has been predicted by Boué et al. [10] and Biferale et al. [12] that when probed at small scales, intermittency
corrections to the scaling of higher-order velocity structure functions in He II quasi-classical turbulence should be
enhanced in the temperature range 1.3 . T . 2.1 K, with a maximum deviation from the Kolmogorov-Obukhov K41
theory for classical turbulence [32] around 1.85 K. Early experiments conducted at low temperatures and close to Tλ
did not find deviations from the statistics of classical turbulence [9, 33, 34]. A more recent experiment in a turbulent
wake in He II covered a wider range of temperatures but also reported temperature independent intermittency,
similar to that in classical flows [13]. It should be noted, however, that the pressure and velocity probes used in
these experiments all have sizes much larger than `Q and hence are sensitive only for the corresponding part of the
turbulent cascade [12, 13].

A reliable determination of intermittency in He II requires not only the generation of fully developed turbulence
but also flow measurement tools with a spatial resolution comparable to `Q. In this paper, we report an experimental
study of quasi-classical turbulence generated by towing a grid through a stationary sample of He II. The velocity
of the normal fluid is measured using a recently developed He∗2 molecular tracer-line tagging velocimetry technique
[19, 35] while the vortex line density in the superfluid component is determined using a traditional second sound
attenuation method [24, 36]. Our experimental results indeed demonstrate intermittency enhancement, in excellent
agreement with the theory predictions [10, 12].

II. EXPERIMENTAL METHOD

The experiment utilizes the Tallahassee He∗2 tracer-line visualization setup [35] as shown schematically in Fig. 1a.
A stainless steel channel (inner cross-section: 9.5×9.5 mm2; length 300 mm) is attached to a pumped helium bath
whose temperature can be controlled within 0.1 mK. A mesh grid of 7 × 7 woven wires (about 8 mm in length and
0.41 mm in thickness) is supported inside the channel at the four corners and can be towed by a linear motor to
move past our flow probes at a controlled speed up to about 65 cm/s. The grid is designed to have an open area
of 54% so as to avoid producing secondary flows [37]. The flow generated in the wake of a moving grid is usually
treated as a prototype of nearly homogeneous and isotropic turbulence, the simplest form of turbulence that has been
extensively studied in classical fluid dynamics research [25, 38–40]. The grid turbulence has also been utilized as a
valuable vantage point in quantum turbulence research for assessing the similarities and differences between classical
and quantum turbulent flows [24, 28, 41].

To probe the flow, we send high-intensity femtosecond laser pulses through the channel via a pair of slits (about 1
mm in width and 10 mm in length) cut into opposite sides of the channel along its length. These slits are covered
with indium sealed extension flanges and windows. As a consequence of femtosecond laser-field ionization [42], a
thin line of He∗2 molecular tracers can be created along the beam path [35]. The initial thickness of the He∗2 tracer
line is about 100 µm and its length matches the channel width. Above about 1 K, these He∗2 molecular tracers are
completely entrained by the viscous normal fluid with negligible effect from the superfluid or quantized vortices [43].
A line of the molecules so created is then left to evolve for a drift time td of about 10–30 ms before it is visualized
by laser-induced fluorescence using a separate laser sheet at 905 nm for imaging [35]. The streamwise velocity vy(x)
can be determined by dividing the displacement of a line segment at x by td (see Fig. 1b). The transverse velocity
increments δvy(r) = vy(x) − vy(x + r) can thus be evaluated for structure function calculations. Additionally, the
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FIG. 1. (a) Schematic diagram of the experimental setup. (b) A sample image of the He∗2 molecular tracer line. The white
dashed line serves to demonstrate the initial location of the trace line for velocity calculations.

flow is also probed by a standard second-sound attenuation method [35, 44], revealing temporal decay of vortex line
density L(t) in the superfluid.

The grid starts moving from about 50 mm below the second sound sensors up to the uppermost position which
is roughly 100 mm above the 1 cm ×1 cm visualisation region. Since no steady input of energy into the flow exists
(except marginal parasitic radiative heat leaks), the flow starts to decay after the passage of the grid. As the origin
of time for both visualization and second sound data, we take the instant when the grid passes the position where a
tracer line would be inscribed. To study the time evolution, tracer line inscription is delayed until the desired decay
time t. The measurement at each decay time is normally repeated 100− 200 times for statistical analysis, and every
time the grid is towed anew. The experiments were performed in a temperature range 1.45−2.15 K with quadratically
increasing decay times (typically) 1, 2, 4, and 8 s. In all cases, the grid velocity vg was set to either 300 or 50 mm/s.

III. EXPERIMENTAL RESULTS

A. Temporal evolution of the grid turbulence

In Fig 2, we show the profiles of the mean velocity vy(x) = 〈vy(x)〉x and the velocity variance σ(x) = 〈(vy(x)− vy)
2〉1/2x

measured at 1.85 K across the channel at various decay times, where 〈...〉x denotes an ensemble average of the results
obtained at location x at each given decay time from the analysis of 100 deformed tracer line images. Similar to typical
classical grid flows, the quantum flow in the immediate wake of the grid is not perfectly homogeneous and isotropic.
The observed deformation of the tracer line suggests the existence of large scale eddies spanning the entire width
of the channel following the towed grid. This is most likely caused by mechanical imperfections in the construction
of the grid and its support. Nevertheless, this inhomogeneity quickly decays, being virtually completely eliminated
within 4 s. In contrast with the mean flow and its marked initial inhomogeneity, the profile of the velocity variance
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FIG. 2. (a,b) The ensemble-averaged velocity profile vy(x) across the channel at different decay times with grid velocities vg
as indicated. (c,d) The corresponding velocity variance σ(x) profiles. The shown data are obtained at 1.85 K, at the indicated
time instants.

σ(x) is much more homogeneous, even at small decay times.
Despite the initial transient inhomogeneity at large scales, seen in Fig. 2, the temporal decays of the normal

fluid turbulent kinetic energy, K(t) = 〈σ2〉, and the vortex line density in the superfluid, L(t), exhibit clear decay
characteristics of quasi-classical homogeneous isotropic turbulence. As discussed in detail in Refs. [24, 25], in the
early decay stage of grid turbulence when the energy containing length scale `e grows from the injection scale (i.e.,
comparable to the mesh size) to the channel width, the characteristic decay exponents for quasi-classical homogeneous
isotropic turbulence should be K(t) ∝ t−6/5 and L(t) ∝ t−11/10; in the late universal decay stage after `e is saturated
by the channel width, K(t) ∝ t−2 and L(t) ∝ t−3/2 should be expected. These decay behaviors are clearly observed
in our data. Note that at high towed-grid velocity (i.e., vg = 300 mm/s), the saturation of `e likely occurs too rapidly
for the early decay stage to be resolved. Furthermore, the transient inhomogeneity (Fig. 2a,b) at small decay times
may also affect the decay characteristics in this regime. At the lower grid velocity (i.e., vg = 50 mm/s), the late
universal decay stage appears at relatively large decay times (i.e., over 3–4 s) due to the slower increase of `e = `e(t)
[24, 25].

B. Transverse velocity structure functions

The observed quasi-classical decay laws for K(t) and L(t) suggest that classical K41-like scalings in other turbulence
statistics such as the velocity structure functions may also be expected. For instance, for fully developed classical
homogeneous isotropic turbulence, the second order transverse velocity structure function, defined as

S⊥2 (r) =
〈
|vy(x+ r)− vy(x)|2

〉
, (1)

should scale with the transverse separation distance r as S⊥2 (r) ∝ r2/3 [45].
In the case of He II grid turbulence, the situation is more complex. Fig. 4a shows typical examples of calculated

S⊥2 (r) curves, for T = 1.85 K with a grid velocity of vg = 300 mm/s at decay times t =1, 2, 4, and 8 s. Non-
trivial power-law scalings of S⊥2 (r) are clearly observed in the scale range 0.2 mm ≤ r ≤ 4 mm. The quadratic-like
dependence of S⊥2 (r) at small r is probably caused by smearing of the measured velocity field limited by the width of
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FIG. 3. (a) Decaying turbulent kinetic energy of the normal fluid, K(t), and (b) vortex line density, L(t), originating from
towing the grid at 50 mm/s - empty symbols/blue line and 300 mm/s - full symbols/orange line. The energy decay is shown for
temperatures 1.45 K (e,5), 1.65 K (`,0), 1.85 K (a,1), 2.00 K (c,3), 2.15 K (f). The red line corresponds to the early
decay of L(t) for times when the grid is still moving. The decays are quasi-classical in character. The early part of the decay,

when the energy containing length scale `e grows, displays the characteristic decay exponents K(t) ∝ t−6/5, L(t) ∝ t−11/10,

while the late universal part of the decay, when `e is saturated by the channel size, obeys K(t) ∝ t−2, L(t) ∝ t−3/2 [24, 25].
These decay rates are illustrated by thick black lines. For towed grid velocity of 300 mm/s saturation occurs too early for the
early part of the decay to be resolved. The shown data are obtained at 1.85 K.
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the tracer line (i.e., about 100 µm) rather than due to the viscous flow. By fitting the data in 0.2 mm ≤ r ≤ 4 mm

with a power-law form S⊥2 (r) ∼ rζ⊥2 , the scaling exponent ζ⊥2 can be extracted and is shown in Fig. 4b. Data at other
temperatures are also included in this figure. We see that the data display slightly steeper than K41 scaling (i.e.,
ζ⊥2 > 2/3) for the 1 s and 2 s measurements and shallower than K41 (i.e., ζ⊥2 < 2/3) for 8 s and later measurements.
We note in passing that this behavior is not unusual in classical decaying grid turbulence, especially before the wakes
of individual bars of the grid fully coalesce [38, 46]. An additional factor to consider is possible parasitic radiative
heating to the channel. This parasitic heating can cause weak thermal counterflow which may become important at
long decay times when the grid turbulence strength is low.

Besides the second order structure function, the Kolmogorov 4/5-law also states that within the inertial range of
scales, the third order longitudinal velocity structure function should be given by

S
‖
3 (r) = −4

5
εr , (2)

where ε = −dK/dt is the energy dissipation rate [47, 48]. In our experiment, only the transverse velocity structure

functions S⊥n are accessible. Nevertheless, it can be shown [47] that the scaling is equal for both S⊥2 and S
‖
2 structure

functions in three dimensional incompressible homogeneous isotropic turbulence and that the Kolmogorov 4/5-law
ought to be valid also for the transverse structure function [49, 50]. On the other hand, there is an experimental
evidence that the scaling exponent of S⊥3 in high Reynolds (Re) number atmospheric turbulence is slightly less
(perhaps due to finite Re) but very close to unity [51]. We have evaluated the 3rd order transverse structure function
S⊥3 (r) =

〈
|vy(x+ r)− vy(x)|3

〉
at 4 s decay time where classical scaling is clearly observed for S⊥2 (r) as shown in

Fig. 4. The calculated values of S⊥3 (r)/r as a function of r are shown in Fig. 5 at various temperatures. Over a
similar range, 0.2 mm ≤ r ≤ 4 mm, we see a reasonably good linear dependence of S⊥3 (r) on r, which coincides with
the Kolmogorov 4/5 law in the inertial cascade range. Similar behavior is observed at 4 s for the other available
temperatures and for both grid velocities, however, for decay times other than 4 s any linear scaling of S⊥3 (r) cannot
be convincingly resolved.

The scaling exponents of the structure functions can also be obtained by using the so-called extended self-similarity
hypothesis [52]. This hypothesis states that the scaling of a structure function Sn(r) in the inertial scale range should

be equivalent to the scaling of Sn(r) ∝ (S3(r))
ζn . Indeed, structure function scalings based on extended self-similarity

appear to be very robust and can extend down to the dissipative scale range even for turbulent flows with moderate
Reynolds numbers [53], therefore allowing for significant improvement in experimental determination of the scaling
exponent ζn [54]. In Fig. 6a, we show S⊥2 (r) versus S⊥3 (r) on a log-log plot for the data obtained at 1.85 K at 4 s decay
time. For both grid velocities, a linear dependence of logS⊥2 (r) on logS⊥3 (r) is clearly seen and extends to a wide
range of length scales. The values of the scaling exponent ζ⊥2 deduced using the extended self-similarity hypothesis
at various decay times and temperatures are shown in Fig. 6b, which display noticeably improved agreement with the
K41 scaling.



7

10−1 100 101 102 103 104

S⊥3 (mm3/s3)

10−1

100

101

102

103

S
⊥ 2

(m
m

2
/s

2
)

(a) vg = 300 mm/s

1.0 s

2.0 s

4.0 s

8.0 s

10−1 100 101 102 103 104

S⊥3 (mm3/s3)

(b) vg = 50 mm/s

0 2 4 6 8

t (s)

0.2

0.4

0.6

0.8

1.0

ζ
⊥ 2

(c) vg = 300 mm/s

1.45 K

1.65 K

1.85 K

2.00 K

2.15 K

0 2 4 6 8

t (s)

0.2

0.4

0.6

0.8

1.0
(d) vg = 50 mm/s

FIG. 6. (a,b) Extended self-similarity scaling of S⊥2 (S⊥3 ) for data obtained at T = 1.85 K and several decay times for the two
different grid velocities, as indicated. (c,d) The scaling exponent ζ⊥2 extracted using the extended self-similarity hypothesis for
the two different grid velocities at a range of temperatures. The dashed horizontal lines show the K41 scaling ζ⊥2 = 2/3.
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C. Temperature dependence of intermittency corrections

Turbulence intermittency is normally evaluated by statistical analysis of the experimental data via higher order
structure functions Sn(r) that are more sensitive to the occurrence of rare events. The transverse velocity structure
function of order n is defined through the transverse velocity increments as

S⊥n (r) = 〈|δvy(r)|n〉 =

∫ ∞

−∞
dx|x|n PDFr(x), (3)
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where PDFr(x) represents the probability density function of δvy(r). In order for S⊥n to be evaluated accurately, the
experimental estimation of the PDF needs to have well-resolved tails because of the xn term in the integral, which
in turn requires very large data sets. Our setup does not presently allow for the collection of very large data sets.
Typical data sets are limited to about 104 samples. Another issue is that, although the individual He∗2 molecules are
of nm size and are true tracers of normal fluid flow, we cannot detect individual tracers - a large number of them
closely spaced are needed to satisfy our sensitivity limit. Rare events resulting in large departures of individual tracers
are therefore invisible to us. In other words, our experimentally resolved length scale is limited by the thickness of the
deformed tracer line, `exp ' 100 µm. A more detailed discussion of the uncertainties associated with the calculated
structure functions is provided in the Appendix.

According to the K41 theory, for fully developed homogeneous isotropic turbulence in classical fluids without any
intermittency, the structure function in the inertial cascade range should scale as Sn(r) ∝ rζn with the scaling exponent
ζn = n/3 [45]. Intermittency in real turbulent flows of conventional viscous fluids leads to corrections of the scaling
exponents, and this correction becomes more pronounced at large n. In order to reliably determine the actual scaling
exponents of the transverse structure functions ζ⊥n in our quantum grid turbulence, we again utilize the extended
self-similarity hypothesis. Furthermore, we focus our study on data obtained at 4 s decay time, since the scalings of
S⊥2 (r) and S⊥3 (r) presented in the previous section suggest fully developed homogeneous isotropic turbulence at this
decay time.

In Fig. 7, the calculated S⊥n (r) versus S⊥3 (r) for n = 1 to 7 are shown for data obtained at 1.85 K with a grid
velocity vg = 300 mm/s. Clear power law dependence of S⊥n (r) on S⊥3 (r) is seen, which extends to the smallest scales
probed in the experiment. Data obtained at other temperatures appear qualitatively similar. We then perform a

power-law fit of the form S⊥n (r) ∝
(
S⊥3 (r)

)ζ⊥n to the data (shown as black lines in Fig. 7). The fit is restricted to the

range of scales 0.2 mm < r < 4 mm where S⊥3 (r)/r is reasonably flat, supporting the existence of an inertial cascade.
The deduced scaling exponents ζ⊥n , for all investigated temperatures, as a function of the order n are shown in

Fig. 8. This figure represents the central result of our work. It is remarkable that the deduced scaling exponents closely
follow the recent theoretical prediction of Biferale et al. [12], i.e., temperature dependent intermittency corrections
of the structure function scaling exponents with a maximum deviation from the K41 scaling at 1.85 K. It should be
noted that, while the result for t = 4 s is robust, for small decay times (for additional discussion see the Appendix)
and for slower grid velocity the conclusion is not as clear, which is likely due to insufficiently developed turbulence.

IV. DISCUSSION

Let us compare our results with similar experimental data available. The recent Grenoble measurements of Rusaouen
et al. [13] in the wake of a disk in the two-fluid region of superfluid 4He found no appreciable temperature dependence
in intermittency corrections. The results of the Grenoble experiment and our experiment therefore appear to be
controversial. Nevertheless, there are several reasons why the two experiments may show different results. First,
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the prediction of temperature dependent enhanced intermittency is explained by the authors of ref. [10, 12] via a
flip-flop scenario – a random energy transfer between the normal and superfluid components due to mutual friction.
While He∗2 molecules in our experiment probe the normal fluid solely, the cantilever anemometer and pressure probes
used in the Grenoble experiment [13] may not sense such a flip-flop exchange of energy, as it probes both fluids
simultaneously. Furthermore, the sizes of the probes used in the Grenoble experiment are typically much larger than
the quantum length scale `Q. Indeed, recent particle image velocimetry visualization experiments by La Mantia et
al. in Prague [55, 56], utilizing solid hydrogen/deuterium particles a few µm in size, reveal a crossover from classical
to quantum signatures of turbulence as the probed length scale crosses `Q. As discussed previously, our smallest
accessible length scale `exp - the width of tracer line - is about 100 µm. At a decay time of 4 s in our experiment,

`Q ' L−1/2 is also about 100 µm (see Fig. 3). The quantum length scale `Q increases at later decay times as the vortex
line density L(t) decays. Therefore, our data sets sample the velocity field near to or below `Q, where one expects the
effect of quantized vorticity to become apparent. In the experiments of Rusaouen et al. [13], taking the outer scale of
turbulence to be their channel size ' 5 cm, effective kinematic viscosity νeff ' 0.1κ and following the estimations in
Babuin et al. [28], the κ-based large scale Reynolds number at 1.85 K is roughly 6× 104. This corresponds to `Q ≈ 7
µm. The cantilever probe has a sensing area of 32 × 375 µm, which would translate to more than 100 quantized
vortices, even if we neglect the likely increase of L in the vicinity of any obstacles [57]. The experiment of Rusaouen
et al. [13] therefore naturally measures the same intermittency corrections as in classical turbulence.

V. CONCLUSIONS

We have designed and performed an experiment to study quasiclassical turbulence in the wake of a towed grid in
He II, using a recently developed He∗2 molecular tracer-line tagging velocimetry technique and a traditional second
sound attenuation method. Our main result is that, despite the fact that our data sets are not as large as they ideally
ought to be, extended self-similarity reveals temperature dependent intermittency corrections that peak in the vicinity
of 1.85 K, in excellent agreement with recent theoretical predictions [10, 12]. The universality of the intermittency
corrections found in many different turbulent flows of classical viscous fluids [46] therefore cannot be extended to
quantum turbulence in superfluid 4He. It seems that the role of cliffs that are thought to be responsible for rare
but intense events resulting in intermittency corrections in classical turbulence is at least partly played by quantized
vortices in He II. In order to observe this “quantum” intermittency, similarly as in classical homogeneous isotropic
turbulence, where one has to resolve small scales down to the Kolmogorov dissipation scale, in quantum turbulence
one needs to resolve scales below the quantum length scale `Q.
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APPENDIX: ESTIMATION OF STRUCTURE FUNCTION ERRORS

High order structure functions required to estimate the intermittency corrections are sensitive to rare events –
events of low probability which would contribute to the “tails” of the statistical distribution. In samples of limited
size, these tails could be under-resolved, what could lead to an erroneous estimation of the structure functions. We
adopt a simple strategy to estimate these errors due to lack of statistics: an estimate of the PDF is calculated from
the measured data, which is then extended beyond the range of experimental data using a fit to a particular choice
of a heavy-tailed statistical distribution. The difference between the value obtained through Eq. (3) using either a
non-extrapolated or extrapolated PDF is then used as the estimate of the error caused by under-resolved tails of the
statistical distribution.

We calculate an estimation of the PDF from the measured velocity increments using the kernel density estimation
(KDE) as

PDFKDE
r (x) =

1

N
√

2πb

N∑

i=0

exp

(
− (x− δvy(r)i)

2

2b2

)
, (4)
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FIG. 9. (a) Probability distribution function of the velocity increments. The rug plot shows the actual data set used for the
KDE. The data shown is for 1.45 K, 300 mm/s grid velocity and 4 s decay time. (b) Calculation of the sixth moment of the
velocity increment distribution. The curves are offset along the y-axis with an offset incrementing by 2. Same data set as in
the panel (a).

0 1 2 3 4 5 6

r (mm)

5000

10000

15000

20000

25000

n
u

m
b

er
of

sa
m

p
le

s

1.45 K

1.65 K

1.85 K

2.00 K

2.15 K
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where the sum runs through all N measured samples of δv(r)i at a given separation r. The result, for a particular
case, is shown in Fig. 9a. The number of samples for the 4 s decay data sets is in Fig. 10.

To estimate the error in calculating a given moment, we extrapolate the estimated PDF either by natural extension
of the KDE (4) outside the range of the data set, or by using fits to either the normal (Gaussian) distribution,

PDFN
r(v) =

1√
2πs2

exp

(
− v2

2s2

)
, (5)

or a particular case of heavy-tailed distribution

PDFHT
r (v) =

exp(s2/2)

4m


1− erf




log
(
|v|
m

)
+ s2

√
2s




 , (6)

where s and m are adjustable parameters and erf is the error function defined as erf(x) = π−1/2
∫ x
−x exp(−u2)du.
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FIG. 11. Structure functions S⊥n of orders 1 to 7 as a function S⊥3 at 1.85 K, 4 s decay time and associated error bars calculated
using the scheme described in Sec. V. These plots are analogues of the curves in Fig. 7.

This form of the PDF was found to describe Lagrangian accelerations [58], but in our case it is used simply for reasons
of convenience (we measure Eulerian transverse velocity increments), as it allows for smooth varying of the weight of
the tails. Note that using a distribution with power law tails would be inconsistent in our case as such a distribution
would render the moment of sufficiently high orders undefinable. Using the two fits and the KDE, we construct a
new PDF with the shape of an envelope (point-wise maximum) of the three estimates. The point-wise maximum
breaks the normalization of the probability density function which needs to be re-normalized to the integral of unity.
This effectively decreases the probability in the central peak and moves it towards the tails. An illustration of this
procedure is shown in Fig. 9b for calculating the sixth order moment of a distribution.

As an error estimate of the moment, we take the absolute value of the difference between the moment calculated
using the natural extension of the KDE (4) and the re-normalized PDF. Graphically, this is given approximately by
the area under the tails of the re-normalized PDF outside the range of the data set, shown by the shaded area in
Fig. 9b. For calculation of the value of the structure function, we use PDFKDE. This estimate has a very sharp cutoff
(faster than normal distribution) outside the range of the experimental data set (essentially equivalent to extending
a histogram with zeros) so that the value is not affected by any particular choice of extrapolation. The result is
shown in Fig. 11. We note that the errors of the structure functions render flatness (ratio S⊥4 /(S⊥2 )2) unusable for
quantitative analysis of intermittency.

We also calculate the structure functions directly from the ensemble average, using the definition Eq. (3). The
intermittency corrections resulting from both procedures are shown in Fig. 12. Due to the rather arbitrary choice of
the heavy-tailed distribution, the definition of the re-normalized PDF and the definition of the error itself, we also
calculate the errors using a bootstrapping scheme [59]. The set of all N measured samples entering the calculation of
S⊥n in Eq.(3) is sampled at random (with possible repetitions and omissions) to form B = 5000 new synthetic sets of
length N . The standard deviation of the moment (3) calculated for these new B data sets is used as the error. The
resulting error bars were significantly smaller than those calculated using the re-normalized PDF and the results were
consistent with the straightforward calculation by directly averaging the sample and are not shown here.

One might justifiably become alarmed by the correlation between the number of samples in Fig. 10 and the deviation
from K41 scaling in Fig. 12. This, however, appears to be a coincidence. The correlation is not present for other
data sets, and artificially restricting the data sets at 4 s to a random choice (with replacement) of 10000, 5000 or
2000 samples does not have a strong effect on the observed scaling exponents (although the quality of the structure
functions does decrease, as is to be expected). In particular, the minimum near 1.85 K persists unaffected.
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