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Membrane filters are in widespread industrial use, and mathematical models to predict their
efficacy are potentially very useful, as such models can suggest design modifications to improve
filter performance and lifetime. Many models have been proposed to describe particle capture by
membrane filters and the associated fluid dynamics, but most such models are based on a very
simple structure in which the pores of the membrane are assumed to be simple circularly-cylindrical
tubes spanning the depth of the membrane. Real membranes used in applications usually have much
more complex geometry, with interconnected pores that may branch and bifurcate. Pores are also
typically larger on the upstream side of the membrane than on the downstream side. We present an
idealized mathematical model, in which a membrane consists of a series of bifurcating pores, which
decrease in size as the membrane is traversed. Feed solution is forced through the membrane by
applied pressure, and particles are removed from the feed by adsorption within pores (which shrinks
them). Thus, the membrane’s permeability decreases as the filtration progresses. We discuss how
filtration efficiency depends on the characteristics of the idealized branching structure.
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I. INTRODUCTION

Membrane filters are microporous films with specific pore size ratings for separating contaminants of
any given size from a fluid. They are used in many industrial engineering processes. One of the most
important and widespread applications is water purification [14], in which suspended particles, colloids and
macromolecules are removed from water using microfiltration and/or ultrafiltration. Membrane filters also
service the biotech industry in many ways [3, 4, 11, 12]; for example, they are used in artificial kidneys to
remove toxic substances by hemodialysis; and as an artificial lung to provide a bubble-free supply of oxygen
in the blood [24]. Further applications include treatment of radioactive sludge [7], the cleaning of air or
other gases [5], the production of osmotic power [26], and beer clarification [27], among many others.

There are two commonly-used modes of filtration, each with advantages and disadvantages: (i) cross-flow
or tangential filtration; and (ii) dead-end filtration. In the former case the feed flow is primarily parallel
(tangential) to the surface of the membrane; while in the latter, flow is perpendicular to the membrane
surface. Membrane fouling inevitably occurs during filtration as the removed impurities deposit on or within
the membrane but the extent and distribution of the fouling depends on the filtration mode and the membrane
structure. In tangential-flow filtration, less superficial membrane fouling is observed, due to the sweeping
effect of the high-shear tangential flow on the membrane surface; while in dead-end filtration more extensive
superficial membrane fouling occurs, but a higher flux can be achieved. We will focus on dead-end filtration
in this paper. Membrane fouling may arise due to a combination of mechanisms: (i) adsorption, in which
smaller particles are deposited within the membrane pores; (ii) blocking, in which particles larger than the
pore size are sieved out and deposited at the pore entrance; and finally, (iii) once pores are blocked in this
way, larger particles can form a cake on top of the membrane, adding additional resistance via a secondary
porous layer on top. Using primarily empirical fouling laws, numerous investigations have been carried out
of all three mechanisms (see, for example, [3, 7, 8, 19, 27], among many others).

In addition to empirical laws, a range of “first-principles” models has been proposed to describe particle
capture by membrane filters and the associated fluid dynamics, but most such models are based on a very
simple structure in which the pores of the membrane are assumed to be simple tubes spanning the depth
of the membrane. Real membranes used in applications can have rather varied internal structure (see,
e.g. Fig. 1), with interconnected pores that may branch and bifurcate, and pore-size variation across the
membrane. Pores are typically larger on the upstream side of the membrane than on the downstream side,
giving a porosity gradient in the depth of the membrane. It has long been known that porosity gradients
affect filter performance in terms of both the filter lifetime and the total filtrate collected over the lifetime
(as well as particle retention by the membrane), with negative porosity gradients (in the direction of flow)
giving superior performance. This is intuitively obvious when considering the adsorptive fouling mechanism:
fouling begins at the upstream side of the membrane, hence those pores shrink fastest, so should be largest
to maximize pore closure time.

Quantification of the effects of the membrane’s internal morphology (the pores’ shape, size, connectivity
and distribution within the membrane) on the filtration process, which is the main focus of this paper,
has been considered by several authors, using a variety of modeling avenues (e.g. [6, 9, 10, 13, 15–18, 20–
23, 25, 28, 29]). We highlight just a couple of the approaches most relevant to our work here. Dalwadi et al. [6]
used homogenization theory to model the filter material as a collection of spherical obstructions, around which
the feed solution must flow, and whose size slowly varies across the membrane. This size variation models
porosity gradients within the filter, and the filter’s performance can be investigated theoretically as a function
of the porosity gradient. Griffiths et al. [10] made further contributions to quantitative understanding of
the effects of pore-size depth variation, formulating a discrete “network” model that treats a membrane as
a series of interconnected layers, each of which contains cylindrical channels (whose radius varies from one
layer to the next) that may shrink under the action of adsorption or be blocked from above by deposition
of a large particle. In our previous work [25], we considered perhaps the simplest continuum model of depth
variation, in which the membrane consists of a series of identical axisymmetric pores spanning the entire
membrane, with depth-dependent radius.

The goal of the present paper is to extend the scope of the work outlined above, deriving a general pore
branching model that accounts for a range of membrane internal geometries, and that allows for fouling
by particle adsorption within pores. The paper is laid out as follows: in §II we introduce a mathematical
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Fig. 2. A few examples of porous structures produced in thin polymeric !lms using various methods of irradiation and chemical treatment: (A)
cross section of a polycarbonate TM with cylindrical non-parallel pore channels; (B) polypropylene TM with slightly conical (tapered towards
the center) parallel pores; (C) polyethylene terephthalate TM with cigar-like pores; (D) polyethylene terephthalate TM with “bow-tie” pores.

pores can be modi!ed by covalent binding of charged groups
or by adsorption of ionic polyelectrolytes (Froehlich and
Woermann, 1986). The immobilization of aminoacids to the
PET track membranes based on the reactions of end carboxyl
and hydroxyl groups was reported (Marchand-Brynaert
et al., 1995; Mougenot et al., 1996). However, the surface
density of the immobilized in this way species is rather
low.
The radiation-induced graft polymerization onto track

membranes is a process which has been studied in more
detail (Zhitariuk et al., 1989; Zhitariuk, 1993; Tischenko
et al., 1991; Shtanko and Zhitariuk, 1995). Styrene (St),
methacrylic acid (MAA), N -vinyl pyrrolidone (VP),
2-methyl 5-vinyl pyridine (2M5VP), N -isopropyl acryl-
amide (NIPAAM) and some other monomers have been
grafted onto PET track membranes. Grafting of St in-
creases the chemical resistance and makes the membrane
hydrophobic. MAA and VP were grafted onto TMs to in-
crease wettability which is especially important when aque-
ous solutions are !ltered through small-pore membranes.
2M5VP was grafted with the aim to make the membrane
hydrophilic and change its surface charge from negative to
positive. During the past decade the grafting of NIPAAM
and other intelligent polymers were extensively studied in
the research work carried out at TRCRE (Takasaki) and
GSI (Darmstadt) (Yoshida et al., 1993, 1997; Reber et al.,
1995).

7. Applications

Applications of commercially produced track membranes
can be categorized into three groups: (i) process !ltration;
(ii) cell culture; (iii) laboratory !ltration. The process !l-
tration implies the use of membranes mostly in the form
of cartridges with a membrane area of at least 1 m2. Pu-
ri!cation of deionized water in microelectronics, !ltration
of beverages, separation and concentration of various sus-
pensions are typical examples. There is a strong competi-
tion with other types of membranes available on the mar-
ket. Casting membranes often provide a higher dirt load-
ing capacity and a higher throughput. For this reason the
use of track membranes in this !eld is still limited (Brock,
1984).
In the recent years a series of products were de-

veloped for the use in the domain called cell and tis-
sue culture (Stevenson et al., 1988; Sergent-Engelen
et al., 1990; Peterson and Gruenhaupt, 1990; Roth-
man and Orci, 1990). Adapted over the years to a va-
riety of cell types, porous membrane !lters are now
recognized as providing signi!cant advantages for cul-
tivating cells and studying the cellular activities such
as transport, absorption and secretion (van Hinsbergh
et al., 1990). The use of permeable support systems based
on TMs has proven to be a valuable tool in the cell biology
(Costar=Nuclepore Catalog, 1992).

(a) (b) (c)

FIG. 1: Magnified membranes with various pore distributions and sizes ((a) is from Apel [1], (b) and (c) are from Ho &
Zydney [11]). Photographs (b) and (c) show samples of width 10 µm.

U = Ui Superficial Darcy velocity in ith layer Ūp,i Averaged pore velocity in ith layer
Pi Pressure in ith layer P0 Pressure drop across membrane
Ci Particle concentration in ith layer C0 Particle concentration at membrane inlet
Ai Pore radius in ith layer Ai,0 Ai,0(X) = Ai(X, 0), specified
Di Thickness of ith layer D D =

∑m
i=1Di, membrane thickness

2W Length of the square repeating lattice m Number of branching layers
Ri Pore resistance in ith layer R Total membrane resistance
Λ Particle-wall attraction coefficient α Pore shrinkage parameter
νi Number of pores in ith layer V Total throughput
Q Flux

TABLE I: Key nomenclature used in the symmetric branching model.

model for flow through a membrane with internal branching structure, and propose the adsorptive fouling
model. In §III we introduce appropriate scalings and nondimensionalize the model. Sample simulations,
which demonstrate the important effects of pore geometry and branching features, are presented in §IV. We
conclude in §V with a discussion of our model and results in the context of real membrane filters, and of
future modeling directions. We also include two Appendices: Appendix A, which sketches a model to account
for fouling at the pore bifurcation junctions; and Appendix B, which outlines a simplified discrete model to
describe the membrane fouling (which is much faster and cheaper to implement numerically, especially for
asymmetric pore structures).

II. MATHEMATICAL MODELING

The modeling throughout this section assumes that the membrane is flat and lies in the (Y, Z)-plane,
with unidirectional incompressible Darcy flow, at superficial velocity U(T ), through the membrane in the
positive X-direction (that U does not depend on X is immediate from the unidirectionality and incompress-
ibility). The membrane properties and flow are assumed homogeneous in the (Y,Z)-plane, but membrane
structure may vary internally in the X-direction (depth-dependent permeability); thus we seek a solution in
which properties vary only in X and in time T . Throughout this section we use uppercase fonts to denote
dimensional quantities; lowercase fonts, introduced in §III, will be dimensionless.

Two filtration forcing mechanisms are commonly used in applications: (i) constant pressure drop across
the membrane specified; and (ii) constant flux through the membrane specified. In the former case the flux
will decrease in time as the membrane becomes fouled; in the latter, the pressure drop required to sustain
the constant flux will rise as fouling occurs. We will focus on case (i) here, and assume this in the following
model description. With constant pressure drop P0, the boundary conditions on the pressure P (X,T ) within
the membrane are

P (0, T ) = P0, P (D,T ) = 0, (1)

where D is the membrane thickness.
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FIG. 2: Schematic of (a) symmetric, and (b) asymmetric branching structures, with 3 layers (m = 3), thicknesses D1, D2,
D3, and specified pressure drop P = P0. In (b), the radius of the jth pore in layer i and the pressure at the downstream end

of this pore are Aij and Pij , respectively.

In this paper, we consider only one of the three fouling mechanisms described in the Introduction: fouling
due to particle adsorption within the membrane pores (also known as “standard blocking”). Though pore-
blocking and cake formation are not difficult to incorporate in our model, including them here will make
it harder to draw firm conclusions about the effects of pore geometry, particularly in the presence of some
parametric uncertainty; hence we leave these effects for a future study. Furthermore, adsorptive fouling
represents the most efficient (and therefore desirable) filtration in the sense that it is the only fouling mode
that utilizes the membrane interior: it allows for filtration with pores that are much larger than the particles,
so filtration can be achieved with minimal system resistance.

We consider a feed solution containing small particles (much smaller than the pore diameter), which are
transported down pores and may be deposited on the internal pore walls. In the present work, we assume
that all small particles behave identically; in future work we plan to extend our study to consider multiple
particle populations with different properties. For such a feed solution our assumption of adsorptive fouling
only should be a reasonable approximation. In our previous work [25], we modeled the filter membrane
as a periodic lattice of identical axisymmetric pores, which traverse the membrane from the upstream to
the downstream side, with radius varying in the depth of the membrane. In reality, and as noted in the
Introduction, most membranes have a much more complex structure: Figure 1 shows just three examples of
real filter membrane cross-sections. Many membranes have depth structure that varies from large pores on
the upstream side to much smaller pores on the downstream side, and large pores may branch into several
smaller pores as the membrane is traversed. To begin to address this type of complexity, we will construct a
simplified model in which a membrane consists of units that repeat periodically in the plane of the membrane
in a square lattice pattern, with period 2W . Within each lattice unit we assume that the membrane has a
layered structure, exemplified by the sketch in Figure 2(a): here the period-unit consists of a single circularly-
cylindrical pore on the upstream side which, after a distance D1, bifurcates into smaller tubes (pores). Each
of these then undergoes further bifurcation after distance D2, and so on. This sequence of divisions generates
a membrane with m layers, each layer containing twice as many pores as the previous layer. Clearly, many
possible variants on this basic scenario could be imagined, including pores that recombine downstream: our
model will readily generalize to other cases. We will consider two scenarios in this paper: (i) a symmetric
branching model in which the pores within each layer are identical; and (ii) a more general asymmetric
branching model (see Fig. 2(b)). We will focus primarily on case (i) in this paper and outline the model
in detail in §II A below; our description for the asymmetric branching model requires minor modifications,
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described in §II B.

A. Symmetric branching model

Here we consider all pores within a given membrane layer to be identical, initially circularly-cylindrical,
and perpendicular to the plane of the membrane. A simple case with 3 layers is schematized in Figure 2(a):
each branching unit is assumed to stem from a single pore on the upstream surface. Layer i of the membrane

occupies Xi−1 ≤ X ≤ Xi, where Xi =
∑i

j=0Dj , with D0 = 0 defined for convenience. Assuming that the
short pore-connection regions that are not perpendicular to the membrane have negligible resistance, this
layered structure can be described using the Hagen-Poiseuille model: an individual pore in layer i of radius

Ai has resistance Ri =
∫Xi

Xi−1
8/(πA4

i ) dX (even though pore radius does not vary in X initially, spatial

variation will develop over time due to the fouling). Within a branching unit the ith layer contains νi pores,
and has depth Di (for the case considered here, with only bifurcations of pores allowed, νi = 2i−1). For ease
of reference, the key nomenclature used in this section is summarized in Table I. Under these assumptions
mass conservation shows that the cross-sectionally averaged pore velocity within each pore in layer i, Ūp,i(X),
satisfies

∂(πA2
i Ūp,i)

∂X
= 0, Xi−1 ≤ X ≤ Xi, 1 ≤ i ≤ m. (2)

Note that the superficial Darcy velocity U through the membrane (independent of X as noted earlier) and
averaged pore velocities for each layer are related by

(2W )2U = πνiA
2
i Ūp,i, 1 ≤ i ≤ m, (3)

by a simple flux balance argument. Within each layer U satisfies, approximately,

(2W )2U = − νi
µRi

(Pi − Pi−1), Xi−1 ≤ X ≤ Xi, 1 ≤ i ≤ m, (4)

where Pi (1 ≤ i ≤ m − 1) are the unknown inter-layer pressures within the membrane (P0 is the specified
driving pressure and Pm = 0), providing m equations for U and the unknowns Pi. Solving successively for
Pi we obtain

(2W )2U =
P0

µR
, (5)

where

R =

m∑
i=1

Ri

νi
and Ri =

∫ Xi

Xi−1

8

πA4
i

dX. (6)

Equation (6) captures the net resistance R of the microstructured membrane in terms of the resistances
of its sub-layers. For later use in comparing the performance of different pore structures, we define the so
called throughput, V (T ), which is the total volume of filtrate processed at time T , and is commonly used

experimentally to characterize membrane filter performance: V =
∫ T

0
(2W )2UdT , or equivalently,

∂V

∂T
= (2W )2U, V (0) = 0. (7)

The model outlined above describes Darcy flow through a membrane with the specified microstructure.
It must now be coupled to a fouling model that describes how the structure changes over time. Our fouling
model is based on some of our earlier work [25], which used careful averaging of an advection-diffusion
equation for the particle concentration over the pore cross-section, in a distinguished Peclet number limit,
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to derive an equation for the axial advection of the small particles within the pores (assumed slender). A
sink term represents the adsorption of particles at the pore wall as a flux into the wall, assumed driven
by some radial force of attraction (likely of electrostatic origin in practice). We refer the reader to [25],
Appendix A, for full details of our derivation; but briefly, assuming an asymptotic expansion for particle
concentration C in powers of the pore aspect ratio squared, at leading order radial diffusion dominates the
particle distribution within the pore, giving a particle concentration approximately uniform in the radial
direction. The variation of concentration along the pore axis is determined by examining further terms
(higher order) in the advection-diffusion equation. The direct analogue of this model for pores in each
sub-layer of the membrane is

Ūp,i
∂Ci

∂X
= −Λ

Ci

Ai
Xi−1 ≤ X ≤ Xi, 1 ≤ i ≤ m, (8)

where Ci is the cross-sectionally averaged particle concentration in the pores of the ith layer, to be solved
subject to specified particle concentration at the inlet,

C1(0,T ) = C0, (9)

and continuity of particle concentration from one layer to the next. The (dimensional) constant Λ models
the physics of the attraction between particles and pore wall that is causing the deposition. The pore radius
in each layer shrinks in response to the deposition according to

∂

∂T

(
πA2

i

)
= −Λα(2πAi)Ci ⇒ ∂Ai

∂T
= −ΛαCi, Xi−1 ≤ X ≤ Xi, 1 ≤ i ≤ m, (10)

for some constant α (on the order of the particle volume), which simply assumes that the pore cross-sectional
volume per unit depth shrinks at a rate given by the total volume of particles deposited locally. The initial
pore radii are specified throughout the membrane,

Ai(X, 0) = Ai0 , Xi−1 ≤ X ≤ Xi, 1 ≤ i ≤ m, (11)

where Ai0 is the (constant, specified) initial radius of the pores in the ith layer.
As noted previously, this model describes the case of fouling by standard blocking (particle adsorption)

only. Inclusion of other fouling modes such as pore blocking and cake formation is discussed briefly in the
Conclusions, §V. In addition, we present and briefly discuss a simple model for fouling at pore junctions in
Appendix A. Since trial simulations indicate that inclusion of such effects leads to only negligible changes to
our results, we do not include junction fouling in the simulations and results of this paper.

B. Asymmetric branching model

The model above has the simplifying feature that all pores in a given layer are identical initially and thus,
given the deterministic nature of our fouling model, remain so at later times. Real membranes do not possess
such symmetry; hence we also formulate a more realistic model in which pores in the same layer are non-
identical. The same basic m-layered structure is assumed, however, in which a single pore at the upstream
surface bifurcates into two smaller (non-identical) tubes after distance D1, and so on, again with νi = 2i−1

pores in layer i. These pores in general all have different radii, which we denote by Aij , 1 ≤ j ≤ 2i−1 (the
radius of the jth pore in layer i). The pressures at either end of this pore will be Pij at the downstream
end, and Pi−1,[ j+1

2 ] at the upstream end1 (see Figure 2(b) for a simple schematic in the case of 3 layers).

In the first layer i = 1, there is just one pore of radius A11, with upstream pressure P01 = P0 specified.

1 The floor function [x] is the greatest integer less than or equal to x.
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Ūp,ij represents the cross sectionally averaged velocity of the fluid in the jth pore in layer i, and satisfies,
approximately,

πA2
ijŪp,ij = − 1

µRij
(Pij − Pi−1,[ j+1

2 ]), 1 ≤ i ≤ m, 1 ≤ j ≤ 2i−1, (12)

where

Rij =

∫ Xi

Xi−1

8

πA4
ij

dX, (13)

is the resistance of the jth pore in layer i. By a simple flux balance argument, the following relations hold
between the superficial Darcy velocity, U , across the membrane and the pore velocities in each layer,

(2W )2U = πA2
11Ūp,11,

πA2
ijŪp,ij = πA2

i+1,2j−1Ūp,i+1,2j−1 + πA2
i+1,2jŪp,i+1,2j , 1 ≤ i ≤ m− 1, 1 ≤ j ≤ 2i−1.

(14)

If the pore radii are specified then equations (12), (14) represent 2m +2m−1−1 equations with 2m +2m−1−1
unknowns, consisting of U , Ūp,ij (1 ≤ i ≤ m, 1 ≤ j ≤ 2i−1) and Pij (1 ≤ i ≤ m − 1, 1 ≤ j ≤ 2i−1); hence
they can be solved uniquely. Consistent with the adsorption fouling model proposed in (8)–(11) we now have
(analogous to (8), (10))

Ūp,ij
∂Cij

∂X
= −Λ

Cij

Aij
,

∂Aij

∂T
= −ΛαCij , Xi−1 ≤ X ≤ Xi, 1 ≤ i ≤ m, 1 ≤ j ≤ 2i−1, (15)

where Cij is the cross-sectionally averaged particle concentration in the jth pore in layer i. We solve the
model (12)–(15) subject to C11(0, T ) = C0, P11(0, T ) = P0, Pmj(D,T ) = 0 for 1 ≤ j ≤ 2m−1, with Aij(X, 0)
for Xi−1 ≤ X ≤ Xi, 1 ≤ i ≤ m, 1 ≤ j ≤ 2i−1 all specified.

III. SCALING & NONDIMENSIONALIZATION

To reduce the number of independent parameters, we introduce appropriate scales with which to nondi-
mensionalize each model.

A. Symmetric branching model

We nondimensionalize (1)–(11) using the scalings

Pi = P0pi, (X,Xi, Di) = D(x, xi, di), Ci = C0ci, Ai = Wai, Ri =
8D

πW 4
r̂i,

(U, Ūp,i) =
πW 2P0

32µD
(û, ˆ̄up,i), T =

W

ΛαC0
t, Q =

πW 4P0

8µD
q, V =

πW 5P0

8µDΛαC0
v, (16)

where D =
∑m

i=1Di is the membrane thickness. This gives the following dimensionless model for û(t),
ci(x, t), ˆ̄up,i(x,t), r̂i(t), ai(x,t), q(t), v(t) (dimensionless Darcy velocity, averaged particle concentration,
averaged pore velocity, pore resistance, pore radii in the ith layer, flux and throughput, respectively):

û =
1∑m

i=1 r̂i/νi
, û = νi

πa2i
4

ˆ̄up,i, (17)

r̂i =

∫ xi

xi−1

dx

a4i
, (18)
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ūp,i
∂ci
∂x

= −λ̂ ci
ai
, xi−1 ≤ x ≤ xi, λ̂ =

32ΛµD2

πP0W 3
, (19)

∂ai
∂t

= −ci, (20)

with boundary and initial conditions

c1(0, t) = 1, ai(0) = ai0 , (21)

where 1 ≤ i ≤ m, and ai0 ∈ (0, 1) are specified.

Using equation (17), one can define a dimensionless membrane resistance r̂(t), consistent with (5), as

r̂(t) =

m∑
i=1

r̂i
νi
. (22)

Note that, while this definition is in a sense “natural”, typically it leads to very large values for r̂ and as a
consequence, very small values for û = 1/r̂, specifically for a membrane with many layers. Our initial choice
for the scalings in (16) makes sense based on a single pore (see our previous work, Sanaei & Cummings [25])
but is not appropriate for a system with multiple layers and branching. Hence, we make a further rescaling
based on a typical value, r̂0, of the resistance as defined in (22).2 Therefore we define

(r, ri) =
1

r̂0
(r̂, r̂i), (u, ūp,i) = r̂0(û, ˆ̄up,i), λ = r̂0λ̂, 1 ≤ i ≤ m, (23)

where r, ri, u, ūp,i and λ are the new dimensionless resistance, pore resistance, Darcy velocity, averaged
pore velocity and particle-wall attraction coefficient, respectively. Using these new scalings, (17), (18), (19)
and (22) give

u =
1∑m

i=1 ri/νi
, u =

π

4
νia

2
i ūp,i, (24)

ri =
1

r̂0

∫ xi

xi−1

dx

a4i (x)
, (25)

ūp,i
∂ci
∂x

= −λ ci
ai
, λ =

32ΛµD2r̂0
πP0W 3

, (26)

r(t) =

m∑
i=1

ri
νi
, (27)

for 1 ≤ i ≤ m, while (20) and (21) still hold. Recall that in the case of bifurcating pores, νi = 2i−1.

2 In most cases we take r̂0= 15000 to be the initial dimensionless resistance given by (22), since we will most often compare
equal resistance systems (see §IV later).
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B. Asymmetric branching model

We nondimensionalize the model (12)–(15), using the same scalings as in (16) and (23), giving the following
dimensionless model for u(t), cij(x, t), ūp,ij(x, t), rij(t), pij(x, t), aij(x, t) (dimensionless Darcy velocity,
averaged particle concentration, averaged pore velocity, pore resistance, inter-layer pressures and pore radii
within the jth pore in layer i, respectively):

4u = πa211ūp,11, a2ij ūp,ij = a2i+1,2j−1ūp,i+1,2j−1 + a2i+1,2j ūp,i+1,2j , (28)

πa2ij ūp,ij = − 4

rij

(
pij − pi−1,[ j+1

2 ]

)
, (29)

rij =
1

r̂0

∫ xi

xi−1

dx

a4ij(x)
, (30)

ūp,ij
∂cij
∂x

= −λ cij
aij

, λ =
32ΛµD2r̂0
πP0W 3

, (31)

∂aij
∂t

= −cij , (32)

where 1 ≤ i ≤ m, 1 ≤ j ≤ 2i−1. We solve the model (28)–(32) subject to boundary and initial conditions

c11(0, t) = 1, aij(0) = aij0 for 1 ≤ i ≤ m, 1 ≤ j ≤ 2i−1

p01(t) = 1, pmj = 0 for 1 ≤ j ≤ 2m−1, (33)

where 0 < aij0 < 1 are specified.
IV. RESULTS

In this section, we present some simulations of the models (20), (21), (24)–(27) (symmetric case) and
(28)–(33) (asymmetric case) described in §III above. We use an implicit finite-difference method with 100
grid points per pore to solve the equations numerically, and we pay particular attention to how results
depend on the branch configuration, as specified by the initial conditions on the pore radii. Other than
parameters related to the initial membrane geometry, our model contains one dimensionless parameter, λ,
which captures the physics of the attraction between particles and the pore wall. Its value is unknown, and
may vary widely between systems depending on the detailed structure of the filter membrane and on the
nature of the feed solution. In the absence of firm data we take λ = 30 for most simulations, and briefly
investigate the effect of varying λ later in Figure 5. Methods of determining this parameter (which depends
on the characteristics of both feed and membrane) for a given experimental system are discussed in the
Conclusions, §V.

A. Symmetric branching model results: Equal-thickness layers

We first consider the case in which all layers are equally spaced, with di = 1/m. For the simple “bifurcating
pore” model, νi = 2i−1 for 1 ≤ i ≤ m; therefore (25) and (27) together give dimensionless membrane
resistance as

r(t) =
1

r̂0

m∑
i=1

1

2i−1

∫ xi

xi−1

dx

ai(x, t)4
. (34)
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In order to make a meaningful comparison, we run simulations for pore structures that have the same initial
membrane resistance r0 = r(0). This means that we are comparing membranes that perform identically
when no fouling occurs – they would yield identical (constant) flow rates for a given transmembrane pressure
difference when filtering pure water.

Furthermore, in order to keep the number of variable parameters small, we assume that initial pore radius
decreases geometrically in the depth of the membrane; that is, we take ai0 = a10κ

i−1 to be the initial radius
of the pores in the ith layer, where a10 is the initial radius of the pore in the first layer and κ is the geometric
ratio. Therefore, by fixing the initial resistance r0 (as defined by (34) with t = 0) and varying the geometric
coefficient κ, we can investigate a range of membrane morphologies. Note that, with r0 and κ specified, the
radius of the pore in the top layer will be determined; in particular, as κ increases, the initial pore radius
in the top layer must decrease and vice-versa (in order to keep total membrane resistance fixed). More
specifically, setting t = 0 in (34) and using ai(x, 0) = a10κ

i−1 gives

a10 =

(
1

mr0r̂0

m∑
i=1

1

κ4(i−1)2i−1

)1/4

. (35)

A selection of results is shown in Figure 3: we simulate the model (20), (21), (24)–(27) for five different
values of the geometric coefficient (κ = 0.6, 0.65, 0.707, 0.75 and 0.8), with deposition parameter λ = 30,
number of layers m = 5, and initial dimensionless membrane resistance r0 = 1. Note that the chosen range
of κ-values includes cases where membrane porosity is increasing (κ > 1/

√
2), uniform (κ = 1/

√
2 ≈ 0.707)

and decreasing (κ < 1/
√

2) in the direction of flow.
Figures 3(a) and (b) show the pore radii at the top (upstream side) of each layer, ai(xi, t), versus time,

for κ = 0.6 and 0.8 respectively (results for κ = 0.65, 0.707, 0.75 are suppressed here since the evolution is
qualitatively very similar). A notable feature of these plots is that pore closure occurs first in the upstream
membrane surface layer, at least for the model parameters considered here. This may be understood qual-
itatively as follows: when the (identical) pores in any layer are near closure, the fluid velocity everywhere
within the membrane tends to zero. In regions of the membrane where c is not already small, this leads to
large spatial gradients in c (see (19)), which in turn leads to ci−1(xi−1, t) � ci(xi, t) (again for i such that
ci is not already small; recall that 0 < c ≤ 1 is monotone decreasing in x). It follows (equation (20)) that
the closure rate of pores in downstream layers within the membrane drops relative to the rate in upstream
layers, with the closure rate of the pore in the first layer dominating, eventually catching up with other
pores, and closing first.

The closure time tf , which is the time at which the membrane no longer permits flow and filtration ceases,
varies with the geometric coefficient. For the scenarios shown in Figure 3, our model predicts that the
smaller the geometric coefficient, the larger the closure time; this appears to be primarily because, with
initial total resistance fixed, the initial pore radius in the first layer is wider for a branching structure with
a smaller geometric coefficient, and (as discussed above) this is always the pore that closes first. Though
we do not show the results for pore radii ai(t) in each layer versus time for the intermediate κ values
κ = 0.65, 0.707, 0.75, those cases also bear out this prediction. Note that from equations (20) and (21) it
follows that ∂a1

∂t |x=0 = −1, hence (since this pore closes first) the closure time is exactly tf = a10 .
Figure 3(c) shows flux-throughput graphs for the membrane structures with the chosen values of the

geometric coefficients κ. The flux-throughput graph plots the instantaneous flux through the membrane at
any given time versus the total volume of filtrate processed at that time (throughput), and is a common
experimental characterization of membrane filter performance. Since the flux is directly proportional to
the superficial Darcy velocity and is depth-independent, we define dimensionless flux for our model by

q(t) = u(0, t); dimensionless throughput is then given by v(t) =
∫ t

0
q(t′)dt′ (see also (7)). The graphs in

Fig. 3(c) collectively demonstrate that, although all branch structures give the same initial average membrane
resistance (manifested by the same initial flux), they exhibit significant differences in performance over time.
In particular, if performance is characterized by total throughput over the filter lifetime then (for the chosen
model parameters) branch structures with wider pores in the top layer (upstream side) give notably better
performance overall, with more filtrate processed under the same conditions. The minimum total throughput
is given by the branch structure with the narrowest pore on the upstream side (κ = 0.8 > 1/

√
2; here the

porosity is increasing in the depth of the membrane), which exhibits rapid closure.
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FIG. 3: Symmetric branching model: (a,b) The pore radius evolution at the top of each pore, ai(xi, t), for equal (initial)
resistance membrane structures, where the initial pore radii in subsequent layers are geometrically decreasing, with geometric

coefficient κ: (a) κ = 0.6 and (b) κ = 0.8. (c) and (d) show total flux q(t) and particle concentration at outlet cm(1, t),
respectively, vs throughput v(t), for several different κ-values shown in the legend. In all cases r0 = 1, λ = 30 and the number

of layers m = 5.

Another key consideration in evaluating membrane performance is the concentration of particles remaining
in the filtrate as it exits the membrane, cm(1, t): in general a lower particle concentration at the outflow side
of the membrane indicates superior separation efficiency. Figure 3(d) plots cm(1, t) versus throughput for
each of the chosen geometric coefficients. The results here are consistent with those of the flux–throughput
graphs of figure 3(c); in particular, membranes with narrow pores in the first layer of the branching network
(or with larger geometric coefficients κ) give poorer performance by this measure also, exhibiting inferior
particle retention compared with membranes whose pores are wider on the upstream side. A noteworthy
feature here is that in the “best-performing” case, κ = 0.6, particle retention actually worsens during
filtration initially, indicated by an increasing value of cm(1, t). This type of behavior may be observed in
real membranes, and has been predicted in discrete particle simulations of filtration pore networks (see, e.g.
[2]); though not (as far as we are aware) in continuum-based models such as ours. Though the effect is
minor here, it is important to be aware that particle removal efficiency can be non-monotone, and to predict
conditions under which such behavior will occur, since a user needs to be able to rely on particle retention
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FIG. 4: Symmetric branching model: Total throughput v(t) versus geometric coefficient κ with λ = 30 , (a) for several
different values of dimensionless initial resistance r0 with number of layers m = 5; and (b) for several different numbers of

layers m, with r0 = 6.66.

always meeting the desired tolerance.
Figures 4(a) and (b) further illustrate the model predictions, plotting throughput versus the geometric

coefficient for several different scenarios. In Figure 4(a) the number of layers is fixed, m = 5, and total
throughput is plotted versus the geometric coefficient for several different values of the initial membrane
resistance r0. Note that for lower resistance membranes, where pores must be large (relative to the containing
period-box), the range of realizable geometric coefficients is bounded below. Needless to say, as initial
membrane resistance increases, the performance of the filter (as measured by total throughput) decreases.
Consistent with our results in Figure 3, for fixed initial resistance a larger geometric coefficient always results
in less total throughput.

In figure 4(b), the dimensionless initial membrane resistance is fixed, and throughput is again plotted as a
function of geometric coefficient for several different values of m (the number of layers in the structure). Note
that, with the assumed form of the branching geometry, a structure with more layers tends to have a higher
resistance (for a given geometric coefficient κ, the numerous pores in the downstream layers become very
small). Therefore, in order to access a wide range of geometric coefficients with a many-layered structure,
we choose a sufficiently large value of the dimensionless initial resistance r0 (see (34)) to illustrate the effect
of changing the number of layers; here r0 = 6.66. Our results indicate that for a fixed geometric coefficient
and fixed initial resistance, better performance is observed for branching configurations with more layers.
(Note that in order to fix both the geometric coefficient and the resistance while increasing the number of
layers, as was done to calculate the points on each curve in Fig. 4(b) for each value on the horizontal axis,
the size of the pore in layer 1, a10 , must increase (see 35).) We also carried out simulations (results not
shown here) to generate the equivalent results for throughput versus a10 (with r0 held fixed), so that κ must
change as the number of layers m is varied for each a10 -value: we find that as m increases, the throughput
again increases, but the effect is not as dramatic as in Fig. 4(b).

It is also of interest to study the influence of the dimensional deposition or “stickiness” coefficient Λ on
results. This coefficient appears in our choice of timescale: T = W/(ΛαC0)t, as well as in the dimensionless
parameter λ = 32ΛµD2r̂0/(πP0W

3) (see (16) and (26)). When we change Λ, we therefore also rescale time
in simulations.3 Figure 5(a) illustrates the effect of changing λ, plotting throughput versus the geometric
coefficient for several different values of the deposition coefficient λ. Two sets of simulations are shown: a
five-layer membrane (m = 5) with initial dimensionless resistance r0 = 1 (orange curves); and a ten-layer

3 Such rescaling of time does not, however, affect the flux-throughput graphs.
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FIG. 5: Symmetric branching model: (a) Total throughput v(t) and (b) initial particle concentration at pore outlet,
cm(1, 0), versus the geometric coefficient κ for several different values of λ, with m = 5, r0 = 1 (orange curves) and m = 10,

r0 = 6.66 (black curves).

membrane (m = 10) with initial dimensionless resistance r0 = 6.66 (black curves). Here again we find that,
for all values of λ considered, the maximal total throughput is achieved at the smallest geometric coeffi-
cient (the highest permeability gradient); equivalently, at fixed initial resistance the optimum throughput
is obtained for the branch configuration with pores as wide as possible in the first layer. In all cases, as λ
increases, total throughput decreases, as anticipated (improved particle retention leads to faster clogging).

Figure 5(b) shows the initial particle concentration at the membrane outlet, cm(1, 0), versus the geometric
coefficient κ, for several different values of λ with m = 5, r0 = 1 (orange curves) and m = 10, r0 = 6.66
(black curves). These results indicate that for larger values of λ there is little variation in cm(1, 0), but at
smaller values of λ the geometric coefficient κ can have a significant effect on the proportion of particles
removed (note the logarithmic scale used on the vertical axis). An observation common to all the graphs
in figure 5(b) is the existence of a local maximum in cm(1, 0) as κ is increased, located somewhere between

0.7 and 0.8. We note that the value κ = 1/
√

2 ≈ 0.707 corresponds to a membrane of uniform porosity in
the depth of the filter, suggesting that filters with either decreasing or increasing porosity in the membrane
depth are preferable to those of uniform porosity as regards particle removal (though not as regards total
throughput). In all cases, as λ increases the initial outlet particle concentration decreases as expected.

B. Symmetric branching model results: Variable-thickness layers

The assumption of equal-thickness layers made in the previous subsection is convenient, but likely not
optimal. Hence here we briefly consider the effect of allowing layers of variable thickness. To keep the
parameter space manageable, we again assume that the layer thickness variation satisfies a geometric pro-
gression: di+1 = κddi. We solve the model represented by equations (20), (21), (24)–(27) and investigate
how results depend on κd. Results are summarized in Figure 6, for the initial membrane resistance r0 = 1
with number of layers m = 5. Here the total throughput is plotted as a function of the layer thickness
geometric coefficient, κd, for four different values of the pore-radius geometric coefficient, κ. As already
observed, throughput increases significantly as κ decreases (larger negative porosity gradients in the depth
of the filter), but we now also see strong dependence on κd. In particular, it is clear that the default value
of κd = 1 considered previously is never optimal; and indeed, it is far from optimal for the preferred smaller
values of κ. Interestingly, in the scenarios explored here, the optimal value of κd varies little with either r0,
m or κ, taking values in the range (1.25, 1.45) for all considered simulations. These results indicate that, for
optimal results, subsequent layers should have pores of smaller radius (κ < 1), but greater length (κd > 1).

The existence of an optimal value for κd may be understood as follows: For a fixed initial resistance,
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FIG. 6: Symmetric branching model: Total throughput v(t) versus membrane layer thickness geometric coefficient κd with
λ = 30, r0 = 1 and m = 5 layers; and geometric coefficients κ = 0.65, 0.707, 0.75, 0.8.

increasing κd (i.e. making downstream pores longer) results in increasing a10 , which has been shown to
increase total throughput. However for fixed m, increasing κd also reduces the length of the first layer pore,
and at some point (once the first pore becomes sufficiently short) many particles will leak through into lower
layers and pollute the downstream pores, which are much narrower and hence more sensitive to standard
blocking. Thus, total throughput will ultimately decrease once κd increases beyond a certain value.

We observe also that the optimal value of κd described above was found to be an increasing function of
λ (results not shown here). To see why this should be, consider an optimal scenario as explained above,
and then suppose we increase the value of λ, so that particles are now more strongly attracted to the pore
wall. Since particle removal now occurs on a shorter lengthscale along the pore axis, the first pore will still
consume most of the particles even if it is very short; hence to obtain the optimal scenario we may shrink its
length (and increase its radius), corresponding to a larger value of κd. Similarly, for smaller λ the optimum
κd will be smaller. This prediction was explored numerically and found to hold for λ values between 0.001
and 1000.

C. Asymmetric branching model results: Equal-thickness layers

Since the symmetric branching geometry is highly idealized, we also briefly study asymmetric branching
pore structures in a simple sub-case: the same layered structure is assumed, but the pores in the second layer
are non identical. Beyond the second layer the whole structure is supposed to divide into two sub-branches,
left (L) and right (R), with pores decreasing geometrically in the depth of the membrane with geometrical
coefficients κL and κR, respectively. Consequently the total dimensionless membrane resistance is given by

r(t) = r1(t) +

(
1

rR(t)
+

1

rL(t)

)−1
, (36)

where r1(t), rR(t) and rL(t) are resistances of the first layer, right and left sub-branches respectively, and
can be obtained as

r1(t) =
1

r̂0

∫ x1

0

dx

a41(x, t)
, rR/L(t) =

1

r̂0

m∑
i=2

1

2i−2

∫ xi

xi−1

dx

a4Ri/Li
(x, t)

, (37)

with

aRi(0) = a10κ
i−1
R , aLi(0) = a10κ

i−1
L , for 2 ≤ i ≤ m, (38)

14



0 0.05 0.1 0.15 0.2 0.25
Time

0

0.05

0.1

0.15

0.2

0.25

0.3
R

ad
iu

s 
of

 p
or

e 
at

 th
e 

to
p 

of
 e

ac
h 

la
ye

r 1st layer
2nd layer (L)
2nd layer (R)
3rd layer (L)
3rd layer (R)
4th layer (L)
4th layer (R)
5th layer (L)
5th layer (R)

(a)

0 0.02 0.04 0.06 0.08 0.1
Time

0

0.02

0.04

0.06

0.08

0.1

0.12

R
ad

iu
s 

of
 p

or
e 

at
 th

e 
to

p 
of

 e
ac

h 
la

ye
r 1st layer

2nd layer (L)
2nd layer (R)
3rd layer (L)
3rd layer (R)
4th layer (L)
4th layer (R)
5th layer (L)
5th layer (R)

(b)

0 0.05 0.1 0.15 0.2 0.25
Throughput

0

0.2

0.4

0.6

0.8

1

1.2

Fl
ux

=0.6, a1(0)=0.2512
=0.65, a1(0)=0.1887
=0.707, a1(0)=0.1472
=0.75, a1(0)=0.1194
=0.8, a1(0)=0.1008

R/ L=0.8, a1(0)=0.2512

R/ L=0.8, a1(0)=0.1887

R/ L=0.8, a1(0)=0.1472

R/ L=0.8, a1(0)=0.1194

R/ L=0.8, a1(0)=0.1008

(c)

0 0.05 0.1 0.15 0.2
Throughput

0

1

2

3

4

5

6

7

8

9

Pa
rti

cl
e 

C
on

ce
nt

ra
tio

n 
at

 o
ut

le
t

10-3

R/ L=0.8, a1(0)=0.2512

R/ L=0.8, a1(0)=0.2512

R/ L=0.8, a1(0)=0.1887

R/ L=0.8, a1(0)=0.1887

R/ L=0.8, a1(0)=0.1472

R/ L=0.8, a1(0)=0.1472

R/ L=0.8, a1(0)=0.1194

R/ L=0.8, a1(0)=0.1194

R/ L=0.8, a1(0)=0.1008

R/ L=0.8, a1(0)=0.1008

(d)

FIG. 7: Asymmetric branching model: Results for membranes with initial dimensionless resistance r0 = 1, and ratio of right
and left branch geometric coefficients κR/κL = 0.8. (a) and (b) show the inlet pore radius evolution in each layer (left (L,

black) and right (R, red)), aR/L,i(xi, t), for different values of the top layer initial pore radius a1(0): (a) a1(0) = 0.2512, (b)
a1(0) = 0.1008. (c) shows total flux q(t) vs throughput v(t) for a1(0) = 0.2512, 0.1887, 0.1472, 0.1194, 0.1008 (red curves) and
also for the corresponding symmetric cases of figure 3 (black curves). (d) shows particle concentration at outlet cmj(1, t) for
j = 1, . . . 2m−1 versus throughput for the left (black curves) and right (red curves) sub-branches, respectively, with λ = 30 and

m = 5.

where a1 is the radius of the pore in the first layer (with a1(0) = a10); and aRi and aLi are the ith layer
pore radii in the right and left sub-branches, respectively. Equation (36) is analogous to Kirchhoff’s circuit
laws and can be easily obtained from our flow model (see (4)).

In figures 7(a) and (b), we present simulations where the ratio of right and left branch geometric coefficients
is fixed as κR/κL = 0.8, while the initial radius of the inlet pore a10 was chosen to be the same as in the
symmetric branching model results of figures 3(a) and (b). The dimensionless deposition coefficient is set to
λ = 30, the number of layers is fixed at m = 5, and the initial dimensionless membrane resistance (defined
in (36)) is r(0) = r0 = 1 for direct comparison with figure 3. Similar to the symmetric branching model,
pore closure occurs first in the top layer for all cases shown here. Hence, in all cases shown, the time to total
blockage (the duration of the filtration process) is the same as for the symmetric branching structure.

Figure 7(c) illustrates the flux-throuput characteristics for this asymmetric case (red curves) and provides
explicit comparison to the corresponding symmetric case (black curves; where linestyles match those of the
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FIG. 8: Asymmetric branching model: Total throughput v(t) versus geometric coefficient ratio κR/κL, for several branching
structures with different initial top pore radii a1(0), but the same initial resistance r0 = 1. In all cases λ = 30 and m = 5.

red curves, the same initial values for the inlet pore radius are used; see the original results in figure 3(c)).
Note that in all cases shown, both symmetric and asymmetric, the initial net membrane resistance is the
same: r0 = 1. Our results here indicate that breaking symmetry reduces filtration efficiency: all asymmetric
cases considered lead to less total throughput than the corresponding symmetric case. Figure 7(d) shows
particle concentration at outlet, cmj(1, t) for j = 1, . . . 2m−1, versus instantaneous throughput for the left
(black curves) and right (red curves) sub-branches, respectively, for the above given parameters. Note that,
due to the symmetry of each sub-branch, the particle concentration at outlet in all pores of the left sub-
branch will be the same, as will that for all pores in the right sub-branch; hence for each simulation we
see just two distinct concentration curves. As shown here, the particle concentration downstream in the
narrower (right) sub-branch is much less than that in the left sub-branch.

To characterize further the effect of breaking symmetry on filtration performance, we plot total throughput
versus the geometric coefficient ratio κR/κL in figure 8 for branching structures with m = 5 layers, again with
deposition coefficient λ = 30 and total initial resistance r0 = 1. The geometric coefficient ratio κR/κL ∈ (0, 1]
(with no loss of generality, κR ≤ κL) characterizes the degree of asymmetry, with a value of 1 being the
symmetric case, and asymmetry increasing as the ratio approaches zero. For each of the graphs in figure 8,
we fixed the first layer initial pore radius (as presented in the legend) then varied the value of κR/κL while
keeping initial total resistance fixed at r0 = 1. The results confirm the hypothesis suggested by the previous
simulations: as the degree of asymmetry increases, filtration efficiency (as measured by total throughput
over the filter lifetime) decreases. This effect is more prominent for those branching structures with larger
pores in the top layer. Breaking the symmetry for those structures with smaller pores on top does not
affect the performance significantly. Note that since the initial radius of the top pore a10 is held fixed as
the asymmetry increases in figure 8, the observed variation in throughput must be due to other effects (but
note that the throughput variation seen here is much smaller than in figure 7, indicating that a10 has the
dominant effect).

V. CONCLUSIONS

We have presented a simple model to quantify the effects of a bifurcating-pore membrane morphology on
separation efficiency and fouling of a membrane filter. Our model accounts for Darcy flow through a simple
bifurcating pore structure within the membrane, and for fouling by particle adsorption within pores. Our
model contains an important dimensionless parameter that must be measured for a given system: λ, the
dimensionless attraction coefficient between the membrane pore wall and the particles carried by the feed
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solution. In principle this parameter λ could be estimated by fitting our model results to a reliable dataset,
but since λ depends on properties of both membrane and feed solution, it will vary from one membrane-feed
system to another, so will need to be determined for each system considered.

The focus in this paper is on development of a model that can be used to quantify the performance of a
membrane filter in terms of its pore-branching characteristics. The internal morphology of real membranes is
undoubtedly highly complex: here we focus mainly on a simple symmetric layered branching pore structure
characterized by two geometric coefficients: κ (which quantifies how pore size changes in the depth of the
membrane), and κd (which quantifies how the layer thickness changes). In general we compare performance of
membrane filters with equal initial total membrane resistance r0 (once the values of κ, κd, r0, and the number
of layers m are fixed for a symmetric bifurcating pore structure, the membrane structure is determined). We
briefly consider the effect of introducing a restricted type of asymmetry in Sections III B and IV C, where the
same basic layered branching structure is assumed but the pores in the second layer are non identical, and
in subsequent layers the whole structure divides into two sub-branches, left and right, with pores decreasing
geometrically in the depth of membrane in each sub-branch. All simulations presented in this paper are for
the case of flow perpendicular to the membrane surface, driven by a constant pressure drop. Although the
simulations presented in the main body of the paper are for the partial differential equation-based model
presented in §III, in Appendix B we outline a simplified discrete model, which provides approximate quasi-
analytical solutions for averaged pore radii and particle concentrations within layers, and which can be
useful to provide a quick guide as to the most useful regimes to explore. This discrete model was tested and
found to provide reasonable approximations for systems with m > 5 layers, with the accuracy of predictions
increasing with the number of layers.

The results of figure 3 for the symmetric branching case with equal-thickness layers (κd = 1) indicate that
variations in branching structure lead to different fouling patterns within the membrane depending on the
value of the geometric coefficient κ. Importantly, though the initial resistance of all membranes simulated
in this figure is the same, if the value of the pore-radius geometric coefficient κ is small (meaning, with the
fixed resistance constraint, that the initial pore radius at the top of membrane is large, and the membrane
has significant negative porosity gradients in its depth), the membrane exhibits markedly better filtration
performance, as quantified by the total amount of filtrate processed under the same operating conditions
(as seen earlier in [10, 25]), while simultaneously offering improved particle retention. Figure 3(d) also
demonstrates the important point that, for microstructured membranes, one cannot safely use the initial
particle retention as a predictor of particle retention over the membrane lifetime: particle retention may
deteriorate over time.

Another important prediction of our model, borne out by figure 4(b), is that a membrane with more
layers exhibits greater total throughput over its lifetime for the same initial resistance. This conclusion
holds independently of the value of the geometric coefficient ratio, indicating that superior performance can
be obtained by using microstructured membranes with small values of the geometric coefficient ratio and
a large number of layers. Figure 5(b) further emphasizes the potential importance of porosity gradients,
particularly in cases where the value of the dimensionless attraction coefficient λ may be small. For λ = 7.5
a branched-pore filter with initial dimensionless membrane resistance r0 = 1, number of layers m = 5 and
porosity gradients (κ ≈ 0.42) can remove 99% of particles, while one that is uniformly porous removes less
than 90% of particles (see orange curves in figure 5(b)). At larger values of λ particle retention is much
less sensitive to the value of κ. (Such considerations also reveal the importance of accurately estimating the
value of the attraction coefficient λ for the system.)

In addition to the conclusions discussed above, figure 6 illustrates the important role that varying the layer
thickness can play. This figure shows that, for all scenarios considered, optimal performance is achieved with
a value of κd in the range (1.15, 1.45) indicating that as the pores shrink in the membrane depth, the
layers containing these pores should become thicker as dictated by the maximizing value of κd. While our
simulations are not calibrated to describe a particular experimental dataset, we note that for a membrane of
the approximate structure considered here, it should be possible to use an experimental dataset to determine
the important parameter λ for a given feed solution, and thence to use our results to predict the optimal
structure of this type.

While in this paper we do not investigate asymmetric branching structures in detail, the results of Section
IV C indicate the importance of such asymmetry considerations. Within the limitations of the simple asym-
metry considered there, while the same general conclusions hold true regarding the favorability of negative
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porosity gradients in the depth of the membrane, asymmetries in the branching structure can lead to a
significant drop in performance (more than 10% drop in the total throughput over the filter lifetime in some
cases; see figure 7(c) and figure 8).

Though our model represents an important first step in systematically accounting for internal membrane
complexity, it must be emphasized that real membranes have much more complex structure than that
considered here; and that in reality multiple fouling modes are operating simultaneously (our model neglects
blocking of pores by particles larger than them, and the caking that occurs in the late stages of filtration). In
future work, we plan to address more complicated pore morphologies, scenarios with multiple fouling modes
operating simultaneously, and filtration of feed solutions containing multiple particle populations.
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Appendix A: Fouling at the bifurcations

The models outlined in §II, for both symmetric and asymmetric branching configurations, each neglect any
additional fouling that may occur at the junctions where pores bifurcate. Since it is known that in analogous
physiological systems such as the cardiovascular system, such junctions may be prone to deposition and
formation of arterial plaques4, we here briefly consider how to model the effect that fouling at the junctions
might have on overall system performance.

The details of the flow at a T-junction type bifurcation will be complicated; but broadly speaking, for the
model geometry we consider here, a well-developed Poiseuille flow upstream impacts a wall at the junction,
where it transitions to a stagnation-point flow. The flow separates into two streams, which will enter the two
pores in the downstream layer. In the spirit of developing the simplest reasonable model that captures the key
physics, we assume that the rate of deposition of particulate material at the junction is proportional to the
instantaneous flux of fluid and particle concentration into the junction. As deposited material accumulates, it
will create some degree of blockage and increase system resistance. We assume that this additional resistance
appears in series with the resistance of the pore upstream. For the symmetric branching model this translates
to

Ri =

∫ Xi

Xi−1

8

πA4
i

dX +B

∫ T

0

Ci(T
′)Qi(T

′)dT ′, 1 ≤ i ≤ m− 1 (A1)

replacing the expression in (6), where B > 0 is a constant and Qi = πA2
i Ūp,i is the flux through each pore

in the ith layer. The resistance of the pores in the mth layer remains unchanged from the previous model:

Rm =
∫Xm

Xm−1
8/(πA4

m) dX.

For the asymmetric branching model the analogous expression for the resistance of the jth pore in layer i
is

Rij =

∫ Xi

Xi−1

8

πA4
ij

dX +B

∫ T

0

Cij(T
′)Qij(T

′)dT ′, 1 ≤ i ≤ m− 1, 1 ≤ j ≤ 2i−1, (A2)

where Qij = πA2
ijŪp,ij is the flux through the jth pore in the ith layer. Again, the resistance of the pores

in the mth layer and the remainder of the model are as in §II B.

4 In the case of arterial plaque formation, however, the chief complication arises when the plaques break off from the wall and
cause blockage further downstream: we do not consider such effects here.
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This modified fouling model should be solved alongside an analogously modified particle concentration
equation that accounts for this additional mechanism of particle removal. Preliminary simulations however
suggest that the effect of such junction fouling is negligible; hence we omit it from our presented results.

Appendix B: Simplified Discrete Model

In a membrane with many layers, the system in §II can be time consuming to solve numerically. However,
in such situations we anticipate that the length of pores between successive bifurcations is short relative
to the typical lengthscale of gradients in C (estimated from (8)), corresponding to an assumption that
32ΛµD2/(πP0W

3) � 1. For situations where a fast approximate solution is required, we thus propose a
simplified model, based on (8), in which we take Ci to represent the approximate particle concentration at
the downstream end of pores in layer i. Using Ai (independent of X) to then represent the average pore
radius within layer i, the resistance of an individual pore in layer i (see (6)) simplifies to Ri = 8Di/(πA

4
i ).

A simple finite-difference approximation of (8) then gives

Ūp,i
Ci − Ci−1

Di
= −Λ

Ci

Ai
, 1 ≤ i ≤ m, (B1)

where the averaged axial velocity within each pore in layer i, Ūp,i, is given by (5)–(3) as

Ūp,i =
P0

πµνiA2
iR

, 1 ≤ i ≤ m. (B2)

This allows the particle concentration Ci to be expressed in terms of Ci−1 as

Ci =
Ūp,iCi−1

Ūp,i + ΛDi/Ai
, 1 ≤ i ≤ m. (B3)

In addition, we approximate (10) by

∂Ai

∂T
= −ΛαCi−1, 1 ≤ i ≤ m,

which means that the pore radius in the layer i shrinks proportionally to the particle concentration at the pore
inlet upstream. (This is necessary since pore closure is dominated by the upstream particle concentration.)

This simple model has been tested and found to provide reasonable agreement with the full PDE model
presented here, over a range of model parameters.
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