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We characterize the local concentration dependence of segregation velocity and segregation flux
in both size and density bidisperse gravity-driven free-surface granular flows as a function of the
particle size ratio and density ratio, respectively, using discrete element method (DEM) simulations.
For a range of particle size ratios and inlet volume flow rates in size-bidisperse flows, the maximum
segregation flux occurs at a small particle concentration less than 0.5, which decreases with increasing
particle size ratio. The segregation flux increases up to a size ratio of 2.4 but plateaus from there
to a size ratio of 3. In density bidisperse flows, the segregation flux is greatest at a heavy particle
concentration less than 0.5 which decreases with increasing particle density ratio. The segregation
flux increases with increasing density ratio for the extent of density ratios studied, up to 10. We
further demonstrate that the simulation results for size driven segregation are in accord with the
predictions of the kinetic sieving segregation model of Savage and Lun (1988).
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I. INTRODUCTION

Flowing mixtures of granular material with differing properties, including size [1–7], density [8–15], surface roughness
[16, 17], and shape [18, 19], tend to segregate, and they are common in geophysical flows [20–23] and industrial settings
such as during hopper filling and discharging [24–26], in rotating tumblers [8, 27–31], and in chute flow [32–34]. The
simplest explanation for segregation relies on the idea, for size-disperse mixtures, that small particles fall through voids
generated between large particles and accumulate in the lower regions of the flowing layer, while large particles are
forced upward by concentrated regions of small particles. Quantitative models of segregation have been developed and
have now reached a state where accurate prediction is possible for a range of material properties and flow geometries
[6, 7, 31, 35–41].

Early experimental research on segregation in granular materials characterized segregation by tracking the center
of mass of one of the species [42–47] or by following tracer particles [47, 48] finding that the effects of size differences
on segregation are proportionally stronger than density differences, though both can result in significant segregation
[47]. Of note are observations nearly 50 years ago by Lawrence and Beddow [43, 44] that segregation in flowing binary
mixtures initially increases with increasing size ratio, RS = dl/ds, where dl and ds are the large and small particle
diameters, respectively, but plateaus in the interval 2.5 < RS < 5 and then decreases with further increases in RS .
They also observed that segregation is greatest when the volume concentration of small particles, cs, is between 15%
and 30%. In this paper we consider both of these prescient observations in greater detail.

To explain the observed segregation behavior in granular mixtures, several models were proposed. The screening
mechanism of segregation by Shinohara et al. [49] envisioned that large particles form a screen-like set of openings
through which small particles percolate, a concept now referred to as “kinetic sieving” [33]. This idea was extended
by Williams [47] to include the rate of local particle rearrangement into configurations in which it is easier for small
particles to fall between shear generated gaps. Along similar lines, Cooke and Bridgwater [50] proposed a statistical
mechanics model for small particles falling into gaps between large particles. A key aspect of this model is that the
segregation rate depends linearly on the shear rate and exponentially on RS .

The “kinetic sieving” mechanism and statistical mechanics model for dense granular flows of bidisperse mixtures
were combined and expanded by Savage and Lun [33] to include, additionally, the probability of a particle falling
downward under gravity into a shear generated void and the probability of “squeeze expulsion” in which large and
small particles are equally likely to be squeezed upward by particles below them. The model expresses the local
motion of particles species i normal to the free surface as a segregation, or percolation, velocity, wp,i:

wp,i = wi − w, (1)

where wi is the species velocity and w is the local bulk velocity averaged over all species, both normal to the free
surface. This model (the “Savage and Lun” model) is discussed in detail in Section III, but here we note that
in the model wp,i depends on the particle size ratio, the volume concentration of particles of the other species, or
“concentration complement” 1 − ci, the local shear rate, γ̇, local void properties, the flowing layer thickness, δ, and
other parameters [33]. A simplified approximation of the Savage and Lun model can be expressed as

wp,i = γ̇dsf(ci, RS)(1− ci), (2)

where f(ci, RS) incorporates the percolation velocity’s nonlinear dependence on particle concentration and particle
size ratio.

Other first order expressions for the segregation velocity have been proposed, though all retain the linear dependence
on the local particle concentration complement, 1− ci. Gray and Thornton [3] proposed a segregation velocity with
explicit dependence on gravity, g, and the repose angle of the free surface, α:

wp,i = C0g cos(α)(1− ci), (3)

where C0 is a coefficient related to inter-particle drag. Hill and Tan [4] proposed a stress-based segregation velocity
model of the form

wp,i = C1
dP

dz
(1− ci), (4)

where C1 describes the stress partitioning with a linear drag coefficient and P is the pressure. Fan et al. [39] simplified
the Savage and Lun model to

wp,i = γ̇S(1− ci), (5)

where, S = dsf(RS), called the segregation coefficient, is an empirical parameter dependent on the particle size
ratio for size bidisperse flows of spherical, mm-sized particles [6]. Xiao et al. [15] demonstrated that the same model
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accurately describes segregation in flows of density bidisperse spherical particles having the same radius, but where
S is now a function of the density ratio, RD = ρh/ρl, where ρh and ρl are the densities of the heavier and lighter
particles, respectively.

For bidisperse granular materials with constant volume fraction segregating normal to the free surface, mass con-
servation requires that

Φup = −Φdown, (6)

where Φup and Φdown are the segregation volume fluxes of the upward segregating species and downward segregating
species, respectively. The segregation flux for species i, Φi is

Φi = wp,ici. (7)

Because in binary mixtures with constant volume fraction the species concentration cup = 1 − cdown, Eq. 7 implies
that wp,up = −wp,down only when cup = cdown = 0.5; in general, the segregation velocities are not equal.

A consequence of assuming a segregation velocity linear in concentration like that in the models mentioned above
(Eqs. 3-5) is that the segregation flux is maximum at and symmetric about ci = 0.5 for bidisperse mixtures. However,
recent experiments examining slowly sheared size bidisperse granular material in a confined annular shear cell with
steady shear [51] and in a shear cell with periodic shear [52] have shown that the maximum segregation flux for a given
size ratio occurs at concentrations of small particles cs < 0.5, confirming Lawrence and Beddow’s 1969 observations
[44]. The annular shear cell experiments [51] also show that the segregation rate does not increase monotonically with
RS , as predicted by the Cooke and Bridgwater model [50].

To address the observed asymmetry of the segregation flux with respect to cs = 0.5, Gajjar and Gray [53] proposed
a two parameter cubic form of the segregation flux,

Φs = βcs(1− cs)(1− κcs), (8)

where β is a magnitude coefficient and κ is an asymmetry coefficient. This expression yields a quadratic segregation
velocity dependence on species concentration rather than the linear dependence in Eqs. 3-5.

In this study we characterize concentration dependent asymmetry in the segregation velocity in gravity-driven free-
surface flows of bidisperse granular material over a range of bidispersities. The results of this study can be used to
improve continuum model predictions of segregation, which, although not the focus of this paper, is demonstrated in
the supplemental material. The remainder of the paper is organized as follows. In Section II, size driven segregation
is investigated. In Section III predictions of the Savage and Lun model [33] are compared with size segregation results
from DEM simulations, demonstrating this model’s ability to capture features observed in DEM results. Section IV
demonstrates that density-driven segregation exhibits asymmetry in the segregation flux with respect to concentration
that is nearly identical with that found for size-driven segregation, which raises interesting questions about the size-
based Savage and Lun model. Section V presents our conclusions.

II. SEGREGATION IN SIZE BIDISPERSE MIXTURES

Discrete element method (DEM) simulations of granular flows have reached the point where their results are nearly
equivalent to those measured in corresponding experiment [2, 6, 15], but with the significant benefit that all the
properties of the simulated flow are easily measured. Accordingly, we use DEM simulation to study segregation in
the context of a gravity-driven free surface flow of granular material in a one-sided quasi-2D bounded heap with a
sloped lower boundary (to reduce the number of simulated particles), see Fig. 1. In the one-sided quasi-2D bounded
heap geometry, particles fall onto the left side of the heap and flow down the heap in a thin flowing layer of thickness,
δ, at an angle of repose, α. The origin of the coordinate system, with streamwise coordinate, x, and surface normal
coordinate, z, is coincident with the free surface and rises at the heap rise velocity, vr.

A. DEM simulation methodology

In all DEM simulations the heap container has a spanwise thickness T/dl = 6 and length W/dl = 200. At the
end of a typical simulation, the heap consists of approximately 106 particles. Spherical particles are fed by gravity
at 2D volume flow rates, q = ṁ/ρT , of 20 cm2/s or 40 cm2/s, where ṁ is the mass flow rate and ρ is the particle
density, ρ = 2500 kg/m3. The heap forms with an angle of repose, α, slightly greater than the slope of the bottom
wall. Particles that touch the bottom wall become stuck to the wall, thus creating a rough bottom boundary. Other
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FIG. 1. Schematic of the quasi-2D bounded heap. Particles fall onto the W wide heap at a 2D volume flow rate, q, resulting in
a free surface rise velocity vr. The sloped lower boundary reduces the number of particles required for the DEM simulations.
The flowing layer (above dotted line) has thickness δ and length L. Particles are continuously deposited from the bottom of
the flowing layer onto the heap. The coordinate system is rotated by the angle of repose, α, and rises at vr. The thickness of
the flowing layer is exaggerated and its shape is idealized.

boundaries are modeled as smooth walls. A steady state is reached after the heap becomes sufficiently deep, typically
about ∼ 10dl, to minimize kinematic effects from the bottom boundary [2]. For size bidisperse simulations, particle
diameters for each species are uniformly distributed with mean diameter, d, between 0.9d and 1.1d to reduce ordered
packing. Mean particle diameters range from 2 to 6 mm to obtain size ratios from 1 ≤ RS ≤ 3.

Standard DEM methods [54–57] are used as described in detail previously [2, 6, 15]. Our in-house parallelized DEM
code runs on an NVIDIA GTX 980 GPU or an NVIDIA GTX Titan X GPU installed in a workstation computer
running Ubuntu 14.04 LTS and has been previously validated against experimental data for mm-sized glass particles
in bounded heap flows of size bidisperse particles [2] and for mm-sized glass, ceramic, and steel particles in density
bidisperse flows [15]. For all simulations a binary collision time of tc = 10−3 s and a restitution coefficient e = 0.8 are
used as in previous simulations [2, 6]. Particle-particle and particle-wall contacts both use a friction coefficient of 0.4.
The integration time step of tc/40 = 2.5 × 10−5 s ensures numerical stability for these flows [57]. Simulation data is
collected once the rise velocity is constant and spatially uniform.

The segregation velocity and species concentration are calculated from spatial and temporal averages of the DEM
simulation output. Although other coarse-graining methods exist [58], the method described below is used similar to
previous work [6]. At each output time step, the particle data is binned into quadrilateral bins oriented along the free
surface, with a stream-wise length of 3dl, a height (normal to the free surface) of 1.25dl, and a width equal to the
spanwise extent of the heap. The bins move upward with the free surface at vr. For averaging purposes, the partial
volumes of particles overlapping bin boundaries are applied to the appropriate bin. The species concentration in each
bin is defined as

ci =

∑
Vi,j

Vbin
, (9)

where Vi,j is the volume of each particle, j, of species i and Vbin is the total volume of all particles in the bin. Although
the sidewall friction can alter the flowing layer thickness, segregation is a local quantity driven by the local shear rate
and local concentration. Since the spanwise variation of the velocity and concentration is small in narrow, quasi-2D
heaps [2], the spanwise average is used, consistent with previous studies [7, 31, 59]. Furthermore, we have confirmed
that the segregation velocity does not depend on the particle location relative to the sidewalls by comparing the
segregation velocity measured near the walls to that measured midway between the sidewalls. The mean velocity of
the ith species in the bin, ui, is based on the volume weighted velocity as

ui =

∑
ui,jVi,j∑
Vi,j

, (10)
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FIG. 2. Segregation velocity dependence on the local concentration complement, 1 − ci, for RS = 2.2, ds = 2 mm, and
q = 40 cm2/s. Segregation velocity from simulations with particle inlet ratios cs,inlet = 0.2 (blue data points), 0.5 (red
data points), and 0.8 (gray data points) and black data points are averaged over 0.02 wide concentration increments, x =
large particles and o = small particles. Dashed (- -) line is a linear fit as in previous work (Eq. 5) [6] using only data from
cs,inlet = 0.5, solid (–) curve is a quadratic fit using all data in the plot (Eq. 12).

where ui,j is the velocity of each particle, j, of species i. The concentration and velocity values of each bin are then
temporally averaged across the all output timesteps, which are separated by 0.05 seconds (2000 simulation timesteps).
The shear rate in a bin

γ̇ =
du

dz
, (11)

is calculated from the averaged bin velocities as a backward finite difference (the change in the streamwise velocity,
u, between the target bin and the bin below it divided by the vertical separation) but is insensitive to the finite
differencing method that is used. The local segregation velocity, wp,i, for each particle species in each bin within the
flowing layer at each output time step is calculated using Eq. 1.

B. Segregation velocity and flux

An example of the segregation velocity data for large and small particles is plotted in Fig. 2 for RS = 2.2, ds = 2 mm,
and q = 40 cm2/s. Colored data points represent the local segregation velocity for different inlet concentrations
calculated in each bin throughout the entire flowing layer averaged over the total number of output time steps.
Black data points are averaged over 0.02 increments of 1− ci to minimize the scatter due to collisional diffusion and
more clearly show the data trend. The segregation velocity, wp,i, is non-dimensionalized by ds and γ̇ so the results
can be considered in the context of Eqs. 2 and 5. Note that previous studies evaluating the segregation velocity in
the heap geometry considered 50:50 mixtures of small and large particles, corresponding to, cs,inlet = 0.5 [6, 39].
However, under these conditions the small particle concentration is mostly in the range 0.3 < cs < 0.7. The full
range of concentrations (0 < cs < 1) are not observed because in the bounded heap small particles quickly percolate
to the bottom of the flowing layer and are deposited onto the upstream portion of the heap while large particles
are advected toward the downstream end wall. The concentration of small particles in the flowing layer therefore
continually decreases in the stream-wise direction until the flow reaches the bounding wall, limiting the lower limit of
the small particle concentration so that data outside the range of concentrations mentioned above are never obtained.
To evaluate the segregation velocity over a wider range of concentrations, we conduct simulations with cs,inlet = 0.2,
0.5, and 0.8. Note in Fig. 2 that cs,inlet does not affect the segregation velocity relation, it only affects the range of
local concentrations within the flowing layer in the bounded heap geometry.

Figure 2 shows that large particles have a positive (upward) segregation velocity, and small particles have a negative
(downward) segregation velocity. The segregation velocity for species i generally increases in magnitude with increasing
concentration of the other species, 1−ci, though the dependence on 1−ci is more dramatic for small particles. A small
particle among mostly large particles segregates faster than a small particle among mostly small particles. Note that
data points from different mixture inlet concentrations (different colors) occupy different portions of the concentration
complement data, but also overlap, confirming that cs,inlet does not affect wp,i/γ̇, just its range in a bounded heap
flow. The data presented in Fig. 2 spans a broad range of shear rates, 0.7 < γ̇ < 23.0 s−1, due to the decreasing 2D
volume flow rate, q, with streamwise position in the bounded heap geometry. The wide range of percolation velocities
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FIG. 3. Segregation velocity and flux dependence on local small particle concentration, cs, for RS = 2.2, ds = 2 mm, and
q = 40 cm2/s. (a) Segregation velocity with cs,inlet = 0.2, 0.5, and 0.8 (red x = large particles, blue o = small particles; black
data points are averaged over 0.02 wide increments of 1 − ci). Solid (–) curve is a quadratic fit using all data in plot (Eq. 12).
(b) Segregation flux with solid (–) curve from fits in (a). Dashed (- -) line is the measured sum of the upward and downward
fluxes, demonstrating conservation of mass. Dotted vertical reference line at cs = 0.5 highlights the asymmetry of flux with
respect to concentration.

for small particles as 1 − ci approaches 1 is expected when a very low number of small particles (one or two) are
in a bin otherwise filled with large particles. In this single particle limit, the percolation velocities are expected to
vary widely due to random particle collisions and the probabilistic mechanics of kinetic sieving [33]. The segregation
velocity does not show a significant dependence on the concentration gradient. It should be noted that diffusion scales
with the shear rate and particle diameter, D ∼ γ̇d2 [39, 60]. The diffusive flux is relatively small compared to the
segregation flux, D∂ci/∂z < 0.1Φi.

The same data can be plotted vs. the concentration of a single species, such as cs in Fig. 3(a). Plotted in this
way, it is evident that large particles and small particles rise or sink at different velocities at the same small particle
concentration. For instance, at cs = 0.3 the magnitude of wp,s is about twice the magnitude of wp,l. Thus, a small
particle among many large particles sinks faster than surrounding large particles rise. Likewise, at cs = 0.8, the
magnitude of wp,s for the small particles is small compared to wp,l for the large particles. Thus, a large particle
among many small particles rises faster than the small particles sink. This behavior is expected and is why the
concentration complement, 1− ci, is used in Eqs. 2-5. What is more interesting is that the small particles can sink at
a maximum percolation velocity as much as four times that of the maximum percolation velocity that a large particle
rises. In fact, for cs ≤ 0.5 small particles sink much faster than large particles rise.

Despite the large differences in percolation velocity, mass is conserved, as demonstrated by plotting the fluxes of
the two types of particles in Fig. 3(b). At any small particle concentration, cs, the flux of large particles upward
equals the flux of small particles downward. For the volume flux of small particles sinking downward to match that of
large particles moving upward, either more small particles need to be moving downward than large particles moving
upward or the small particles must sink downward faster than the same number of large particles moving upward.
At low small particle concentrations, the small particles sink much faster than the large particles rise to conserve
mass. The consequence is an asymmetry in the segregation flux, which is maximum near cs,peak = 0.35 as shown in
Fig. 3(b). Thus, the greatest local segregation flux occurs when the concentration of large particles is greater than the
concentration of small particles, consistent with previous results [44, 51, 52]. The difference between this study and
these previous studies is that here we quantify this effect for a range of particle size ratios, RS , of particles segregating
in a flowing layer having a wide range of flow conditions along the length and depth of the flowing layer as well as
representing the full range of relative concentrations of small and large particles rather than under limited flow and
concentration conditions. Since segregation is a local effect dependent on concentration, which varies throughout the
flowing layer in the bounded heap flow, the segregation flux also varies throughout the flowing layer. It is small in
regions dominated by large or small particles (cs near 0 or 1) and largest for cs ≈ 0.35, for the conditions used to
generate Fig. 3(b).

Returning to Fig. 2, the data were fit (MATLAB Linear Least Squares function with representative data weighting
and the bisquare outlier weighting) to both Eq. 5 (linear) and a quadratic polynomial. Only data for cs,inlet = 0.5
were used for the linear fit, consistent with previous work [6]. Data for cs,inlet = 0.2, 0.5, and 0.8 were used for the
quadratic fit. The linear fits (dashed) do not match the segregation velocity well for 1 − ci > 0.6. Using data for
cs,inlet = 0.2, 0.5, and 0.8 alters the linear fit slightly (not shown), but still does not capture the observed curvature
of the segregation velocity data, evident in the concentration-averaged data (black). Using the simplest non-linear
curve, a quadratic fit (solid curves) better describe wp,i, especially the downward curvature of the segregation velocity
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for both species when 1 − ci > 0.6. Further, to capture the asymmetric segregation flux a non-linear segregation
velocity is required. Based on these results, we replace the expression in Eq. 5 for wp,i with

wp,i = dsγ̇ [AR,i +BR,i(1− ci)] (1− ci), (12)

where AR,i and BR,i are fit coefficients that depend on the size ratio, RS , and the species, i.
When the segregation velocity relation is quadratic in ci, the segregation flux (Eq. 7) is cubic in ci:

Φi = dsγ̇ci[AR,i(1− ci) +BR,i(1− ci)2]. (13)

This form is identical to that proposed by Gajjar and Gray [53] (Eq. 8) with the magnitude coefficient β = AR,idS γ̇
and the asymmetry coefficient κ = −BR,i/AR,i. The form for the segregation flux suggested by Gajjar and Gray [53]
was based on results from experiments in an oscillatory shear cell for a single size ratio, RS = 2.0 [52].

The segregation flux, shown in Fig. 3(b), demonstrates that even though the values for AR,i and BR,i are found
independently for each species i from the segregation velocity in Fig. 2, the resulting segregation fluxes (solid curves)
match the data very well. Furthermore, the small and large particle segregation fluxes sum to zero (dashed curve)
as they should based on mass concentration in an incompressible flow. Thus, the fit to the DEM data provides a
physical basis for the quadratic form for the segregation velocity (Eq. 12) and the cubic form of the segregation flux
(Eqs. 8 and 13).

To test whether Eqs. 12 and 13 are valid for other particle size ratios, we conducted DEM simulations for 1.1 ≤
RS ≤ 3.0. Both the quadratic fit for the segregation velocity and the resulting cubic fit for the segregation flux
for large particles (solid curves) are shown for three additional size ratios, RS = 1.6, 2.4, and 2.8, in Fig. 4. The
segregation velocity and segregation flux data are again averaged in 0.02 concentration increments and these average
data points overlay the raw data. For all size ratios, the quadratic fit (for segregation velocity) and resulting cubic
curve (for flux) match the DEM simulation data well, as highlighted by the concentration-averaged data. The figure
also includes dashed curves demonstrating the fit of Savage and Lun’s segregation model, discussed in more detail in
Section III.

Segregation flux curves like the solid curves shown in Figs. 3(b) and 4(e-f) were generated from fits to the segregation
velocity data for simulations for 1.1 ≤ RS ≤ 3, varied in increments of 0.1, with ds = 2 mm, q = 40 cm2/s and varying
dl. For each RS , results from three simulations with cs,inlet = 0.2, 0.5, and 0.8 were combined to generate segregation
velocity data for a wider range of cs, compared to using only cs,inlet = 0.5. The large particle segregation flux is
plotted vs. RS and cs in Fig. 5. The asymmetry of the segregation flux (i.e., that the maximum flux occurs for
0 < cs < 0.5), is highlighted by the small particle concentration at maximum segregation flux, cs,peak, (blue curve),
and flux at cs = 0.5 (red curve), both of which are projected onto the cs−RS plane. The maximum segregation flux,
Φmax, is projected onto the Φp,l-RS plane, and shows that Φp,l grows monotonically with RS for 1.1 ≤ RS ≤ 2.4
and is relatively constant for larger RS . This result is consistent with previous measurements of S = dsf(Rs) used
in Eq. 5 that show that S is independent of RS above similar values of RS [6]. The increase in the segregation flux
magnitude with RS for 1.1 ≤ RS ≤ 2.4 and plateau for 2.4 ≤ RS ≤ 3.0 is also consistent with the observation of a
maximum segregation rate at an intermediate RS in an annular shear cell by Golick and Daniels [51].

The results in Fig. 5 represent 60 DEM simulations for ds = 2 mm and q = 40 cm2/s. However, to test the effect
of changing ds, dl, and q, a total of 240 DEM simulations for size bidisperse flows were performed. Four sets of
simulations were run for each RS with ds = 2 mm, q = 40 cm2/s and varying dl; ds = 4 mm, q = 40 cm2/s and varying
dl; ds = 2 mm, q = 20 cm2/s and varying dl; and dl = 6 mm, q = 40 cm2/s and varying ds. This results in a broad
range of shear rates, 0.1 < γ̇ < 29.4 s−1 for q = 20 cm2/s and 0.1 < γ̇ < 45.2 s−1 for q = 40 cm2/s. Segregation flux
results from the 180 simulations not shown in Fig. 5 are included in the Supplementary Material and are quantitatively
similar to the results in Fig. 5.

The quadratic fit coefficients for each RS and the concentration of small particles at which the maximum segregation
flux occurs are shown in Fig. 6, for all 240 DEM simulations performed. The figure shows that the coefficients and the
concentration at peak segregation flux are relatively independent of absolute particle size and flow rate for the range
of particle sizes and flow rates that were examined. The coefficients AR,l and BR,l grow from near zero at RS = 1.1
to a plateau value near RS = 2.4, above which they stay relatively constant. The coefficients AR,s and BR,s for small
particles can be calculated from the large particle coefficients as

AR,s = AR,l +BR,l

BR,s = −BR,l.
(14)

The small particle concentration corresponding to the maximum segregation flux, cs,peak, shown in Fig. 6(b) is
somewhat variable for small values of RS , but nearly always below 0.5. The value for cs,peak gradually decreases,
reaching a minimum value of 0.35 at RS = 3 for the range of RS considered.



8

0 0.5 1

w
p
,i
γ̇
−
1
d
−
1

s

-0.4

-0.2

0

0.2
RS = 1.6

(a)

0 0.5 1

Φ
lγ̇

−
1
d
−
1

s

0

0.02

0.04

0.06

0.08

(d)

1− ci

0 0.5 1

RS = 2.4

(b)

cs

0 0.5 1

(e)

0 0.5 1

RS = 2.8

(c)

0 0.5 1

(f)

FIG. 4. (a-c) DEM segregation velocity data for large (red x) and small (blue o) particles vs. 1− ci at various size ratios. Black
datapoints show mean segregation velocity in 0.02 wide 1− ci increments. Solid (–) curves are the quadratic fit (Eq. 12) of the
segregation velocity, dashed (- -) curves are the theoretical predictions of the SL-model for each particle species. (d-f) DEM
data for large particle segregation flux (red) and averaged over 0.02 wide concentration increments (black). Solid (–) curves are
the segregation flux based on the fit of the segregation velocity data (Eq. 13), dashed (- -) curves are the theoretical predictions
of the SL-model (fit to all DEM data), dotted (- · -) curves are the theoretical predictions of the SL-model fit to only the DEM
data for that RS . SL-model parameters were fit to DEM segregation velocity data for all data for 1.1 ≤ RS ≤ 3.0, resulting
in parameter values Ē = 0.477, M/N = 0.781, kav = 0.466, kLT = 1, SL-model parameters were fit to DEM segregation
velocity data for RS = 1.6, 2.4, or 2.8, resulting in parameter values Ē = 0.487, 0.517, and 0.532, M/N = 0.5, 0.693, and 0.812,
kav = 0.466, 0.466, and 0.466, kLT = 1, 1, and 1, respectively.

III. EVALUATION OF SAVAGE AND LUN’S KINETIC SIEVING MODEL

Having confirmed that the empirically determined cubic form of the flux (Eq. 13) accurately describes segregation
fluxes in DEM simulations of bidisperse flow, we now compare these results to the kinetic sieving segregation model
proposed by Savage and Lun [33], which is non-linear in concentration. However, the model is challenging to implement
in practice because it is difficult to unambiguously determine the various coefficients used in the model. As a result,
to the authors’ knowledge, its validity has not been previously confirmed, though it is frequently cited. Below, the
model is evaluated and, for the first time, compared to DEM simulation results to evaluate its validity.

A. Savage and Lun model

Savage and Lun’s segregation model [33] (hereafter referred to as the SL-model) uses a first-principles approach to
predict particle segregation in moderately-sheared, gravity-driven free surface flow, specifically dense size-bidisperse
mixtures of spheres flowing down a rough-bottomed chute. Expanding on the information-entropy approach of Cooke
and Bridgwater [50], the SL-model is based on the assumption that the probability for a small particle to fall into
a void is larger than the corresponding probability for a large particle. Consequently, the unequal downward rate
of void-filling induces segregation of the small particles relative to large particles, with small particles segregating
below the large ones. In addition to this “random kinetic sieving” mechanism, the SL-model also includes a non-
size-preferential term to allow the upward movement of particles, called “squeeze-expulsion,” which is necessary to
balance the net downward flux of both species owing to kinetic sieving. The mechanisms of random kinetic sieving
and squeeze expulsion are additively combined in the SL-model to give the net volume-averaged percolation velocity,
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FIG. 5. Dependence of scaled large particle segregation flux on small particle concentration, cs, and particle size ratio, RS ;
curves from fits to DEM segregation velocity data. The red curve intersects each flux curve at cs = 0.5 and the blue curve
passes through each flux curve at cs,peak, with both curves projected onto the cs −RS plane. The maximum flux is projected
onto the RS − Φ plane. (ds = 2 mm, q = 40 cm2/s.)
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FIG. 6. (a) Quadratic segregation velocity coefficients, AR,l (black) and BR,l (blue), from Eq. 12. (b) Small particle concen-
tration at maximum flux, cs,peak for various operating conditions: � = ds = 2 mm, q = 40 cm2/s, dl varies; ◦ = ds = 2 mm,
q = 20 cm2/s, dl varies; � = ds = 4 mm, q = 40 cm2/s, dl varies; ? = dl = 6 mm, q = 40 cm2/s, ds varies;

which is analogous to the percolation velocity considered in this paper.

The SL-model relates the net volume-averaged percolation velocity, wp,i of species i to the local number ratio of

small to large species, η, the shear rate, γ̇, and the diameter ratio of small to large particles, R−1
S :

wp,s = dlγ̇

[
−1

(1 + η(R−1
S )3)

]
(w∗

p,s − w∗
p,l)

wp,l = dlγ̇

[
η(R−1

S )3

(1 + η(R−1
S )3)

]
(w∗

p,s − w∗
p,l),

(15)

where

w∗
p,s = G(η,R−1

S )

[
Ē − Em + 1 +

(1 + η)R−1
S

(1 + ηR−1
S )

]
· exp

[
−

(1 + η)R−1
S /(1 + ηR−1

S )− Em
Ē − Em

]
w∗
p,l = G(η,R−1

S )

[
Ē − Em + 1 +

(1 + η)

(1 + ηR−1
S )

]
· exp

[
−

(1 + η)/(1 + ηR−1
S )− Em

Ē − Em

]
,

(16)
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FIG. 7. Normalized segregation flux from Savage and Lun’s segregation model [33] vs. particle size ratio, RS , and small particle
concentration, cs, using parameter values obtained from a fit to DEM segregation velocity data: Ē = 0.477, M/N = 0.781,
kav = 0.466, kLT = 1. The red curve intersects each flux curve at cs = 0.5 and the blue curve intersects each flux curve at
cs,peak, with both curves projected onto the cs−RS plane. The maximum flux is projected onto the RS −Φ plane. (ds = 2 mm,
q = 40 cm2/s.)

and

G(η,R−1
S ) =

4k2
LT (M/N)(1 + ηR−1

S )

π(1 + η)
[

(1+η)(1+η(R−1
S )2)

(1+ηR−1
S )2

+ Ē2

kav

(
M
N

)] . (17)

It is straightforward to show that the bracketed terms in Eq. 15 are equivalent to 1− ci, which means that Eq. 15 is
equivalent to Eq. 2 with f(cs, RS) = w∗

p,s − w∗
p,l.

B. Fitting the SL-Model

The challenge to using the SL-model for predicting the percolation velocity is that several parameters (Ē, Em,
kLT , kav, M/N) must be known. Determining these parameters directly from experiments proves difficult, as they
derive from and are based solely on the assumption that distinct layers of particles in the flow exist and form
a sieve-like arrangement, which, does not typically occur. For this reason, application of the full SL-model has
been limited, requiring, at best, a heuristic determination of the parameter values. However, Savage and Lun [33]
proposed that Ē, M/N , and kav could be calculated for various 2D packings of equal-sized spheres to create a
physically “consistent” set of values. For example, for 5 equal-sized particles surrounding a void, the SL-model
suggests Ē = 0.701,M/N = 0.6, kav = 0.712, kLT = 1

Here, the model parameters for Eq. 15 are first found through a simultaneous fit to all of the DEM segregation
velocity data used to create Fig. 5. The fit (MATLAB nonlinear least squares) was performed over the parameter set
{Ē,M/N, kav}, using the lower and upper bounds proposed by Savage and Lun [33], assuming that kLT = 1, meaning
the layer thickness is equal to the mean local particle diameter. The proposed lower and upper bounds for the
parameters {Ē,M/N, kav} are based on the 2D-packing of mono-disperse spheres to create a physically “consistent”
set of values [33]. The values of the SL-model parameters determined by the fit to the entire set of DEM data are
Ē = 0.477,M/N = 0.781, kav = 0.466, kLT = 1, noting that the value for kav is equal to the lower limit proposed by
Savage and Lun [33].

Figure 7 shows the non-dimensional segregation flux from the SL-model vs. cs and RS for 1 ≤ R ≤ 3. The
similarity between the SL-model in Fig. 7 and the DEM data in Fig. 5 is remarkable. The SL-model captures both
the asymmetry in the non-dimensional segregation flux about cs = 0.5 with the maximum segregation flux in the
range 0 ≤ cs,peak < 0.5 and the dependence of non-dimensional segregation flux on RS which first increases with RS
and then plateaus for higher values of RS . Note, however, that the magnitude of the non-dimensional flux is higher
for the SL-model than the DEM simulation for small RS and lower for large RS due to using fixed parameters over
all RS values.

The qualitative features of the SL-model shown in Fig. 7 persist over a relatively wide range of parameters. We
systematically explored this dependence for Ē ∈ {0.1547, 1}, M/N ∈ {0.5, 2}, and kav ∈ {0.466, 0.765}, the parameter
ranges suggested by Savage and Lun [33] for 4 to 6 equal-sized particles surrounding a void. The model is relatively
insensitive to the parameters in this range.
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While Fig. 7 demonstrates that the SL-model can qualitatively capture the features of the segregation velocity and
segregation flux observed in the DEM data, the match is imperfect, even though the SL-model parameters are derived
from the DEM simulations. Figure 4 (d-f) compares the DEM data with both the SL-model (dashed curves) and the
quadratic form for wp,i (Eq. 12, solid curves) in terms of both the segregation velocity and the segregation flux for
three values of the size ratio, RS = 1.6, 2.4, and 2.8. In all cases, the quadratic form matches the data better than
the SL-model. The SL-model consistently shows a higher flux at lower values of cs than appears in the DEM data as
well as higher magnitude of the non-dimensional flux for small RS and lower flux for large RS . To some extent, this
is to be expected because the quadratic form (i.e., A and B) is fit directly to the data for each value of RS , whereas
the parameters for the SL-model are based on the data across all RS . Fitting the parameter set of the SL-model to
the data for a single RS instead of over all values of RS improves the fit of the SL-model to the data, shown as the
dash-dot curve in Fig. 4(d-f), as would be expected. The SL-model parameter values are (for RS = 1.6, 2.4, and 2.8,
respectively) Ē = 0.487, 0.517, and 0.532, M/N = 0.5, 0.693, and 0.812, kav = 0.466, 0.466, and 0.466 (lower bound =
0.466), kLT = 1 (fixed for all fits) but the fit is still not as good as the fit to the quadratic form of Eq. 12. Nevertheless,
one can conclude that the SL-model, while effective in predicting the qualitative dependence of the segregation flux on
small particle concentration and size ratio, does not accurately predict the segregation velocity or flux. This suggests
that the kinetic sieving and squeeze expulsion mechanisms incorporated in the SL-model are correct to first order,
but oversimplify the actual physics at play in practical segregation situations.

IV. DENSITY SEGREGATION

It is natural to also consider density-driven segregation given that the segregation velocity in density-driven segre-
gation of particles of the same size can be predicted using Eq. 5, where S depends on the particle density ratio instead
of the particle size ratio [15]. Here we explore how the segregation flux, Φi, varies with the density ratio, RD, and
the concentration of heavy particles, cH .

Using the same DEM methodology as with size bidisperse granular flows in the geometry shown in Fig. 1, density
bidisperse flows of d = 3 mm spherical particles were evaluated to characterize the concentration dependence of the
segregation velocity. Results from 30 DEM simulations were used to evaluate the segregation velocity for 1 ≤ RD ≤ 10
in increments of 1. The density of light particles, ρL was fixed at 2500 kg/m3 and the density of heavy particles, ρH ,
was varied from 2500 to 25000 kg/m3; the feed rate was 40 cm2/s. The particle diameters were uniformly distributed
between 2.7 mm and 3.3 mm to reduce particle ordering. DEM simulation results were processed in the same manner
as for size bidisperse simulations to calculate the segregation velocity, species concentration, and shear rate data from
three simulations with differing values of cH,inlet to calculate the segregation velocity over the full range of mixture
concentrations for each RD value.

An example of the resulting segregation data is shown in Fig. 8 for RD = 6. Figure 8(a) shows the segregation
velocity data vs. 1− ci and the associated quadratic fit. Figure 8(b) shows the same data along with the segregation
flux curves from the fit to the segregation velocity data. Although there is more scatter in the data than for the case
of size-driven segregation, the asymmetry in the density-driven segregation flux still occurs with cH,peak < 0.5, as
highlighted by the concentration-averaged data.

The segregation flux from the segregation velocity fits to the DEM data for a range of RD is shown in Fig. 9,
again this data spans a wide range of shear rates, 0.1 < γ̇ < 38.7 s−1. The results for density bidisperse segregation
are qualitatively similar to those for size bidisperse segregation. However the maximum segregation flux continues
to increase with RD for 1 ≤ RD ≤ 10 rather than plateauing as in the size bidisperse case. The segregation flux
magnitude is significantly smaller for density segregation than for size segregation at equal values of RD and RS ,
consistent with a previous review of segregation [47].

The overall similarity between the dependence of segregation flux on cs and RS for size bidisperse mixtures and
on cH and RD for density bidisperse mixtures is striking. The dependence of density segregation on concentration
is the same as for size segregation (Eq. 12) and has a qualitatively similar dependence for the flux on concentration
and density ratio. Thus the mobility of heavy particles in density bidisperse flows appears to be similar to that of
small particles in size bidisperse flows, although the mechanism of size-driven preferential kinetic sieving [33] should
not occur in density-driven segregation of equal diameter particles.

A possible explanation for the similarity between size- and density-driven segregation is that the mechanisms in
both cases are consistent with kinetic sieving and squeeze expulsion [33]. Regardless of the size or density of a particle,
the only way for it to move upward is by direct contact with particles below applying contact forces to push it upward
into a void above (squeeze expulsion). However, falling downward requires only a void below the particle. In size
bidisperse systems, small particles can fall by gravity into a smaller void than large particles. Since larger voids occur
less frequently, downward motion of small particles is preferred. For density-bidisperse systems, a particle needs only
gravity to fall into a void below it, regardless of its density. However, to move upward, it needs both a void above it
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RD = 6, ρL = 2500 kg/m3, d = 3 mm, and q = 40 cm2/s. (a) Segregation velocity from simulations with particle inlet ratios
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segregation velocity fits.
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FIG. 9. Variation of the segregation flux from DEM simulations for density bidisperse flows. Black curves show heavy particle
flux from the fit to segregation velocity for each RD value evaluated; red curve passes through each flux curve at cH = 0.5;
blue curve passes through each flux curve at cH,peak. The maximum flux is projected onto the RD − Φ plane. d = 3 mm,
q = 40 cm2/s, ρL = 2500 kg/m3.

and, simultaneously, particles below providing adequate contact forces to push it upward. We speculate that because
a lighter particle is easier to push upward than a heavy particle there is a preference for upward motion of light
particles, while there is an equal probability of downward motion for both light and heavy particles into a void below
[8]. This preference in density bidisperse systems for light particles to preferentially be forced upward is similar to
that suggested by Savage and Lun [33] for size bidisperse systems where small particles preferentially fall into voids
while both large and small particles are equally likely to be pushed upward by ”squeeze expulsion.” Unfortunately,
the segregation velocity results do not provide direct insight into the mechanism for density driven segregation so
the above explanation is speculative. Nonetheless, the similarities between density-driven segregation and size-driven
segregation are remarkable and worthy of further investigation.

V. CONCLUSION

Evaluating the dependence of the segregation velocity, wp,i, on local mixture concentration for a range of size
and density ratios in flowing granular material leads to several conclusions. First, our results confirm that like size-
bidisperse granular materials in a quasi-static shear cell [52] or in an annular shear cell [51], dense surface flows of
particles segregate more quickly at low concentrations of small particles in gravity-driven free surface flows. In other
words, small particles among many large particles segregate more quickly than large particles among many small
particles, as evidenced by the maximum segregation flux occurring for 0.35 ≤ cs ≤ 0.5 over a wide range of size ratios
(see Fig. 5).
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In a size bidisperse flow, the segregation flux increases with RS up to RS ≈ 2.4, above which it plateaus for
2.4 ≤ RS ≤ 3. Using parameters extracted from DEM simulations, we implemented the SL-model, which, to our
knowledge, is the first time this has been done, in order to validate it against segregation data. The model [33] is
qualitatively similar to the DEM simulation data (compare Figs. 5 and 7), supporting the plausibility of the kinetic
sieving mechanism and the SL-model. The SL-model also predicts the decrease in small particle concentration at
which the peak flux occurs with increasing size ratio. However, the SL-model only matches the DEM simulation
results qualitatively.

Surprisingly, density bidisperse flows have a similar dependence on local mixture concentration and density ratio
to that predicted by the SL-model and observed in size-driven segregation. It is clear that the kinetic sieving and
squeeze expulsion mechanisms must be different for density-driven segregation than for size-driven segregation, though
it might be better to think in terms of a more simplistic explanation: small particles fall downward into voids more
easily than large particles simply because smaller voids are more common; similarly, lighter particles are more likely
to be pushed up into voids above them than heavy particles, possibly because less force is necessary to do so.

In past work an advection-diffusion-segregation continuum approach [36–38, 40, 41, 61–63] has been proposed to
model segregation in dense surface flows of granular materials. Along these lines, we have used Eq. 5 with a linear
dependence of the segregation on concentration to model segregation for a range of size bi- and polydisperse flows
and density bidisperse flows [6, 7, 15, 31, 39] and shown that the results match DEM results quite well. However,
in this paper we have demonstrated that wp,i is better fit by a quadratic dependence on concentration than a linear
fit, resulting in a dependence for the segregation flux (Eq. 13) identical to that proposed previously by Gajjar and
Gray [53]. Hence, one might question if using a concentration asymmetric model (Eq. 12) in the advection-diffusion-
segregation model would work better. To address this question we compared results of our advection-diffusion-
segregation model using both Eq. 5 and Eq. 12 to DEM simulation results. Using Eq. 12 in the model matches DEM
simulation results only slightly better than using Eq. 5. The differences, although relatively small, are most prominent
as the concentration deviates from cs = 0.5. Further details are provided in the supplementary material.

While several questions regarding the segregation velocity and flux have been answered in this study, further research
is needed. The reason for the loss of dependence of segregation on the particle size ratio for RS > 2.4 is unclear. Also
of interest is an explanation for why both size and density driven segregation produce similar segregation velocity and
segregation flux relations even through the mechanisms would seemingly be quite different. An additional challenge
is to connect the segregation velocity with the driving forces on the segregating particle for a particle at the dilute
concentration limit [64]. Additional work is also necessary to consider segregation outside the range of bidisperse
mm-sized particles with small size ratios considered here. Of particular interest in industrial and geophysical flows is
segregation of polydisperse particles having a continuously varying range of size ratios that can exceed two orders of
magnitude or more [65].
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