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In microfluidic devices, inertia drives particles to focus on a finite number of inertial focusing
streamlines. Particles on the same streamline interact to form one-dimensional microfluidic crystals
(or “particle trains”). Here we develop an asymptotic theory to describe the pairwise interactions
underlying the formation of a 1D crystal. Surprisingly, we show that particles assemble into stable
equilibria, analogous to the motion of a damped spring. The damping of the spring is due to
inertial focusing forces, and the spring force arises from the interplay of viscous particle-particle and
particle-wall interactions. The equilibrium spacing can be represented by a quadratic function in
the particle size and therefore can be controlled by tuning the particle radius.

In hydrodynamics, viscosity arises from collisions be-
tween the molecules of the fluid, transferring momentum
from fast regions to slower regions. As a result, viscosity
resists large velocity gradients, and is often compared to
frictional damping. In contrast, fluid inertia maintains
momentum and enhances velocity gradients in the flow.
Heuristically, viscosity is thought to impede or dampen
flow while inertia is thought to enhance it. Here we
present a counterexample to this intuition. The geom-
etry of the proposed system reverses the role of viscosity
and inertia, so that viscous stresses perpetuate motion
while inertial stresses dampen motion.

We consider the motion of two neutrally-buoyant par-
ticles suspended in a fluid moving through a rectangular
channel. The Reynolds number of the flow is chosen be-
tween 1 and 100, so that inertial stresses are equal to
or greater than viscous stresses. The fluid inertia causes
the particles to migrate across streamlines and focus at
finitely many inertial focusing streamlines [1–4]. Exper-
iments [5–9] show that inertially focused particles “crys-
tallize” into trains with regular spacing (Figure 1A-B).

There are two types of crystallization in rectangu-
lar microchannels for consideration: (i) cross-streamline
crystals (which can be 2D or 3D) shown in Figure 1B
and (ii) same-streamline crystals (effectively 1D crystals)
shown in Figure 1A. Real particle trains are typically
made up of a mixture of the two types [8]. Nonetheless,
the two types of crystals have been explained by different
mechanisms.

In case (i), lattice Boltzman simulations [6] of the
streamlines around a single inertially-focused particle
showed the existence of two vortices on the opposite side
of the channel (Figure 1C reproduces these). It was hy-
pothesized that the centers of these vortices present sta-
ble focusing positions for a second particle. A stable
crystal forms with particles alternating between stream-
lines.

In case (ii) crystalization is assumed to occur at the
balance of attractive and repulsive inter-particle forces.
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The repulsive forces appear to be symmetric, while the
attractive forces appear to be non-symmetric, and there-
fore are believed to have separate origins [7]. Lee
et al. hypothesize that the repulsive forces are not due
to fluid inertia – but rather are due to viscous interac-
tions with the channel wall pushing the particles away
from the focusing streamline. They assert that the at-
tractive force arises from the inertial lift force pushing
the particles back to their focusing streamlines and over-
shooting, creating a harmonic oscillator type potential.

While this mechanism gives a qualitative explanation
of crystallization, it remains untested and generates more
questions about the dynamics of train formation: What
are the magnitudes of the attractive and repulsive forces?
How do these forces depend on the experimental parame-
ters? Can we predict the lattice length λ as a function of
the experimental parameters? While general trends are
well documented, and numerical simulations can predict
dynamics for a single device, there is no theoretical model
that can predict the lattice length for a general class of
devices and range of parameters. Such a theory could
be used to engineer trains with a specific lattice length.
Controlling the lattice length is necessary in applications
such as high-speed imaging, flow cytometry, and entrap-
ment of live cells in droplets for tissue printing [10, 11].
A quantitative theory of lattice formation and equilib-
rium spacings would be one step towards rational design
of such devices.

In order to develop our model, we analyze the interac-
tions of pairs of particles confirming that pairs can form
stable doublets in both cross-stream and same-streamline
configurations. In the process of deriving the equilibrium
spacing length between two particles, we discover that
these stable equilibria behave like simple damped spring
models where viscosity and inertia play unintuitive roles
in the dynamics.

I. CROSS-STREAMLINE PAIRS

First we explore the mechanism by which particles in-
teract across streamlines. We demonstrate mathemat-
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FIG. 1: (A) Particles on the same streamline form a 1D
microfluidic crystal for Re = 30 and α = 0.17 and
AR = 1.7; scale bar represents 90µm[8]. (B)

Cross-streamline 2D microfluidic crystal; scale bar
represents 50µm[7]. (C) Streamlines around a single
inertially-focused particle simulated using FEM in

Comsol Multiphysics (Los Angeles, CA) show
stagnation points on the opposite side of the channel

where particles can focus to form a stable crystal with
particles alternating between streamlines. (D) Diagram

for two particles focusing on opposite streamlines h1
and h2. The point (xc, yc) (black dot) marks the center

of the closed eddy formed by the particle focused at
streamline h1. (E) Diagram for two particles near the

inertial focusing streamline and a single wall.

ically how the center of a closed vortex can become a
stable focusing position for a particle. Simulations [6] of
the flow around a single inertially-focused particle show
closed vortices on the opposite side of the channel (re-
produced in Figure 1C and verified [12] against drag co-
efficent measurments by Chow et al. [13]).

Consider fluid flowing through a rectangular channel
with height H, width W , and aspect ratio AR = W/H,
and fluid flowing with maximum velocity U . If the fluid
has density ρ and viscosity µ then the channel Reynolds
number is Re = ρUH/µ. We consider two spherical par-
ticles with radius a and density ρ suspended in the fluid,
both close to a given inertial focusing streamline. The

distance h between the inertial focusing streamline and
the channel wall depends on the dimensionless particle
radius α = a/H [3] and can be predicted from asymp-
totic theory [14]. Let dx be the downstream separation
of the two particles (from center to center) and dy be the
vertical displacement of the downstream particle above
the upstream particle (Figure 1D).

We assume that the original particle is on the focusing
streamline (y, z) = (h1, 0) and the vortices are near the
focusing streamline (y, z) = (h2, 0). Due to symmetry
of the channel and inertial focusing, we will assume all
particles are restricted to the plane z = 0. Initially we
treat the eddies phenomenologically; but we note that
the eddies themselves can be quantitatively reproduced
using the same model we develop for same streamline
interactions [15].

For simplicity, we assume the closed vortex has an el-
liptical shape in the x, y-plane and is centered at (xc, yc),
where yc is sufficiently close to h2. Then we can express
the vortex as a second order system of ODEs:

ẋ = −β2(y − yc), ẏ = ω2(x− xc) . (1)

The direction of the eddy is determined by the location
of the nearest channel wall. For example, in the case
shown in Figure 1D, because of the upper channel wall
at y = H, the local shear flow on the streamline y = h2
will be negative, i.e. −γ(y−h2), where γ > 0. Therefore,
the eddy should have a counter-clockwise orientation.

Now we consider a second particle near the h2 stream-
line. We adapt the asymptotic theory developed by Hood
et al. [14, 16] for rectangular channels. Since numerical
experiments show that viscous stresses dominate momen-
tum flux terms over the entire fluid filled domain, V , we
can perform a regular perturbation expansion in the par-
ticle Reynolds number Rep, treating the viscous and pres-
sure stresses as dominant terms, and the inertial stress
as a perturbative correction.

We use the Lorentz reciprocal theorem [17] to repre-
sent the inertial lift force FL as a volume integral that
involves the following three solutions of Stokes equations
(Rep = 0): (1) ū, the undisturbed flow through the chan-
nel, (2) u, the solution for a force-free and torque-free
sphere moving through the microchannel, and (3) a test
velocity û for the slow (Rep = 0) movement of a particle
in the lateral direction in a quiescent fluid. The total
force on a particle that is constrained from migrating
across streamlines can be written as an integral:

FL = Rep

∫
V

û · (ū · ∇u + u · ∇ū + u · ∇u) dv. (2)

To expose the role played by particle size in determining
the lift force,we expanded u and û as a two-term series in
a
H , the ratio of the particle radius to the channel depth.
The lift force FL at the point x0 in the channel can be
expressed as a two term asymptotic expansion with co-
efficients c4(x0) and c5(x0). Specifically,

FL(x0) ∼ ρU2a4

H2

[
c4(x0) +

a

H
c5(x0)

]
. (3)
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The coefficients c4(x0) and c5(x0) are dimensionless con-
stants including both analytical and numerically com-
puted components, and that depend on the location of
the particle x0 and the aspect ratio of the rectangular
cross-section.

To compute the inertial migration velocity in the
neighborhood of y = h2, we Taylor expand equation (3)
around y = h2. As a result, the particle inertial migra-
tion velocity can be expressed as ẏ = −Γ(y−h2), where:

Γ =
a3URe

6πH4

(
95.9 + 163.4

a

H

)
. (4)

Adding inertial focusing to the system of ODEs in Eq
(1), we arrive at:

ẋ = −β2(y − yc), (5)

ẏ = ω2(x− xc)− Γ(y − h2) . (6)

This system of ODEs has an equilibrium solution at
(x∗, y∗) where:

x∗ = xc +
Γ

ω2
(yc − h2) , y∗ = yc . (7)

We make the change of variables X = x − x∗ and Y =
y − y∗, then by substitution we can re-write this as a
second-order ODE in Y :

Ÿ + ΓẎ + ω2β2Y = 0 . (8)

The right hand side of equation (8) equal to zero if we
choose y∗ to be:

y∗ =
ω2β2yc + Γh2
ω2β2 + Γ

. (9)

Then equation (8) becomes a homogeneous second-order
differential equation with constant coefficients, or a
damped harmonic oscillator. We see that the damping
term is proportional to Γ, the inertial focusing constant.
As a result, the particle focuses to (X,Y ) = (0, 0) or
(x, y) = (xc, y

∗).
We have shown that the inertially-driven damping of

particle motion in an eddy forces the particle to focus to
a single point. Notice that the focusing position of the
particle is not exactly on the inertial-focusing streamline,
but at a weighted average between the streamline and
the center of the eddy, where the weights are the inertial
focusing constant Γ and the elliptical eddy constants β
and ω.

This analysis provides a mechanism by which parti-
cles can form stable cross-stream pairs. However, it does
not appear to apply to same-streamline crystals because
there are no closed eddies on the same streamline as the
focused particle, only a recirculating flow (Figure 1C). In
order to explain same-streamline crystallization, we need
to derive a new model from first principles.

A

P-P interactions + shear

B

image
stresslets

P-W interactions

FIG. 2: (A) Viscous P-P interactions in a shear flow
predicts ‘bound’ pairs of spheres with closed trajectories

[18] and with ḋy < 0. Shown in the moving reference
frame of one particle. (B) Viscous P-W interactions can

be represented by image stresslets. The image on
particle 1 acts on particle 2 and vice versa, creating a

net ḋy > 0.

II. SAME-STREAMLINE PAIRS

Here we derive a model for the assembly of pairs of
same-streamline crystals. In order to make an asymptotic
expansion, we assume that a� h� dx.

In a rectangular channel flow, numerical experiments
show that viscous stresses dominate over momentum flux
terms over the entire channel [14]. Hence, a three-
dimensional asymptotic analysis of the Navier-Stokes
equations for this system showed that a low Reynolds
number approximation is valid. This analysis demon-
strated that the dominant physics is viscous, and that
inertial focusing can be treated as a perturbative effect.

What are the essential ingredients needed to model
the interactions of a pair of particles within a same-
streamline 1D crystal? First, we need inertial focusing to
constrain the particles on a streamline. Second, we need
particle-particle (P-P) interactions. Third, we need the
local background flow (i.e. the flow in a channel undis-
turbed by particles), which to first order is a shear flow.
Fourth, we find that it is necessary to include particle-
wall (P-W) interactions (with the nearest channel wall)
in order to achieve a stable configuration. The role of the
P-W interactions will be made clear later in this section.

Because the asymptotic theory that accurately predicts
the lift force in Eq (2) arises from a perturbation expan-
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FIG. 3: Analogy between nucleation and damped spring
motion.

sion in small Rep, we conclude that, in a channel geome-
try, viscous effects are first order and inertial effects are
second order [14]. Therefore, it suffices to approximate
the P-P interactions and the P-W interactions with their
viscous counterparts. Furthermore, these viscous inter-
actions can be written analytically as a multipole expan-
sion [18, 19]. Likewise, inertial focusing can be written
as a two-term asymptotic series whose coefficients were
computed numerically by Hood et al. [14].

Viscous P-P interactions in a shear flow results in
‘bound’ pairs of spheres with closed trajectories [18] (Fig-
ure 2A). We will re-derive this result using Lamb’s solu-
tion, the method of reflections, and Faxén’s laws in Sec-
tion III and add additional physics. Because this orbit
is clockwise in the sense of the coordinates used in Fig-
ure 1D and 2A, and because we have defined dy to be
the vertical displacement between the leading and trail-
ing particle, we observe that ḋy is negative throughout.
Starting with the two spheres with dx ∼ 0, then dy is
positive. As the particles orbit, dy decreases monotoni-
cally and passes through zero and then becomes negative.
The vertical displacement dy reaches its minimum value
when dx = 0, at which point the trailing particle be-
comes the leading particle. During this first phase of the
orbit, ḋy was negative throughout. In the second phase,
after the leading and trailing particles switch, dy starts
out positive and decreases monotonically to a negative
value, resulting in a negative ḋy.

Viscous P-W interactions act in the opposite direction
on the vertical displacement dy. We can see this by us-
ing the method of images to model the effect of the wall
on the particles. To first order, we approximate the im-
age particles by stresslets. The induced velocity on the
downstream particle is calculated by evaluating the up-
stream image stresslet at the center of the downstream
particle and has a positive y component. Likewise the
induced velocity on the upstream component has a neg-
ative y component, so that the net vertical displacement
dy is positive (Figure 2B).

The shear flow centered at the height h converts any
vertical displacement dy into a streamwise displacement
dx. Combining the shear flow with viscous P-P interac-
tions and viscous P-W interactions creates a closed loop
with an equilibrium point at (dx, dy) = (λ, 0) (Figure 3
left). In dynamical systems, (λ, 0) is called a center and is
neutrally stable. Note that when the particles are on the

same streamline, neither P-P nor P-W interactions act
to alter the spacing dx directly. The equilibrium shows
up as a point where ḋy vanishes. Thus, it is not de-
tected using the standard approach to finding equilibria
(i.e. analyzing where ḋx = 0).

In contrast, inertial focusing acts uniformly on parti-
cles, regardless of their separation dx, and always pushes
particles back to the inertial focusing streamline at y = h.
Therefore inertial focusing pushes dy to zero (Figure 3
center). Adding inertial focusing to the viscous system
above creates an asymptotically stable spiral point that
converges to (dx, dy) = (λ, 0) (Figure 3 right).

The dynamics of the system of two inertially-focused
particles interacting mimics the behavior of a damped
harmonic oscillator or a spring with frictional damping
(Figure 3). Here the viscous interactions are analogous to
the spring motion creating closed trajectories in (dx, dy)
space while inertial focusing is analogous to frictional
damping. Herein lies the role-reversal: viscosity main-
tains motion (like a spring) and inertia dampens motion
(like friction).

III. DYNAMIC MODEL OF CRYSTALLIZATION

We can make this description rigorous by writing down
the equations of motion and solving them numerically.
Let xi for i = 1, 2 be the locations of the two par-
ticles. We begin by finding the exact solution for the
flow around an unbounded parabolic flow around a sin-
gle force-free and torque-free no-slip sphere. The flow
around each particle can be derived using Lamb’s solu-
tion for the flow exterior to a sphere [20, 21]. Here we will
only keep the terms that are O(r−2) and O(r−3). In or-
der to derive the image system in the next step, we must
convert Lamb’s solution into multipole singularities. In
this case the O(r−2) term becomes the stresslet vST, and
the O(r−3) term is decomposed into the source dipole vD

and two stokeslet quadrupoles vSQ and wSQ.
For each particle, we model the viscous wall effects by

computing the image system for a plane wall. Blake [22]
derived the image system for a stokeslet, and using a sim-
ilar procedure the image systems for the stresslet vSTim,
source dipole vDim, and stokeslet quadrupoles vSQim and
wSQim can be derived [23–25]. Then the flow around each
particle is:

vi ∼ (vST
i + vSTim

i ) + (vD
i + vDim

i ) (10)

+ (vSQ
i + vSQim

i ) + (wSQ
i + wSQim

i ) .

Corrections to vi from the presence of particle j 6= i are
higher order and therefore not included in this step.

Let ū be the Poiseuille flow through a rectangular
channel [26]. Then, for each particle we use Faxén’s law
[21] to compute the induced velocity from the other par-
ticle and image system,

Ui =

(
1 +

a2

6
∇2

)
(ū + vj)

∣∣∣
x=xi

, i 6= j. (11)
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FIG. 4: The separation of two particles dx(t) as a function of time for a = 6µm, different initial separation lengths,
and (A) Re = 30 or (B) Re = 1. (C) The equilibrium separation length λ is a function of the relative particle size
α = a/H and equation (15) captures this realationship well. Here the markers represent numerical solutions to

equations (12)-(13) and the solid line is equation (15). Experimental measurements from Kahkeshani et al. [8] at
Rep = 2.8 (blue square) and Lee et al. [7] (red triangle) agree with our model. Error bars are standard deviations.

(Inset) We observe that λ is a linear function of h and can be approximated by equation (14).

Here, Ui = (Ui, Vi,Wi). Then we define the relative
velocity dU = U2 −U1.

We again model inertial focusing by Taylor expand-
ing the migration velocity from Hood et al. [16] in the
coordinate y around h. This gives ẏi = −Γ(yi − h),
where the inertial focusing constant Γ is defined in equa-
tion (4). Combining the viscous particle interactions
dU = (dU, dV, 0) with the inertial focusing we arrive at a
system of ODEs for the dynamics of particle interactions:

ḋx = dU, dx(t = 0) = k0d, (12)

ẏi = Vi − Γ(yi − h), yi(t = 0) = h, i = 1, 2. (13)

The ODEs depend explicitly on the particle size α, the
Reynolds number Re, and the initial separation length
k0d. The equations implicitly depend on the channel
aspect ratio AR, but throughout this paper we will con-
sider the same channel as Kahkeshani et al. [8], where
W = 60µm, H = 35µm, and AR = 1.7.

Solving ODEs (12)-(13) numerically for Re = 30,
a = 6µm, and various initial conditions shows that there
is a stable equilibrium length λ = 4.17d (Figure 4A). In
contrast, the same system for Re = 1 converges to the
same value of λ = 4.17d, but the harmonic oscillator be-
comes under-damped (Figure 4B). This shows that as Re
increases, so does the damping of the spring motion. This
behavior is counters the intuition that viscosity should
play the damping role, not the inertia.

How does the lattice length λ scale with experimental
parameters? Contrary to expectations, we find that λ
does not scale linearly with particle diameter d = 2a.
From the derivation of our asymptotic model, we would
expect λ to depend on both the particle radius a and the
distance from the inertial-focusing streamline to the wall
h. Surprisingly, we find from the numerical solutions of
equations (12)-(13) that λ depends linearly on h (Figure
4C Inset). A polynomial fit of the numerical data predicts
that:

λ = −0.2H + 4.8h . (14)

We conjecture that h is the scaling parameter for the
equilibrium spacing, instead of λ. It is not suprising that
h influences λ strongly because h appears in the P-W
interaction term, which was necessary to include in our
model in order to form stable equilibria. In terms of the
qualitative model of Lee et al. [7], the P-P interactions
give rise to a repulsive force between the particles while
the P-W interactions lead to an attractive force. Since
the strength of the P-W interactions depend explicitly on
h, it follows that h should strongly determine the equi-
librium spacing λ.

Additionally, h depends implicitly on the relative par-
ticle size α = a/H (recall that H is the height of the
channel), and can be approximated by a quadratic poly-
nomial [14]. Therefore, we expect that λ can be expressed
as a function of the relative particle size α. Using a sim-
ilar analysis, we observe that for infinitesimal particle
sizes, the equilibrium spacing λ approaches a constant
λ ∼ 0.8H (Figure 4C). As particle size α increases, λ
also increases. A polynomial fit of the numerical data for
λ predicts that:

λ

H
= 0.8 + 2.2α+ 9.1α2 . (15)

We compare the numerical data and the numerical fit
in equation (15) to experimental data from Kahkeshani
et al. [8] (at Rep = 2.8) and Lee et al. [7]. Our model
with no fitting parameters (15) matches well with the
experimental data (Figure 4C). This fit persists even
though the channels have different aspect ratios (AR =
1.7 and AR = 3.6, respectively), suggesting that the
modeling assumption that the flow is predominantly 2-D
is valid.

We note that the equilibrium spacing λ is independent
of Re in our theory (though our theory is asymptotically
correct as Re → 0, so higher order corrections are needed
to model the effect of Re on the equilibrium spacing). In
our model, Re does not impact the equilibrium of the
system, only the degree of damping.
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FIG. 5: (A) A particle on the inertial focusing
streamline acts on a second particle, drawing vortical

path-lines both upstream and downstream. The trailing
vortex spirals outward while the leading vortex spirals

inward. (B) If particles approach too closely, then
vortices interfere constructively. (C) If particles are

spaced further apart, the vortices interfere destructively.

IV. CRYSTALLIZATION AT MODERATE
REYNOLDS NUMBERS

In our model, we assume particle interactions are dom-
inated by viscosity, which is asymptotically correct in
the limit of small Reynolds numbers. However, particle
train formation still occurs at moderate Re, and preferred
spacings of particles can change as Re increases [8].

Kahkeshani et al. [8] measured the inter-particle spac-
ings of particle trains as the particle Reynolds number
Rep changes. At Rep = 2.8 they measured a pdf of par-
ticle spacings that yielded λ = (4.4± 1.2)d, which agrees
with our theoretical prediction of λ = 4.17d in Section
III (Figure 4C). However, at Rep = 8.3, they measure
λ = (2.0 ± 0.3)d, which does not agree with our theory.
While we expect that our theory is valid only at lower
values of Rep, some insight into train formation at in-
termediate Rep can be gleaned from examining particle
paths.

As a first step toward a physical theory for crystal-
lization at moderate Reynolds numbers, we adopt an
approach recently used to study particle chaining in
acoustic streaming flows [27, 28]. We analyze the vor-
tical structures created by single particles and then look
for patterns of interference between particles. Klotsa
et al. found empirically that particles tend to organize
themselves into configurations that minimize total kinetic
energy in the surrounding flow [28].

We investigate the approximate velocity around a sin-
gle inertially-focused particle Ui. Note that the trajecto-
ries of ui(x) show the paths that another particle would

-60 -30 0 30 60
0

30

x

y

-60 -30 0 30 60
0

30

x

y

-60 -30 0 30 60
0
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x

y

A

B

C

U

FIG. 6: Vortex interactions for two inertially-focused
particles. (A) dx = 3d < λ, (B) dx = 4.15d = λ, (C)

dx = 6d > λ.

follow if introduced at a point x0 = (x0, y0); they are
therefore particle paths, not streamlines. These particle
paths are explained by the schematic in Figure 3. Specif-
ically, we constrain particle 1 to the streamline y = h,
then the path of particle 2 (x(t), y(t)) would satisfy:

ẋ = wx , x(0) = x0, (16)

ẏ = wy , y(0) = y0, (17)

where w = (wx, wy, wz) satisfies:

w =

(
1 +

a2

6
∇2

)
v1

∣∣∣∣
x1=0,y1=h

. (18)

Notice that w is the induced flow of particle 2 due to
particle 1. It is not v1, the flow around particle 1, which
could be compared directly to the numerical simulation of
the flow around an inertially focused particle (Figure 1C).
In our analysis, we consider only one-way interactions, so
particle 1 does not leave its inertially-focused position.

We observe that the particle paths form a leading vor-
tex and a trailing vortex both with the same sense of
rotation (Figure 5A). On closer observation we notice
that neither structure is closed. These zones of recircula-
tion have been observed experimentally [8]. The leading
vortex is an inward spiral, while the trailing vortex is an
outward spiral (Figure 5). Closure (or not) of the eddies
is not a significant factor in our subsequent analysis.

There is an optimum spacing between the particles
that minimizes total kinetic energy. If the particles are
brought close enough together, then the vortices over-
lap and reinforce each other, as shown in Figure 5B. No
longer cancelling, the kinetic energy of the flow will now
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increase. The orientation of the vortices agree with the
pair trajectories computed in Kahkeshani et al. [8]. Con-
versely, when two particles are spaced far apart, their re-
spective leading and trailing vortices will tend to cancel
each other, as shown in the schematic in Figure 5C. Fol-
lowing the reasoning of Klotsa et al. [28], we expect the
particles to self-organize into a configuration that mini-
mizes the kinetic energy, i.e. intermediate between Fig-
ures 5B and 5C.

We confirmed that these predictions are supported
in our simulations of particles interacting at small
Reynolds numbers. We compute particle paths around
two inertially-focused particles separated by a distance
λ, i.e. the particles are located at (x1, y1) = (0, h) and
(x2, y2) = (dx, h). Then, the particle paths are deter-
mined by equations (16)-(17) where

w =

(
1 +

a2

6
∇2

)
(v1 + v2)

∣∣∣∣
x1=0,x2=dx,y1=y2=h

. (19)

The paths determined by equations (16)-(17) and (19)
represent the interference of the vortices in Figure 5B-C.
When the two particles are close together, dx < λ, then

the two vortices combine to form a closed ring (Figure
6A). The two vortices overlap and reinforce each other,
thereby increasing the total kinetic energy of the sys-
tem. When the particles are too far apart dx > λ, the
vortices cancel only weakly (Figure 6C). At the center
point of the particles, the paths are clearly unstable.
Conversely, when the particles are at their equilibrium
spacing dx = λ, the vortices connect to each other but
maintain their distinct centers (Figure 6B). In this con-
figuration, the vortices cancel at the midpoint creating a
third stagnation point, which decreases the total kinetic
energy.

As Rep increases, we expect that the boundary layers
on the particles should decrease. According to Kahke-
shani et al. [8], we would expect that, at some critical
Rep, a new pair of vortices appear closer to the particle
in Figure 5A. Since the size and location of the vortices
determine the equilibrium spacing λ between the par-
ticles, we would expect that higher Rep particle trains
should have smaller λ.

V. CONCLUSIONS

Under our model, pairs of particles organize into stable
equilibria that are analogous to damped springs, in which

the expected roles of inertia and viscosity have been re-
versed. Viscous flow maintains harmonic motion, like a
spring, while inertial focusing results in a damping effect.

The essential ingredients needed to model the har-
monic motion are: shear flow, particle-particle interac-
tions and particle-wall interactions. We showed that
particle-wall interactions are necessary to achieve nega-
tive vertical displacement dy, and therefore necessary to
achieve closed trajectories in the viscous harmonic mo-
tion.

We developed an asymptotic model to describe this
behavior and produced a formula for the lattice spacing
λ. We envisage that the model for particle spacing [25]
will be generally useful for reduced order simulations for
particles in inertial microfluidic devices. We showed that
λ scales with the distance h between the inertial focusing
streamline and the channel wall. Since the distance h
depends on the relative particle size α = a/H, the lattice
spacing λ can be tuned by changing particle sizes. As a
result, not only is the effect of the channel walls necessary
to model the dynamics, but it also sets the scaling for the
lattice length.

Additionally, we have shown that both the cross-
stream pairs and same-stream pairs form a stable con-
figuration when a closed particle path is combined with
inertial focusing to a streamline. In the case of same-
stream pairs, the closed particle path is not apparent at
the level of the fluid velocity, and requires asymptotic ap-
proximations to reveal the underlying vortical structure
of the system.

VI. ACKNOWLEDGMENTS

This material is based upon work supported by the
National Science Foundation under Award No. DMS-
1606487 (to K.H.) and DMS-1312543 (to M.R.). This
work was partially supported by the UCLA Dissertation
Year Fellowship (to K.H.). We thank Lawrence Liu for
performing preliminary simulations (supported by DMS-
1045536), and Hamed Haddadi and Soroush Kahkeshani
for helpful discussions.
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